1
|
Hochban PMM, Heyder L, Heine A, Diederich WE. What doesn't fit is made to fit: Pim-1 kinase adapts to the configuration of stilbene-based inhibitors. Arch Pharm (Weinheim) 2024; 357:e2400094. [PMID: 38631036 DOI: 10.1002/ardp.202400094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/19/2024]
Abstract
Recently, we have developed novel Pim-1 kinase inhibitors starting from a dihydrobenzofuran core structure using a computational approach. Here, we report the design and synthesis of stilbene-based Pim-1 kinase inhibitors obtained by formal elimination of the dihydrofuran ring. These inhibitors of the first design cycle, which were obtained as inseparable cis/trans mixtures, showed affinities in the low single-digit micromolar range. To be able to further optimize these compounds in a structure-based fashion, we determined the X-ray structures of the protein-ligand-complexes. Surprisingly, only the cis-isomer binds upon crystallization of the cis/trans-mixture of the ligands with Pim-1 kinase and the substrate PIMTIDE, the binding mode being largely consistent with that predicted by docking. After crystallization of the exclusively trans-configured derivatives, a markedly different binding mode for the inhibitor and a concomitant rearrangement of the glycine-rich loop is observed, resulting in the ligand being deeply buried in the binding pocket.
Collapse
Affiliation(s)
- Phil M M Hochban
- Institut für Pharmazeutische Chemie, Zentrum für Tumor und Immunbiologie, Philipps-Universität Marburg, Marburg, Germany
| | - Lukas Heyder
- Institut für Pharmazeutische Chemie, Zentrum für Tumor und Immunbiologie, Philipps-Universität Marburg, Marburg, Germany
| | - Andreas Heine
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Wibke E Diederich
- Institut für Pharmazeutische Chemie, Zentrum für Tumor und Immunbiologie, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
2
|
Sharma A, Dubey R, Asati V, Baweja GS, Gupta S, Asati V. Assessment of structural and activity-related contributions of various PIM-1 kinase inhibitors in the treatment of leukemia and prostate cancer. Mol Divers 2024:10.1007/s11030-023-10795-4. [PMID: 38642309 DOI: 10.1007/s11030-023-10795-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/07/2023] [Indexed: 04/22/2024]
Abstract
One of the most perilous illnesses in the world is cancer. The cancer may be associated with the mutation of different genes inside the body. The PIM kinase, also known as the serine/threonine kinase, plays a critical role in the biology of different kinds of cancer. They are widely distributed and associated with several biological processes, including cell division, proliferation, and death. Aberration of PIM-1 kinase is found in varieties of cancer. Prostate cancer and leukemia can both be effectively treated with PIM-1 kinase inhibitors. There are several potent compounds that have been explored in this review based on heterocyclic compounds for the treatment of prostate cancer and leukemia that have strong effects on the suppression of PIM-1 kinase. The present review summarizes the PIM-1 kinase pathway, their inhibitors under clinical trial, related patents, and SAR studies of several monocyclic, bicyclic, and polycyclic compounds. The study related to their molecular interactions with receptors is also included in the present manuscript. The study may be beneficial to scientists for the development of novel compounds as PIM-1 inhibitors in the treatment of prostate cancer and leukemia.
Collapse
Affiliation(s)
- Anushka Sharma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Rahul Dubey
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Vikas Asati
- Department of Medical Oncology, Sri Aurobindo Medical College and PG Institute, Indore, MP, India
| | - Gurkaran Singh Baweja
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Shankar Gupta
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Vivek Asati
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India.
| |
Collapse
|
3
|
Chen S, Yang Y, Yuan Y, Bo Liu. Targeting PIM kinases in cancer therapy: An update on pharmacological small-molecule inhibitors. Eur J Med Chem 2024; 264:116016. [PMID: 38071792 DOI: 10.1016/j.ejmech.2023.116016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/15/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023]
Abstract
PIM kinases, a serine/threonine kinase family with three isoforms, has been well-known to participate in multiple physiological processes by phosphorylating various downstream targets. Accumulating evidence has recently unveiled that aberrant upregulation of PIM kinases (PIM1, PIM2, and PIM3) are closely associated with tumor cell proliferation, migration, survival, and even resistance. Inhibiting or silencing of PIM kinases has been reported have remarkable antitumor effects, such as anti-proliferation, pro-apoptosis and resensitivity, indicating the therapeutic potential of PIM kinases as potential druggable targets in many types of human cancers. More recently, several pharmacological small-molecule inhibitors have been preclinically and clinically evaluated and showed their therapeutic potential; however, none of them has been approved for clinical application so far. Thus, in this perspective, we focus on summarizing the oncogenic roles of PIM kinases, key signaling network, and pharmacological small-molecule inhibitors, which will provide a new clue on discovering more candidate antitumor drugs targeting PIM kinases in the future.
