1
|
Yang HY, Huang PZ, Feng WJ, Si PW, Gao K, Chen JJ. ent-Abietane-type lactones with anti-inflammatory activity from Euphorbia helioscopia. PHYTOCHEMISTRY 2025; 229:114313. [PMID: 39461493 DOI: 10.1016/j.phytochem.2024.114313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/16/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
Euphohelinodes D-I (1-6), six previously unreported ent-abietane lactones, along with two known analogues (7 and 8), were isolated from the anti-inflammatory fraction extracted from E. helioscopia by a bioactivity-guided isolation. Their structures were characterized using a combination of spectroscopic data interpretation, single-crystal X-ray diffraction and ECD analysis. The anti-inflammatory activity of these compounds was evaluated by measuring their inhibitory effects on NO production in LPS-stimulated RAW264.7 macrophages. The most active candidate, euphohelinode H (5), had better inhibitory activity against NO production with an IC50 value of 30.23 ± 2.33 μM. Further study revealed that 5 significantly suppressed the expressions of iNOS and COX-2 through the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Hong-Ying Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, People's Republic of China
| | - Pei-Zhi Huang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, People's Republic of China
| | - Wei-Jiao Feng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, People's Republic of China
| | - Pei-Wei Si
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, People's Republic of China
| | - Kun Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, People's Republic of China.
| | - Jian-Jun Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
2
|
Sargazifar Z, Ghorbanian Charami D, Esmaeilzadeh Kashi M, Asili J, Shakeri A. Abietane-Type Diterpenoids: Insights into Structural Diversity and Therapeutic Potential. Chem Biodivers 2024; 21:e202400808. [PMID: 38881249 DOI: 10.1002/cbdv.202400808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/18/2024]
Abstract
The abietane-type diterpenoids are among the most significant diterpene subsets found in hundreds of plant species belonging to various families. Among which, the members of the genus Salvia and Euphorbia are rich in abietane diterpenoids. Because of the chemical diversity and notable bioactivities, such as anticancer, antiinflammatory, antimicrobial, and antioxidant activities, they are attractive. Herein, recent advances in the isolation and characterization of abietanes from natural sources, as well as their biological activities, from 2015 up to 2024 are reviewed. During this time, over 300 abietanes with diverse structures have been discovered.
Collapse
Affiliation(s)
- Zahra Sargazifar
- Department of Pharmacognosy, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Danial Ghorbanian Charami
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Javad Asili
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Vidaković V, Vujić B, Jadranin M, Novaković I, Trifunović S, Tešević V, Mandić B. Qualitative Profiling, Antioxidant and Antimicrobial Activities of Polar and Nonpolar Basil Extracts. Foods 2024; 13:2993. [PMID: 39335921 PMCID: PMC11431458 DOI: 10.3390/foods13182993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Basil (Ocimum basilicum L.) is a widely used culinary herb. In this study, ethanol, dichloromethane, and sunflower oil were used separately as solvents with distinct polarities for the extraction of basil aerial parts to simulate the different polarity conditions in domestic food processing. The oil extract (OE) was re-extracted with acetonitrile, and the chemical composition, antioxidant potential, and antimicrobial activities of the ethanol (EE), dichloromethane (DCME), and acetonitrile (ACNE) extracts were determined. A total of 109 compounds were tentatively identified in EE, DCME, and ACNE by HPLC-DAD/ESI-ToF-MS. Fatty acids were present in all extracts. Phenolic acids and flavonoids dominated in EE. DCME was characterised by triterpenoid acids, while diterpenoids were mainly found in ACNE. The extracts were analysed for their antioxidant capacity using the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) assay. EE and DCME showed significant radical scavenging potential. Antimicrobial activity was explored in eight bacterial, two yeast, and one fungal species. All extracts exhibited high antifungal activity, comparable to or better than that of the commercial drug nistatin. Antibacterial activities were notable for EE and ACNE, while DCME showed no activity against bacteria in the applied concentration ranges. The different polarities of the solvents led to distinctive phytochemical compositions and bioactivities in the extracts.
Collapse
Affiliation(s)
- Vera Vidaković
- Department of Ecology, University of Belgrade—Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, Bulevar despota Stefana 142, 11108 Belgrade, Serbia;
| | - Bojan Vujić
- University of Belgrade—Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (B.V.); (S.T.); (V.T.)
| | - Milka Jadranin
- University of Belgrade—Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia; (M.J.); (I.N.)
| | - Irena Novaković
- University of Belgrade—Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia; (M.J.); (I.N.)
| | - Snežana Trifunović
- University of Belgrade—Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (B.V.); (S.T.); (V.T.)
| | - Vele Tešević
- University of Belgrade—Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (B.V.); (S.T.); (V.T.)
| | - Boris Mandić
- University of Belgrade—Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (B.V.); (S.T.); (V.T.)
