1
|
Cai R, Liu J, Wang X, An T, Zhang L. Identification of daurisoline metabolites in rats via the UHPLC-Q-exactive orbitrap mass spectrometer. J Pharm Biomed Anal 2025; 252:116482. [PMID: 39321490 DOI: 10.1016/j.jpba.2024.116482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
Daurisoline, a bisbenzylisoquinoline alkaloid extracted from the rhizomes of Menispermum dauricum, exhibits diverse biological activities, encompassing antiplatelet, anti-inflammatory, neuroprotective, and antitumor properties. However, previous investigations have not comprehensively elucidated the metabolic profile and pathways of daurisoline in vivo. Using Ultra-High-Performance Liquid Chromatography with Q-Exactive Orbitrap Mass Spectrometry technology, we comprehensively investigated the metabolites of daurisoline in Sprague-Dawley rats, following intragastric administration. Data collection and analysis were enhanced through Full Scan MS/dd-MS2, in conjunction with parallel reaction monitoring, extracted ion chromatography, and diagnostic fragment ions. Sixty-three metabolites were detected and characterized, including sixty-two novel metabolites and coclaurine. This investigation elucidated the cleavage patterns and tissue distribution characteristics of the metabolism of daurisoline. Furthermore, in vivo reactions, including dehydrogenation, hydroxylation, methylation, sulfation and glucuronidation, were thoroughly examined. Investigating the metabolites of daurisoline in rats has deepened our understanding of its metabolism in vivo, aiding in elucidating its metabolic and pharmacological actions. This provides a valuable foundation for further research into its therapeutic efficacy.
Collapse
Affiliation(s)
- Ruijun Cai
- Department of Pharmacy, Shanghai General Hospital Jiuquan Hospital (The People's Hospital of Jiuquan), Jiuquan, GanSu 735000, China
| | - Jing Liu
- Department of Pharmacy, Shanghai General Hospital Jiuquan Hospital (The People's Hospital of Jiuquan), Jiuquan, GanSu 735000, China
| | - Xuefang Wang
- Department of Pharmacy, Shanghai General Hospital Jiuquan Hospital (The People's Hospital of Jiuquan), Jiuquan, GanSu 735000, China
| | - Tao An
- Department of Pharmacy, Shanghai General Hospital Jiuquan Hospital (The People's Hospital of Jiuquan), Jiuquan, GanSu 735000, China
| | - Ling Zhang
- Department of Pharmacy, Shanghai General Hospital Jiuquan Hospital (The People's Hospital of Jiuquan), Jiuquan, GanSu 735000, China.
| |
Collapse
|
2
|
Chen KQ, Wang SZ, Lei HB, Liu X. Dauricine: Review of Pharmacological Activity. Drug Des Devel Ther 2024; 18:4371-4385. [PMID: 39355570 PMCID: PMC11444063 DOI: 10.2147/dddt.s471352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/23/2024] [Indexed: 10/03/2024] Open
Abstract
Background Dauricine is an important natural organic compound in Menispermum dauricum, which often has significant biological activity. Purpose The purpose of this review is to systemically summarize and discuss the pharmacological activity and underlying mechanisms of dauricine in recent years. Methods Web of Science (121 articles) and PubMed databases (97 articles) were used to search for articles related to "dauricine" published from 2000 to 2024. Meanwhile, we classified the pharmacological activity of dauricine by screening these articles. Results Emerging evidence suggests that dauricine possesses numerous pharmacological activities, including neuroprotection, anti-cancer, anti-arrhythmia, anti-inflammatory and anti-diabetes. Conclusion Dauricine has a potential value in the treatment of many diseases. We hope that this review will contribute to therapeutic development and future studies of dauricine.