Collapse
Affiliation(s)
- Siwei Chen
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yushang Yang
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yong Yuan
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Bo Liu
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Chen L, Mao W, Ren C, Li J, Zhang J. Comprehensive Insights that Targeting PIM for Cancer Therapy: Prospects and Obstacles. J Med Chem 2024; 67:38-64. [PMID: 38164076 DOI: 10.1021/acs.jmedchem.3c01802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Proviral integration sitea for Moloney-murine leukemia virus (PIM) kinases are a family of highly conserved serine/tyrosine kinases consisting of three members, PIM-1, PIM-2, and PIM-3. These kinases regulate a wide range of substrates through phosphorylation and affect key cellular processes such as transcription, translation, proliferation, apoptosis, and energy metabolism. Several PIM inhibitors are currently undergoing clinical trials, such as a phase I clinical trial of Uzanserti (5) for the treatment of relapsed diffuse large B-cell lymphoma that has been completed. The current focus encompasses the structural and biological characterization of PIM, ongoing research progress on small-molecule inhibitors undergoing clinical trials, and evaluation analysis of persisting challenges in this field. Additionally, the design and discovery of small-molecule inhibitors targeting PIM in recent years have been explored, with a particular emphasis on medicinal chemistry, aiming to provide valuable insights for the future development of PIM inhibitors.
Collapse
Affiliation(s)
- Li Chen
- Department of Neurology, Joint Research Institution of Altitude Health and Institute of Respiratory Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Wuyu Mao
- Department of Neurology, Joint Research Institution of Altitude Health and Institute of Respiratory Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Changyu Ren
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu 611130, Sichuan, China
| | - Jinqi Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and Institute of Respiratory Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
5
|
Shaldam MA, Khalil AF, Almahli H, Jaballah MY, Angeli A, Khaleel EF, Badi RM, Elkaeed EB, Supuran CT, Eldehna WM, Tawfik HO. Identification of 3-(5-cyano-6-oxo-pyridin-2-yl)benzenesulfonamides as novel anticancer agents endowed with EGFR inhibitory activity. Arch Pharm (Weinheim) 2024; 357:e2300449. [PMID: 37828544 DOI: 10.1002/ardp.202300449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
New 5-cyano-6-oxo-pyridine-based sulfonamides (6a-m and 8a-d) were designed and synthesized to potentially inhibit both the epidermal growth factor receptor (EGFR) and carbonic anhydrase (CA), with anticancer properties. First, the in vitro anticancer activity of each target substance was tested using Henrietta Lacks cancer cell line and M.D. anderson metastasis breast cancer cell line cells. Then, the possible CA inhibition against the human CA isoforms I, II, and IX was investigated, together with the EGFR inhibitory activity, with the most powerful derivatives. The neighboring methoxy group may have had a steric effect on the target sulfonamides, which prevented them from effectively inhibiting the CA isoforms while effectively inhibiting the EGFR. The effects of the 5-cyanopyridine derivatives 6e and 6l on cell-cycle disruption and the apoptotic potential were then investigated. To investigate the binding mechanism and stability of the target molecules, thorough molecular modeling assessments, including docking and dynamic simulation, were performed.