| |
Collapse
|
4
|
Ren X, Yuan X, Chen YY, Zhang QZ, Tan CL, Kang JJ, Luo SH, Liu Y, Guo K, Li SH. New triterpenoids from the aerial parts of the Uygur medicine Salvia deserta. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:78-90. [PMID: 38069835 DOI: 10.1080/10286020.2023.2289595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/26/2023] [Indexed: 04/07/2024]
Abstract
Phytochemical investigation on the aerial parts of Salvia deserta led to the isolation of eight new pentacyclic triterpenoids including three oleanane- (1 - 3) and five ursane-type (4 - 8) triterpenoids, whose structures were elucidated based on extensive spectroscopic analysis and quantum chemical calculation. Weak immunosuppressive potency was observed for compounds 1, 2, and 4 - 8 via inhibiting the secretion of cytokines TNF-α and IL-6 in LPS-induced macrophages RAW264.7 at 20 μM. In addition, compounds 1, 2, and 4 - 6 exhibited moderate protective activity on t-BHP-induced oxidative injury in HepG2 cells.
Collapse
Affiliation(s)
- Xue Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xin Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yu-Ying Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiao-Zhuo Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chun-Lin Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Juan-Juan Kang
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shi-Hong Luo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Yan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kai Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Sheng-Hong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
5
|
Shcherbinin VA, Nasibullina ER, Mendogralo EY, Uchuskin MG. Natural epoxyquinoids: isolation, biological activity and synthesis. An update. Org Biomol Chem 2023; 21:8215-8243. [PMID: 37812083 DOI: 10.1039/d3ob01141k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Epoxyquinoids are of continuing interest due to their wide natural distribution and diverse biological activities, including, but not limited to, antibacterial, antifungal, anticancer, enzyme inhibitory, and others. The last review on their total synthesis was published in 2017. Since then, almost 100 articles have been published on their isolation from nature and their biological profile. In addition, the review specifically considers synthesis, including total and enantioselective, as well as the development of shorter approaches for the construction of epoxyquinoids with complex chemical architecture. Thus, this review focuses on progress in this area in order to stimulate further research.
Collapse
Affiliation(s)
- Vitaly A Shcherbinin
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Pr. 47, 119334 Moscow, Russian Federation
| | - Ekaterina R Nasibullina
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russian Federation.
| | - Elena Y Mendogralo
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russian Federation.
| | - Maxim G Uchuskin
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russian Federation.
| |
Collapse
|
6
|
Ren X, Yuan X, Jiao SS, He XP, Hu H, Kang JJ, Luo SH, Liu Y, Guo K, Li SH. Clerodane diterpenoids from the Uygur medicine Salvia deserta with immunosuppressive activity. PHYTOCHEMISTRY 2023; 214:113823. [PMID: 37579813 DOI: 10.1016/j.phytochem.2023.113823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/22/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
Six undescribed clerodane diterpenoids along with five known ones were isolated from the aerial parts of Salvia deserta, a traditional Uygur medicine. Their chemical structures including absolute configurations were elucidated by extensive spectroscopic analysis (including 1D and 2D NMR, HRESIMS, and IR), combined with calculated ECD method and single-crystal X-ray diffraction analysis. All the compounds possessed a terminal α,β-unsaturated-γ-lactone moiety, and were assayed for their immunosuppressive activity via inhibiting the secretion of cytokines TNF-α and IL-6 in macrophages RAW264.7. Among them, (5R,8R,9S,10R)-18-nor-cleroda-2,13-dien-16,15-olide-4-one obviously suppressed the secretion of TNF-α and IL-6 with IC50 values of 8.55 and 13.65 μM, respectively.
Collapse
Affiliation(s)
- Xue Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xin Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Shan-Shan Jiao
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xiao-Ping He
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Hong Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Juan-Juan Kang
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Shi-Hong Luo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Yan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Kai Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Sheng-Hong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China.
| |
Collapse
|
7
|
Ait El Had M, Zentar H, Ruiz-Muñoz B, Sainz J, Guardia JJ, Fernández A, Justicia J, Alvarez-Manzaneda E, Reyes-Zurita FJ, Chahboun R. Evaluation of Anticancer and Anti-Inflammatory Activities of Some Synthetic Rearranged Abietanes. Int J Mol Sci 2023; 24:13583. [PMID: 37686389 PMCID: PMC10487843 DOI: 10.3390/ijms241713583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Synthesis of the rearranged abietane diterpenes pygmaeocins C and D, viridoquinone, saprorthoquinone, and 1-deoxyviroxocine has been successfully achieved. The anticancer and anti-inflammatory activities of selected orthoquinonic compounds 5, 7, 13, and 19, as well as pygmaeocin C (17), were evaluated for the first time. The antitumor properties were assessed using three cancer cell lines: HT29 colon cancer cells, Hep G2 hepatocellular carcinoma cells, and B16-F10 murine melanoma cells. Compounds 5 and 13 showed the highest cytotoxicity in HT29 cells (IC50 = 6.69 ± 1.2 µg/mL and IC50 = 2.7 ± 0.8 µg/mL, respectively). Cytometric studies showed that this growth inhibition involved phase S cell cycle arrest and apoptosis induction, possibly through the activation of the intrinsic apoptotic pathway. Morphological apoptotic changes, including nuclear fragmentation and chromatin condensation, were also observed. Furthermore, the anti-inflammatory activity of these compounds was evaluated on the basis of their ability to inhibit nitric oxide production on the lipopolysaccharide activated RAW 264.7 macrophage cell line. Although all compounds showed high anti-inflammatory activity, with percentages between 40 and 100%, the highest anti-inflammatory potential was obtained by pygmaeocin B (5) (IC50NO = 33.0 ± 0.8 ng/mL). Our results suggest that due to their dual roles, this type of compound could represent a new strategy, contributing to the development of novel anticancer agents.