Collapse
Affiliation(s)
- Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Ahmed F Khalil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Hadia Almahli
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Maiy Y Jaballah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Abbassia, Egypt
| | - Andrea Angeli
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Sesto Fiorentino, Firenze, Italy
| | - Eman F Khaleel
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Rehab Mustafa Badi
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Sesto Fiorentino, Firenze, Italy
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
- School of Biotechnology, Badr University in Cairo, Badr City, Egypt
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
6
|
Shaban S, Eltamany EH, Boraei ATA, Nafie MS, Gad EM. Design and Synthesis of Novel Pyridine-Based Compounds as Potential PIM-1 Kinase Inhibitors, Apoptosis, and Autophagy Inducers Targeting MCF-7 Cell Lines: In Vitro and In Vivo Studies. ACS OMEGA 2023; 8:46922-46933. [PMID: 38107909 PMCID: PMC10720030 DOI: 10.1021/acsomega.3c06700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/05/2023] [Accepted: 11/10/2023] [Indexed: 12/19/2023]
Abstract
2-((3-Cyano-4,6-dimethylpyridin-2-yl)oxy)acetohydrazide 1 was used as the precursor for the synthesis of 5-thioxo-1,3,4-oxadiazol-2-yl)methoxy)nicotinonitrile 2. The latter was alkylated with different alkylating agents to produce the S-alkylated products 3-6. Galactosylation of 5-thioxo-1,3,4-oxadiazol-2-yl)methoxy)nicotinonitrile 2 produces a mixture of S- and N-galactosides 8 and 9. The hydrazide 1 is converted to azide 10, coupled with glycine methyl ester hydrochloride and a set of amines to produce the target coupled amides 11-15. New compounds were assigned using NMR and elemental analysis. Compound 12 had potent cytotoxicity with IC50 values of 0.5 and 5.27 μM against MCF-7 and HepG2 cell lines compared with doxorubicin, which displayed the following IC50: 2.14 and 2.48 μM for the mentioned cell lines, respectively. Regarding the molecular target, compound 12 exhibited potent PIM-1 inhibition activity with 97.5% with an IC50 value of 14.3 nM compared to Staurosporine (96.8%, IC50 = 16.7 nM). Moreover, compound 12 significantly activated apoptotic cell death in MCF-7 cells, increasing the cell population by total apoptosis by 33.43% (23.18% for early apoptosis and 10.25% for late apoptosis) compared to the untreated control group (0.64%), and arresting the cell cycle at S-phase by 36.02% compared to control 29.12%. Besides, compound 12 caused tumor inhibition by 42.1% in solid tumors in the SEC-bearing mice. Results disclosed that compound 12 significantly impeded cell migration and cell proliferation by interfering with PIM-1 enzymatic activity via considerable apoptosis-induction, which made it an attractive lead compound for the development of chemotherapeutics to treat breast cancer.
Collapse
Affiliation(s)
- Shrouk
M. Shaban
- Chemistry
Department, Faculty of Science, Suez Canal
University, Ismailia 41522, Egypt
| | - Elsayed H. Eltamany
- Chemistry
Department, Faculty of Science, Suez Canal
University, Ismailia 41522, Egypt
| | - Ahmed T. A. Boraei
- Chemistry
Department, Faculty of Science, Suez Canal
University, Ismailia 41522, Egypt
| | - Mohamed S. Nafie
- Chemistry
Department, Faculty of Science, Suez Canal
University, Ismailia 41522, Egypt
- Department
of Chemistry, College of Sciences, University
of Sharjah, (P.O. Box 27272), Sharjah 27272, United Arab
Emirates
| | - Emad M. Gad
- Chemistry
Department, Faculty of Science, Suez Canal
University, Ismailia 41522, Egypt
| |
Collapse
|
7
|
Ismail MMF, Shawer TZ, Ibrahim RS, Abusaif MS, Kamal MM, Allam RM, Ammar YA. Novel quinoxaline-3-propanamides as VGFR-2 inhibitors and apoptosis inducers. RSC Adv 2023; 13:31908-31924. [PMID: 37915441 PMCID: PMC10616755 DOI: 10.1039/d3ra05066a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/23/2023] [Indexed: 11/03/2023] Open
Abstract
Vascular endothelial growth factor receptor-2 is a vital target for therapeutic mediation in various types of cancer. This study was aimed at exploring the cytotoxic activity of seventeen novel quinoxaline-3-propanamides against colon cancer (HCT-116) and breast cancer (MCF-7) using MTT assay. Results revealed that compounds 8, 9, and 14 elicited higher cytotoxicity than the reference drugs, doxorubicin (DOX) and sorafenib. Interestingly, they are more selective for HCT-116 (SI 11.98-19.97) and MCF-7 (SI 12.44-23.87) compared to DOX (SI HCT-116 0.72 and MCF-7 0.9). These compounds effectively reduced vascular endothelial growth factor receptor-2; among them, compound 14 displayed similar VEGFR-2 inhibitory activity to sorafenib (IC50 0.076 M). The ability of 14 to inhibit angiogenesis was demonstrated by a reduction in VEGF-A level compared to control. Furthermore, it induced a significant increase in the percentage of cells at pre-G1 phase by almost 1.38 folds (which could be indicative of apoptosis) and an increase in G2/M by 3.59 folds compared to the control experiment. A flow cytometry assay revealed that compound 14 triggered apoptosis via the programmed cell death and necrotic pathways. Besides, it caused a remarkable increase in apoptotic markers, i.e., caspase-3 p53 and BAX. When compared to the control, significant increase in the expression levels of caspase-3 from 47.88 to 423.10 and p53 from 22.19 to 345.83 pg per ml in MCF-7 cells. As well, it increased the proapoptotic protein BAX by 4.3 times while lowering the antiapoptotic marker BCL2 by 0.45 fold. Docking studies further supported the mechanism, where compound 14 showed good binding to the essential amino acids in the active site of VEGFR-2. Pharmacokinetic properties showed the privilege of these hits over sunitinib: they are not substrates of P-gp protein; this suggests that they have less chance to efflux out of the cell, committing maximum effect; and in addition, they do not allow permeation to the BBB.
Collapse
Affiliation(s)
- Magda M F Ismail
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University Cairo 11754 Egypt
| | - Taghreed Z Shawer
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University Cairo 11754 Egypt
| | - Rabab S Ibrahim
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University Cairo 11754 Egypt
| | - Mostafa S Abusaif
- Department of Chemistry, Faculty of Science, Al-Azhar University Cairo 11754 Egypt
| | - Mona M Kamal
- Department of Pharmacology, Faculty of Pharmacy (Girls), 11754 Al-Azhar University Cairo Egypt
| | - Rasha M Allam
- Department of Pharmacology, Medical and Clinical Research Institute, National Research Centre 12622 Dokki Cairo Egypt
| | - Yousry A Ammar
- Department of Chemistry, Faculty of Science, Al-Azhar University Cairo 11754 Egypt
| |
Collapse
|
8
|
Ismail MMF, Shawer TZ, Ibrahim RS, Allam RM, Ammar YA. Novel quinoxaline-based VEGFR-2 inhibitors to halt angiogenesis. Bioorg Chem 2023; 139:106735. [PMID: 37531818 DOI: 10.1016/j.bioorg.2023.106735] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023]
Abstract
Vascular endothelial growth factor receptor-2 is a dynamic target for therapeutic intervention in various types of cancer. This study was aimed at exploring the VEGFR-2 inhibitory activity of a novel library of quinoxalin-2-one derivatives such as 3-furoquinoxaline carboxamides, 3-pyrazolylquinoxalines, and 3-pyridopyrimidyl-quinoxalines. Among them, 6c, 7a, and 7d-f produced remarkable cytotoxicity against HCT-116 (IC50's 4.28-9.31 µM) and MCF-7 (IC50's 3.57-7.57 µM) cell lines using the MTT assay and doxorubicin (DOX) as a reference standard. Interestingly, results of cytotoxicity towards the human fibroblast cell line WI38 revealed that these hits demonstrated higher selectivity indices towards both HCT-116 (SI 8.69-23.19) and MCF-7 (SI 9.48-27.80) than DOX, SI 0.72 and 0.90, respectively. Then, these hits were subjected to a mechanistic study; they showed direct inhibition of VEGFR-2. Impressively, compound 7f displayed 1.2 times the VEGFR-2 inhibitory activity of sorafenib. The antiangiogenic potential of 7f was proved via lowering the level of VEGF-A, than that of control. It as well, exhibited scratch closure percent of 61.8%, compared with 74.5% of control at 48 hrs, indicating the potential anti-migratory effect of the compound 7f. It significantly increased the expression of tumor suppressor gene (p53) on MCF-7 cells by almost 18 folds and upregulated the caspase-3 level by 10.7 folds, compared to the control. Cell cycle analysis revealed cell cycle arrest at G2/M together with a PreG increase which indicated apoptosis induction potential. Annexin V-FITC apoptosis results proposed the two modes of cell death (apoptosis and necrosis) as an inherent mechanism of cytotoxicity of compound 7f. Molecular docking further supported the mechanism showing the affinity of target compounds for VEGFR-2 active site. Moreover, physicochemical and drug-like properties were assessed from the ADME properties.