Collapse
Affiliation(s)
- Mustapha Ait El Had
- Departamento de Química Orgánica, Facultad de Ciencias, Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain; (M.A.E.H.); (H.Z.); (J.J.G.); (A.F.); (J.J.); (E.A.-M.)
| | - Houda Zentar
- Departamento de Química Orgánica, Facultad de Ciencias, Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain; (M.A.E.H.); (H.Z.); (J.J.G.); (A.F.); (J.J.); (E.A.-M.)
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain; (B.R.-M.); (J.S.)
| | - Blanca Ruiz-Muñoz
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain; (B.R.-M.); (J.S.)
| | - Juan Sainz
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain; (B.R.-M.); (J.S.)
- Centre for Genomics and Oncological Research: Pfizer, Genomic Oncology Area, GENYO, University of Granada, Andalusian Regional Government, PTS Granada, 18016 Granada, Spain
| | - Juan J. Guardia
- Departamento de Química Orgánica, Facultad de Ciencias, Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain; (M.A.E.H.); (H.Z.); (J.J.G.); (A.F.); (J.J.); (E.A.-M.)
| | - Antonio Fernández
- Departamento de Química Orgánica, Facultad de Ciencias, Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain; (M.A.E.H.); (H.Z.); (J.J.G.); (A.F.); (J.J.); (E.A.-M.)
| | - José Justicia
- Departamento de Química Orgánica, Facultad de Ciencias, Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain; (M.A.E.H.); (H.Z.); (J.J.G.); (A.F.); (J.J.); (E.A.-M.)
| | - Enrique Alvarez-Manzaneda
- Departamento de Química Orgánica, Facultad de Ciencias, Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain; (M.A.E.H.); (H.Z.); (J.J.G.); (A.F.); (J.J.); (E.A.-M.)
| | - Fernando J. Reyes-Zurita
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain; (B.R.-M.); (J.S.)
| | - Rachid Chahboun
- Departamento de Química Orgánica, Facultad de Ciencias, Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain; (M.A.E.H.); (H.Z.); (J.J.G.); (A.F.); (J.J.); (E.A.-M.)
| |
Collapse
|
8
|
Li XN, Xu J, Yang S, Li QQ, Lu ZY, Mei G, Li JQ, Yang GZ, Lei XX, Chen Y. Garbractin A, a Polycyclic Polyprenylated Acylphloroglucinol with a 4,11-dioxatricyclo[4.4.2.0 1,5]Dodecane Skeleton from Garcinia bracteata Fruits. ACS OMEGA 2023; 8:30747-30756. [PMID: 37636964 PMCID: PMC10448683 DOI: 10.1021/acsomega.3c04947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/02/2023] [Indexed: 08/29/2023]
Abstract
Garbractin A (1), a structurally complicated polycyclic polyprenylated acylphloroglucinol (PPAP) with an unprecedented 4,11-dioxatricyclo[4.4.2.01,5] dodecane skeleton, was isolated from the fruits of Garcinia bracteata, along with five new biosynthetic analogues named garcibracteatones A-E (2-6). Their structures containing absolute configurations were revealed using spectroscopic data, the residual dipolar coupling-enhanced NMR approach, and quantum chemical calculations. The antihyperglycemic effect of these PPAPs (1-6) was evaluated using insulin-resistant HepG2 cells (IR-HepG2 cells) induced through palmitic acid (PA). Compounds 1, 3, and 4 were found to significantly promote glucose consumption in the IR-HepG2 cells and, therefore, may hold potential as candidates for treating hyperglycemia.
Collapse
Affiliation(s)
- Xue-Ni Li
- School
of Pharmaceutical Sciences, South-Central
Minzu University, Wuhan 430074, P. R. China
| | - Jing Xu
- School
of Pharmaceutical Sciences, South-Central
Minzu University, Wuhan 430074, P. R. China
| | - Shuang Yang
- School
of Pharmaceutical Sciences, South-Central
Minzu University, Wuhan 430074, P. R. China
| | - Qing-Qing Li
- School
of Pharmaceutical Sciences, South-Central
Minzu University, Wuhan 430074, P. R. China
| | - Zheng-Yang Lu
- College
of Chemistry and Material Sciences, South-Central
Minzu University, Wuhan 430074, P. R. China
| | - Gui Mei
- School
of Pharmaceutical Sciences, South-Central
Minzu University, Wuhan 430074, P. R. China
| | - Jia-Qian Li
- School
of Pharmaceutical Sciences, South-Central
Minzu University, Wuhan 430074, P. R. China
| | - Guang-Zhong Yang
- School
of Pharmaceutical Sciences, South-Central
Minzu University, Wuhan 430074, P. R. China
- Ethnopharmacology
Level 3 Laboratory, National Administration
of Traditional Chinese Medicine, Wuhan 430074, P. R. China
| | - Xin-Xiang Lei
- State
Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yu Chen
- College
of Chemistry and Material Sciences, South-Central
Minzu University, Wuhan 430074, P. R. China
| |
Collapse
|
9
|
Zhan G, Gao B, Zhou J, Liu T, Zheng G, Jin Z, Yao G. Structurally diverse alkaloids with nine frameworks from Zephyranthes candida and their acetylcholinesterase inhibitory and anti-inflammatory activities. PHYTOCHEMISTRY 2023; 207:113564. [PMID: 36535411 DOI: 10.1016/j.phytochem.2022.113564] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/26/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Twenty-six structurally diverse Amaryllidaceae alkaloids, including ten undescribed compounds named zephyranines A-I and 6-O-ethylnerinine, two undescribed natural products zephyranthine-6-one and 3-O-deacetyl-sternbergine, were isolated from whole plants of Zephyranthes candida. Their structures were determined by HRESIMS, 1D and 2D NMR, CD data analysis, NMR and ECD calculations, and single-crystal X-ray diffraction analysis. All structures were classified into nine framework types: 10b,11-seco-crinine, graciline, crinine, homolycorine, trisphaeridine, lycorine, galasine, tazettine, and belladine. Zephyranine A represents the first naturally occurring 10b,11-seco-crinine type alkaloid, and zephyranine B is the sixth graciline type alkaloid. 6-O-ethylnerinine is an artifact from the extraction and isolation. All isolates were evaluated for their acetylcholinesterase (AChE) inhibitory and anti-inflammatory activities. Zephyranines A, G, and H exhibited moderate AChE inhibitory activities, with IC50 values of 8.2, 39.0, and 10.8 μM, respectively. Zephyranine B, haemanthamine, haemanthidine, 11-hydroxyvittatine, and 8-demethoxy-10-O-methylhostasine exhibited potent anti-inflammatory activity on the LPS-induced NO production in RAW264.7 mouse macrophages with IC50 values of 21.3, 4.6, 12.2, 5.6, and 17.4 μM, respectively. Structure-activity-relationship analysis and docking studies indicated that interactions with the key Trp286 and Tyr337 residues are required for potent AChE inhibitors.
Collapse
Affiliation(s)
- Guanqun Zhan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Biao Gao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Junfei Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tingting Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guijuan Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhong Jin
- State Key Laboratory of Elementoorganic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China; Laboratory of Xinjiang Native Medicinal and Edible Plant Resource Chemistry, College of Chemistry and Environmental Science, Kashi University, Kashgar, 844007, China.
| | - Guangmin Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Laboratory of Xinjiang Native Medicinal and Edible Plant Resource Chemistry, College of Chemistry and Environmental Science, Kashi University, Kashgar, 844007, China.
| |
Collapse
|
10
|
Hu JW, Wang Q, Liu L, Hu YM, Xie M, Zheng DK, Xie Z, Liu Y. Abietane diterpenoids from Phlegmariurus carinatus and their biological activities. PHYTOCHEMISTRY 2022; 204:113457. [PMID: 36179821 DOI: 10.1016/j.phytochem.2022.113457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/28/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Five undescribed abietane diterpenoids, along with eight known analogs, were isolated from Phlegmariurus carinatus. Their structures were unambiguously elucidated by extensive analysis of spectroscopic data and comparison between the literature. The absolute configuration of phlecarinatone C was determined by evaluating ECD spectra. Four undescribed abietane diterpenoids and eight known analogs were tested for their neuroprotective and cytotoxic activities, separately. Teuvincenone C showed potential neuroprotective effect against Hemin-induced HT22 cell damage. Importantly, phlecarinatone C showed pronounced cytotoxic effect against U251 cells in vitro assays. The biological evaluation revealed that phlecarinatone C could inhibit proliferation, migration, and invasion in a concentration-dependent manner of U251 cells. Meanwhile, phlecarinatone C effectively reversed epithelial-to-mesenchymal transition (EMT) and promoted U251 cells apoptosis via a mitochondrial apoptotic pathway. Taken together, phlecarinatone C might be a valuable candidate for anti-metastatic agents against glioblastoma treatment.