Collapse
Affiliation(s)
- Magda M F Ismail
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), 11754 Al-Azhar University, Cairo, Egypt.
| | - Taghreed Z Shawer
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), 11754 Al-Azhar University, Cairo, Egypt
| | - Rabab S Ibrahim
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), 11754 Al-Azhar University, Cairo, Egypt
| | - Rasha M Allam
- Department of Pharmacology, Medical and Clinical Research Institute, National Research Centre, 12622, Dokki, Cairo, Egypt
| | - Yousry A Ammar
- Department of Chemistry, Faculty of Science, 11754 Al-Azhar University, Cairo, Egypt
| |
Collapse
|
9
|
Mansour B, Salem YA, Attallah KM, El-kawy OA, Ibrahim IT, Abdel-Aziz NI. Cyanopyridinone- and Cyanopyridine-Based Cancer Cell Pim-1 Inhibitors: Design, Synthesis, Radiolabeling, Biodistribution, and Molecular Modeling Simulation. ACS OMEGA 2023; 8:19351-19366. [PMID: 37305261 PMCID: PMC10249106 DOI: 10.1021/acsomega.2c08304] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023]
Abstract
In this study, two new series of 3-cyanopyridinones (3a-e) and 3-cyanopyridines (4a-e) were synthesized and evaluated for their cytotoxicity and Pim-1 kinase inhibitory activity adopting 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay and in vitro Pim-1 kinase inhibition assay, respectively. Most of the tested compounds revealed promising cytotoxicity against HepG-2, HCT-116, MCF-7, and PC-3 cell lines. Among them, compounds 4c and 4d showed more potent cytotoxicity against the HePG2 cell line with IC50 = 8.02 ± 0.38 and 6.95 ± 0.34 μM, respectively, than that of the reference 5-FU (IC50 = 9.42 ± 0.46 μM). Moreover, compound 4c was more potent against HCT-116 (IC50 = 7.15 ± 0.35 μM) than 5-FU (IC50 = 8.01 ± 0.39 μM), while compound 4d with IC50 = 8.35 ± 0.42 μM displayed comparable activity to that of the reference drug. Furthermore, high cytotoxic activity was manifested by compounds 4c and 4d against MCF-7 and PC3 cell lines. Our results have also indicated that compounds 4b, 4c, and 4d elicited remarkable inhibition of Pim-1 kinase; 4b and 4c showed equipotent inhibitory activity to that of the reference quercetagetin. Meanwhile, 4d displayed IC50 = 0.46 ± 0.02 μM, showed the best inhibitory activity among the tested compounds, and was more potent than quercetagetin (IC50 = 0.56 ± 0.03 μM). For optimization of the results, docking study of the most potent compounds 4c and 4d in the Pim-1 kinase active site was carried out and compared with both quercetagetin and the reported Pim-1 inhibitor A (VRV), and the results were consistent with those of the biological study. Consequently, compounds 4c and 4d are worthy of further investigations toward the discovery of Pim-1 kinase inhibitors as drug candidates for cancer therapy. Compound 4b was successfully radiolabeled with radioiodine-131, and its biodistribution in Ehrlich ascites carcinoma (EAC)-bearing mice showed more observable uptake in tumor sites, and hence, it can be introduced as a new radiolabeled agent for tumor imaging and therapy.