Collapse
Affiliation(s)
- Jia-Wei Hu
- Key Laboratory of Biomaterials and Bio-fabrication in Tissue Engineering of Jiangxi Province, Scientific Research Center, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Qiang Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Lin Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Yi-Ming Hu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Min Xie
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Dong-Kun Zheng
- National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Zhen Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Yang Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, 341000, China.
| |
Collapse
|
11
|
Nazemosadat-Arsanjani Z, Moein M, Yousuf S, Firuzi O, Choudhary MI. Reassessing the molecular structures of some previously isolated abietane diterpenoids with a naphthalene moiety and the structure-activity relationship (SAR) of quinone diterpenoids. PHYTOCHEMISTRY 2022; 204:113433. [PMID: 36115387 DOI: 10.1016/j.phytochem.2022.113433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Crystals of previously described para-naphthoquinone abietane diterpenoids 12,16-dideoxy-aegyptinone B and 12-deoxy-salvipisone were obtained from Zhumeria majdae Rech.f. & Wendelbo. However, single-crystal X-ray diffraction analysis followed by reinterpretation of their NMR data revealed that their structures require revision, and they should be revised to the two ortho-naphthoquinones, zhumerianone C and aethiopinone, respectively. Interestingly, a further search through literature revealed that there were more of such cases, in which differentiation between the ortho-/para-orientation had not been carried out correctly in the structure elucidation of naphthalene containing abietane diterpenoids. Therefore, in the current study, we pointed out some 1D and 2D NMR generalizations that would help the unambiguous deduction of the ortho-/para-orientation of naphthalene containing abietanes and revised the structure of some previously described compounds accordingly. Based on these generalizations, structures of sibiriquinones A and B, sahandinone, and sahandone were revised to the known structures 1,2-didehydromiltirone, miltirone, saprorthoquinone, and sahandone B, respectivelyand tebesinone B, arucadiol, and sahandol II were revised to three undescribed structures. It was also proposed that structures of palmitoyl arucadiol and compounds with the salvifolane skeleton need revision. Furthermore, these structure revisions shed light on the structure-activity relationship of the quinone diterpenoids, approving that the ortho-quinone is the critical structural component for cytotoxicity in these compounds.
Collapse
Affiliation(s)
- Zahra Nazemosadat-Arsanjani
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran.
| | - Mahmoodreza Moein
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran; Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 7474133858, Iran.
| | - Sammer Yousuf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz 7134853734, Iran
| | - Muhammad Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
12
|
Zhussupova A, Zhumaliyeva G, Ogay V, Issabekova A, Ross SA, Zhusupova GE. Immunomodulatory Effects of Plant Extracts from Salvia deserta Schang. and Salvia sclarea L. PLANTS (BASEL, SWITZERLAND) 2022; 11:2690. [PMID: 36297710 PMCID: PMC9610708 DOI: 10.3390/plants11202690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Medicines, their safety, effectiveness and quality are indispensable factors of national security, important on a global scale. The COVID-19 pandemic has once again emphasized the importance of improving the immune response of the body in the face of severe viral infections. Plants from the Salvia L. genus have long been used in traditional medicine for treatment of inflammatory processes, parasitic diseases, bacterial and viral infections. The aim of the current study was to evaluate the immunomodulatory effects of plant extracts LS-1, LS-2 from Salvia deserta Schang. and LS-3, LS-4 from Salvia sclarea L. plants growing in southern Kazakhstan by conventional and ultrasonic-assisted extraction, respectively. The cytotoxic effects of the named sage extracts on neonatal human dermal fibroblasts (HDFn) were evaluated using the MTT assay. Immunomodulatory effects of the studied extracts were compared by examining their influence on pro-inflammatory cytokine secretion and phagocytic activity of murine immune cells. Depending on the physiological state of the innate immune cells, sage extracts LS-2 and LS-3 had either a stimulating effect on inactivated macrophages or suppressed cytokine-producing activity in LPS-activated macrophages. The greatest increase in TNF-α secretion was found after treatment of spleen T lymphocytes with sage extract LS-2, obtained by ultrasonic-assisted extraction.
Collapse
Affiliation(s)
- Aizhan Zhussupova
- Department of Molecular Biology and Genetics, NPJSC Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan
| | - Gaziza Zhumaliyeva
- Department of Molecular Biology and Genetics, NPJSC Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan
| | - Vyacheslav Ogay
- Stem Cell Laboratory, National Center for Biotechnology, Qorghalzhyn Highway 13/5, Astana 010000, Kazakhstan
| | - Assel Issabekova
- Stem Cell Laboratory, National Center for Biotechnology, Qorghalzhyn Highway 13/5, Astana 010000, Kazakhstan
| | - Samir A. Ross
- School of Pharmacy, University of Mississippi, P.O. Box 1848, University, MS 38677, USA
- School of Pharmacy, S.D. Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan
| | - Galiya E. Zhusupova
- Department of Chemistry and Technology of Organic Substances, Natural Compounds and Polymers, NPJSC Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan
| |
Collapse
|
13
|
Yao J, Qin Q, Wang Y, Zeng J, Xu J, He X. Anti-neuroinflammatory 3-hydroxycoumaronochromones and isoflavanones enantiomers from the fruits of Ficus altissima Blume. PHYTOCHEMISTRY 2022; 202:113313. [PMID: 35820504 DOI: 10.1016/j.phytochem.2022.113313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
A phytochemical study on the fruits of Ficus altissima Blume (lofty fig) led to the isolation and structural elucidation of three pairs of enantiomeric 3-hydroxycoumaronochromones and two pairs of enantiomeric isoflavanones, including eight undescribed compounds. Their structures were determined based on a comprehensive analysis of NMR and HR-ESI-MS spectroscopic data, calculated 13C NMR-DP4 plus analysis and the comparisons of experimental measurements of ECD with calculated ECD spectra by TDDFT or ECD plots in reported protocols. The inhibitory effects of the isolated enantiomers on NO production stimulated by LPS in microglial BV-2 cells were evaluated. Among them, ficusaltin D exhibited the most potent anti-neuroinflammatory activity, which inhibited the production of NO and the expression of iNOS, IL-6 and IL-1β and suppressed the NF-κB nuclear translocation in LPS-induced BV-2 cells, while its enantiomer displayed cytotoxicity.