Collapse
Affiliation(s)
- Basem Mansour
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Dakahlia, Egypt
| | - Yomna A. Salem
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Sinai University − Kantara Branch, Ismailia 41636, Egypt
| | - Khaled M. Attallah
- Labeled
Compound Department, Hot Lab Center, Egyptian
Atomic Energy Authority, Cairo 13759, Egypt
| | - O. A. El-kawy
- Labeled
Compound Department, Hot Lab Center, Egyptian
Atomic Energy Authority, Cairo 13759, Egypt
| | - Ismail T. Ibrahim
- Labeled
Compound Department, Hot Lab Center, Egyptian
Atomic Energy Authority, Cairo 13759, Egypt
| | - Naglaa I. Abdel-Aziz
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Dakahlia, Egypt
- Department
of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt
| |
Collapse
|
10
|
Development of novel cyanopyridines as PIM-1 kinase inhibitors with potent anti-prostate cancer activity: Synthesis, biological evaluation, nanoparticles formulation and molecular dynamics simulation. Bioorg Chem 2022; 129:106122. [PMID: 36084418 DOI: 10.1016/j.bioorg.2022.106122] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 11/21/2022]
Abstract
Recently, inhibition of PIM-1 enzyme is found as an effective route in the fight against proliferation of cancer. Herein, new cyano pyridines that target PIM-1 kinase were designed, synthesized, and biologically evaluated. Two prostate cell lines were used to examine each of the new compounds in vitro for anticancer activity, namely, PC-3 and DU-145. The cyanopyridine derivatives 2b, 3b, 4b, and 5b with an N,N-dimethyl phenyl group at the pyridine ring's 4-position showed considerable antitumor effect on the tested cell lines. Additionally, the high selectivity index revealed that these compounds were less cytotoxic to normal WI-38 cells. Furthermore, they exhibited strong inhibitory effect on PIM-1 having IC50 = 0.248, 0.13, 0.326 and 0.245 μM, respectively. The most powerful derivatives2b, 3b, 4b, and 5b, were chosen for further examination of their inhibitory potential on both kinases (PIM-2 and PIM-3). Interestingly, upon loading compound 3b in a cubosomes formulation with nanometric size, improvements in cytotoxicity and inhibitory effect on PIM-1 kinase were observed. In silico ADME parameters study revealed that compound 3b is orally bioavailable without penetration to the blood-brain barrier. Further, the docking simulations revealed the ability of our potent compounds to well accommodate the PIM-1 kinase active site forming stable complexes. In a 150 ns MD simulation, the most powerful PIM-1 inhibitor 3b produced stable complex with the PIM-1 enzyme (RMSD = 1.76). Furthermore, the 3b-PIM-1 complex has the low binding free energy (-242.2 kJ/mol) according to the MM-PBSA calculations.
Collapse
|
11
|
Theoretical studies, anticancer activity, and photovoltaic performance of newly synthesized carbazole-based dyes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Han Y, Zhang H, Wang S, Li B, Xing K, Shi Y, Cao H, Zhang J, Tong T, Zang J, Guan L, Gao X, Wang Y, Liu D, Huang M, Jing Y, Zhao L. Optimization of 4,6-Disubstituted Pyrido[3,2- d]pyrimidines as Dual MNK/PIM Inhibitors to Inhibit Leukemia Cell Growth. J Med Chem 2021; 64:13719-13735. [PMID: 34515481 DOI: 10.1021/acs.jmedchem.1c01084] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mitogen-activated protein kinase-interacting kinases (MNKs) and provirus integration in maloney murine leukemia virus kinases (PIMs) are downstream enzymes of cell proliferation signaling pathways associated with the resistance of tyrosine kinase inhibitors. MNKs and PIMs have complementary effects to regulate cap-dependent translation of oncoproteins. Dual inhibitors of MNKs and PIMs have not been developed. We developed a novel 4,6-disubstituted pyrido[3,2-d]pyrimidine compound 21o with selective inhibition of MNKs and PIMs. The IC50's of 21o to inhibit MNK1 and MNK2 are 1 and 7 nM and those to inhibit PIM1, PIM2, and PIM3 are 43, 232, and 774 nM, respectively. 21o inhibits the growth of myeloid leukemia K562 and MOLM-13 cells with GI50's of 2.1 and 1.2 μM, respectively. 21o decreases the levels of p-eIF4E and p-4EBP1, the downstream products of MNKs and PIMs, as well as cap-dependent proteins c-myc, cyclin D1, and Mcl-1. 21o inhibits the growth of MOLM-13 cell xenografts without causing evident toxicity. 21o represents an innovative dual MNK/PIM inhibitor with a good pharmacokinetic profile.
Collapse
Affiliation(s)
- Yu Han
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huimin Zhang
- Liaoning Key Laboratory of Targeting Drugs for Hematological Malignancies, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shuxiang Wang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bo Li
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Kun Xing
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuntao Shi
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hongxue Cao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jian Zhang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tong Tong
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jie Zang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lihong Guan
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaoxiao Gao
- Liaoning Key Laboratory of Targeting Drugs for Hematological Malignancies, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yuetong Wang
- Liaoning Key Laboratory of Targeting Drugs for Hematological Malignancies, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dan Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Min Huang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yongkui Jing
- Liaoning Key Laboratory of Targeting Drugs for Hematological Malignancies, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Linxiang Zhao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|