Collapse
Affiliation(s)
- Jiaming Yao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qiuyi Qin
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yihai Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, 510006, China.
| | - Jia Zeng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jingwen Xu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, 510006, China
| | - Xiangjiu He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, 510006, China.
| |
Collapse
|
14
|
Forzato C, Nitti P. New Diterpenes with Potential Antitumoral Activity Isolated from Plants in the Years 2017-2022. PLANTS (BASEL, SWITZERLAND) 2022; 11:2240. [PMID: 36079622 PMCID: PMC9460660 DOI: 10.3390/plants11172240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Diterpenes represent a wider class of isoprenoids, with more than 18,000 isolated compounds, and are present in plants, fungi, bacteria, and animals in both terrestrial and marine environments. Here, we report on the fully characterised structures of 251 new diterpenes, isolated from higher plants and published from 2017, which are shown to have antitumoral activity. An overview on the most active compounds, showing IC50 < 20 μM, is provided for diterpenes of different classes. The most active compounds were extracted from 29 different plant families; particularly, Euphorbiaceae (69 compounds) and Lamiaceae (54 compounds) were the richest sources of active compounds. A better activity than the positive control was obtained with 33 compounds against the A549 cell line, 28 compounds against the MCF-7 cell line, 9 compounds against the HepG2 cell line, 8 compounds against the Hep3B cell line, 19 compounds against the SMMC-7721 cell line, 9 compounds against the HL-60 cell line, 24 compounds against the SW480 cell line, and 19 compounds against HeLa.
Collapse
|
15
|
Liu J, Shi Y, Peng D, Wang L, Yu N, Wang G, Chen W. Salvia miltiorrhiza Bge. (Danshen) in the Treating Non-alcoholic Fatty Liver Disease Based on the Regulator of Metabolic Targets. Front Cardiovasc Med 2022; 9:842980. [PMID: 35528835 PMCID: PMC9072665 DOI: 10.3389/fcvm.2022.842980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is rapidly prevalent due to its strong association with increased metabolic syndrome such as cardio- and cerebrovascular disorders and diabetes. Few drugs can meet the growing disease burden of NAFLD. Salvia miltiorrhiza Bge. (Danshen) have been used for over 2,000 years in clinical trials to treat NAFLD and metabolic syndrome disease without clarified defined mechanisms. Metabolic targets restored metabolic homeostasis in patients with NAFLD and improved steatosis by reducing the delivery of metabolic substrates to liver as a promising way. Here we systematic review evidence showing that Danshen against NAFLD through diverse and crossing mechanisms based on metabolic targets. A synopsis of the phytochemistry and pharmacokinetic of Danshen and the mechanisms of metabolic targets regulating the progression of NAFLD is initially provided, followed by the pharmacological activity of Danshen in the management NAFLD. And then, the possible mechanisms of Danshen in the management of NAFLD based on metabolic targets are elucidated. Specifically, the metabolic targets c-Jun N-terminal kinases (JNK), sterol regulatory element-binding protein-1c (SREBP-1c), nuclear translocation carbohydrate response element–binding protein (ChREBP) related with lipid metabolism pathway, and peroxisome proliferator-activated receptors (PPARs), cytochrome P450 (CYP) and the others associated with pleiotropic metabolism will be discussed. Finally, providing a critical assessment of the preclinic and clinic model and the molecular mechanism in NAFLD.
Collapse
Affiliation(s)
- Jie Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Hefei, China
| | - Yun Shi
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Lei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Hefei, China
- *Correspondence: Lei Wang,
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Guokai Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Hefei, China
- Weidong Chen,
| |
Collapse
|
16
|
Liu Y, Wang Q, Zheng DK, Zhang D, Xie Z, Hu JW, Xie XH, Li J, Jiang SP. Abietane diterpenoids with neuroprotective activities from Phlegmariurus carinatus. Nat Prod Res 2022; 36:6006-6011. [DOI: 10.1080/14786419.2022.2059662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yang Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Qiang Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Dong-Kun Zheng
- National Engineering Research Center for Modernization of Traditional Chinese Medicine − Hakka Medical Resources Branch, College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi, China
| | - De Zhang
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zhen Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Jia-Wei Hu
- Key Laboratory of Biomaterials and Bio-fabrication in Tissue Engineering of Jiangxi Province, Scientific Research Center, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xin-Hua Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Jing Li
- Department of Pharmacy, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shu-Ping Jiang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Biomaterials and Bio-fabrication in Tissue Engineering of Jiangxi Province, Scientific Research Center, Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
17
|
Zhou L, Zheng G, Li H, Gao B, Guoruoluo Y, Tang W, Yao G, Zhang Y. Highly oxygenated isoryanodane diterpenoids from the leaves of Cinnamomum cassia and their immunomodulatory activities. PHYTOCHEMISTRY 2022; 196:113077. [PMID: 34990976 DOI: 10.1016/j.phytochem.2021.113077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
A total of twelve highly oxygenated isoryanodane (also known as cinncassiol D-type) diterpenoids including nine undescribed ones, named cinnacassins A-I, were isolated from the leaves of Cinnamomum cassia. Their chemical structures were elucidated by extensive spectrometric and spectroscopic techniques including HRESIMS, 1D and 2D NMR, single-crystal X-ray diffraction analysis, calculated 13C-NMR DP4+ analysis, and chemical methods. The absolute configuration of cinnacassin A was unambiguously delineated by single-crystal X-ray diffraction analysis. Cinnacassin H represents the first example of 16-O-glucosylated isoryanodane diterpenoid, and cinnacassin I is the first isoryanod-13(18)-ene diterpenoid. The relationship of the configuration C-18 and the chemical shifts of H2-19 and C-20 in the 19-hydroxy-isoryanodane diterpenoids was discussed, and the 18S-configuration of three known 19-hydroxy-isoryanodane diterpenoids, cinncassiol D1, 19-O-β-D-glucopyranosyl-cinncassiol D1, and cinncassiol D3 was assigned. All the isolated isoryanodane diterpenoids were evaluated for their immunomodulatory effects in vitro, and cinnacassin A and cinncassiol D1 enhanced the proliferation of Con A-induced murine T cells with enhancement rates ranging from 17.9% to 45.4%, which were more potent than the positive control, thymosin α1. In addition, cinncassiol D1 significantly promoted the proliferation of LPS-induced murine B cells with an enhancement rate up to 116.1%, two-fold more potent than thymosin α1 at a concentration of 1.5625 μM.
Collapse
Affiliation(s)
- Lei Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Guijuan Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Heng Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Biao Gao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yindengzhi Guoruoluo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wei Tang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Guangmin Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
18
|
Marcarino MO, Cicetti S, Zanardi MM, Sarotti AM. A critical review on the use of DP4+ in the structural elucidation of natural products: the good, the bad and the ugly. A practical guide. Nat Prod Rep 2021; 39:58-76. [PMID: 34212963 DOI: 10.1039/d1np00030f] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: 2015 up to the end of 2020Even in the golden age of NMR, the number of natural products being incorrectly assigned is becoming larger every day. The use of quantum NMR calculations coupled with sophisticated data analysis provides ideal complementary tools to facilitate the elucidation process in challenging cases. Among the current computational methodologies to perform this task, the DP4+ probability is a popular and widely used method. This updated version of Goodman's DP4 synergistically combines NMR calculations at higher levels of theory with the Bayesian analysis of both scaled and unscaled data. Since its publication in late 2015, the use of DP4+ to solve controversial natural products has substantially grown, with several predictions being confirmed by total synthesis. To date, the structures of more than 200 natural products were determined with the aid of DP4+. However, all that glitters is not gold. Besides its intrinsic limitations, on many occasions it has been improperly used with potentially important consequences on the quality of the assignment. Herein we present a critical revision on how the scientific community has been using DP4+, exploring the strengths of the method and how to obtain optimal results from it. We also analyze the weaknesses of DP4+, and the paths to by-pass them to maximize the confidence in the structural elucidation.
Collapse
Affiliation(s)
- Maribel O Marcarino
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina.
| | - Soledad Cicetti
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina.
| | - María M Zanardi
- Instituto de Ingeniería Ambiental, Química y Biotecnología Aplicada (INGEBIO), Facultad de Química e Ingeniería del Rosario, Pontificia Universidad Católica Argentina, Av. Pellegrini 3314, Rosario 2000, Argentina.
| | - Ariel M Sarotti
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina.
| |
Collapse
|
19
|
Wang R, Zheng G, Dang T, Jin P, Yao J, Su L, Yao G, Qin D. Chemical constituents from the roots of Cichorium glandulosum Boiss. et Huet (Asteraceae). BIOCHEM SYST ECOL 2021. [DOI: 10.1016/j.bse.2021.104261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Kadir A, Zheng G, Zheng X, Jin P, Maiwulanjiang M, Gao B, Aisa HA, Yao G. Structurally Diverse Diterpenoids from the Roots of Salvia deserta Based on Nine Different Skeletal Types. JOURNAL OF NATURAL PRODUCTS 2021; 84:1442-1452. [PMID: 33978415 DOI: 10.1021/acs.jnatprod.0c01180] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Twenty-four diterpenoids (1-24), classified into nine diverse carbon skeletal types, 8-nor-7(8→14),9(8→7)-di-abeo-abietane (1, 2, and 13), 7(8→14),9(8→7)-di-abeo-abietane (3 and 4), 6-nor-6,7-seco-abietane (5 and 6), 6,7-seco-abietane (7 and 11), 9,10-seco-abietane (8), abietane (9, 10, and 14-21), 11(9→8),20(10→11)-di-abeo-abietane (12), 15(13→12)-abeo-abietane (22 and 23), and 4,5-seco-20(10→5)-abeo-abietane (24), respectively, were isolated from the roots of Salvia deserta. The structures of 10 new diterpenoids, named salviadesertins A-J (1-10), were elucidated by spectroscopic data interpretation, quantum-chemical calculations including calculated 13C NMR-DP4+ analysis and electronic circular dichroism as well as X-ray crystallography analysis. The absolute configurations of compounds 1-3, 7, 14, and 22 were defined by single-crystal X-ray diffraction analysis. All the isolated diterpenoids 1-24 were evaluated for their cytotoxicity against five cancer cell lines, and 6-hydroxysalvinolone (14) showed micromolar potencies against MCF-7, A-549, SMMC-7721, and HL-60 cells, whereas the other diterpenoids were inactive (half-maximal inhibitory concentration greater than 10.0 μM).
Collapse
Affiliation(s)
- Abdukriem Kadir
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
- Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, People's Republic of China
| | - Guijuan Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xiaofeng Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Pengfei Jin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Maitinuer Maiwulanjiang
- Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, People's Republic of China
| | - Biao Gao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Haji Akber Aisa
- Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, People's Republic of China
| | - Guangmin Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
21
|
Li JC, Dai WF, Liu D, Zhang ZJ, Jiang MY, Rao KR, Li RT, Li HM. Quinolizidine alkaloids from Sophora alopecuroides with anti-inflammatory and anti-tumor properties. Bioorg Chem 2021; 110:104781. [PMID: 33677246 DOI: 10.1016/j.bioorg.2021.104781] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/20/2021] [Accepted: 02/22/2021] [Indexed: 12/16/2022]
Abstract
Forty-three quinolizidine alkaloids (1-43), including twelve new matrine-type ones, sophalodes A-L (1-7, 17, 19 and 28-30), were isolated from the seeds of Sophora alopecuroides. Structurally, compounds 1-4 were the first examples of C-11 oxidized matrine-type alkaloids from Sophora plants. The structures and absolute configurations of new compounds were elucidated by extensive spectroscopic techniques, X-ray diffraction analysis, and quantum chemical calculation. In addition, the NMR data and absolute configuration of compound 18 was reported for the first time. All the isolates were evaluated for their inhibition on nitric oxide production induced by lipopolysaccharide in RAW 264.7 macrophages, among them, compounds 29, 38 and 42 exhibited the most significant activity with IC50 values of 29.19, 25.86 and 33.30 μM, respectively. Further research about new compound 29 showed that it also suppressed the protein levels of iNOS and COX-2, which revealed its anti-inflammatory potential. Moreover, additional research showed that compound 16 exhibited marginal cytotoxicity against HeLa cell lines, with an IC50 value of 24.27 μM.
Collapse
Affiliation(s)
- Jian-Chun Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, PR China
| | - Wei-Feng Dai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, PR China
| | - Dan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, PR China
| | - Zhi-Jun Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, PR China
| | - Ming-Yan Jiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, PR China
| | - Kai-Rui Rao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, PR China
| | - Rong-Tao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, PR China.
| | - Hong-Mei Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, PR China.
| |
Collapse
|
22
|
Polyoxygenated sesquiterpenoids from Salvia castanea and their potential anti-Alzheime's disease bioactivities. Fitoterapia 2021; 151:104867. [PMID: 33621655 DOI: 10.1016/j.fitote.2021.104867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/04/2021] [Accepted: 02/13/2021] [Indexed: 11/20/2022]
Abstract
Salvia castanea (Family Labiatae), a perennial fragrant herb with castaneous flowers, is mainly distributed in areas with an altitude of 2500-3750 m. The roots of this plant were used as a tea drink by local residents to strengthen physical health. The aim of present study was to acquire secondary metabolites of the ethanol extract obtained from the whole plant of S. castanea and to evaluate their potential anti-Alzheimer's disease. Six new sesquiterpene lactones, salcastanins A-F (1-6), together with three known guaiane-type sesquiterpenoids nubiol (7), nubdienolide (8), and nubenolide (9), were separated from the whole plant of S. castanea. The structures of these compounds were determined by HRESIMS and NMR experiments. The absolute configurations of 1-6 were ascertained by electronic circular dichroism (ECD) experiments. The humanized Caenorhabditis elegans AD pathological model was used to evaluate anti-Alzheimer's disease (AD) activities of 1-9. The results showed the compounds 1-3 and 7 significantly delayed AD-like symptoms of worm paralysis phenotype, which could be used as novel anti-AD candidates.
Collapse
|