Collapse
Affiliation(s)
- Ke-Qian Chen
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, 411100, People's Republic of China
| | - Shu-Zhi Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Hai-Bo Lei
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, 411100, People's Republic of China
| | - Xiang Liu
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, 411100, People's Republic of China
| |
Collapse
|
3
|
Liu W, Yu Y, Hou T, Wei H, Lv F, Shen A, Liu Y, Wang J, Fu D. N-desmethyldauricine from Menispermum dauricum DC suppresses triple-negative breast cancer growth in 2D and 3D models by downregulating the NF-κB signaling pathway. Chem Biol Interact 2024; 398:111113. [PMID: 38908813 DOI: 10.1016/j.cbi.2024.111113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Triple negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, for which targeted therapy regimens are lacking. The traditional Chinese medicine Menispermum dauricum DC (M. dauricum) and its compounds have been reported to have antitumor activity against various cancers; however, their anti-TNBC activity is unknown. In this work, dauricine and N-desmethyldauricine from M. dauricum were separated and identified to have anti-TNBC via a multi-component bioactivity and structure-guided method. The cell counting kit 8 assay showed that dauricine and N-desmethyldauricine inhibited the proliferation of four tested TNBC cell lines, with half maximal inhibitory concentration values ranging from 5.01 μM to 13.16 μM. Further research suggested that N-desmethyldauricine induced cell apoptosis, arrested cell cycle progression in the G0/G1 phase, and inhibited cell migration. Western blot analysis revealed that the proapoptotic protein cleaved-poly-ADP-ribose polymerase 1 was upregulated, and the G0/G1 phase-related proteins cyclin-dependent kinase 2 and cyclin D1 and the migration-related protein matrix metallopeptidase 9 were downregulated. Furthermore, N-desmethyldauricine decreased the protein expression of p65, an important subunit of nuclear factor kappa-beta (NF-κB). Moreover, an antiproliferation assay of three-dimensional (3D) tumor spheroids showed that N-desmethyldauricine diminished cell‒cell adhesion and suppressed the growth of TNBC 3D spheroids. Taken together, these findings indicate that N-desmethyldauricine inhibited the proliferation of TNBC cells and decreased the expression of p65 in the NF-κB pathway.
Collapse
Affiliation(s)
- Wenting Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Yan Yu
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Tao Hou
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang, 220000, China
| | - Hongli Wei
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Fangbin Lv
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang, 220000, China
| | - Aijin Shen
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang, 220000, China
| | - Yanfang Liu
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang, 220000, China
| | - Jixia Wang
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang, 220000, China.
| | - Dongmei Fu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
4
|
Hong Y, Song ZF, Qin JX, Li YW, Fang X, Liang S. The basic chemical substances of total alkaloids of Menispermi Rhizoma and their anti-inflammatory activities. Nat Prod Res 2024; 38:2044-2052. [PMID: 37493517 DOI: 10.1080/14786419.2023.2239992] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/14/2023] [Indexed: 07/27/2023]
Abstract
Menispermi Rhizoma is the dried rhizome of Menispermum dauricum DC. (Menispermaceae), which commonly used to treat sore throat, enteritis, and dysentery in traditional Chinese medicine. To clarify the chemical basis of the total alkaloids of M. Rhizoma, HPLC was used to analyze total alkaloids, and then representative chemical constituents were separated by tracking. Nineteen compounds, including two new alkaloids (1R-methymenidaurine A-α-N-oxide (1) and 1R-7'-hydroxymethyl-menidaurine A (2)), thirteen known alkaloids, and four known flavonoids were isolated and identified using spectroscopic methods. Meanwhile, seven characteristic peaks were identified from the total alkaloids using HPLC analysis. Furthermore, compounds 1-18 were screened in vitro for their inhibitory effect against nitric oxide production in BV-2 microglia cells stimulated by lipopolysaccharide. Among them, six compounds showed weak inhibition, and the IC50 values of compounds 1 and 2 were 56.87 ± 1.61 and 53.67 ± 1.52 mM, respectively.
Collapse
Affiliation(s)
- Yang Hong
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine, Ministry of Education, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Zhen-Fei Song
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine, Ministry of Education, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jia-Xu Qin
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine, Ministry of Education, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yan-Wei Li
- Shanghai Sunny Biotech Co., Ltd, Shanghai, People's Republic of China
| | - Xin Fang
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine, Ministry of Education, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Shuang Liang
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine, Ministry of Education, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
5
|
Xia GQ, Zhu MP, Li JW, Huang H. An alkaloid from Menispermum dauricum, dauricine mediates Ca 2+ influx and inhibits NF-κB pathway to protect chondrocytes from IL-1β-induced inflammation and catabolism. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117560. [PMID: 38081396 DOI: 10.1016/j.jep.2023.117560] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dauricine (DA) is a natural plant-derived alkaloid extracted from Menispermum dauricum. Menispermum dauricum has been used in traditional Chinese medicine as a classic remedy for rheumatoid arthropathy and is believed to be effective in alleviating swelling and pain in the limbs. AIM OF THE STUDY Osteoarthritis (OA) is a classic degenerative disease involving chondrocyte death, and there is still a lack of effective therapeutic agents that can reverse the progression of the disease. Here we explored the therapeutic effects of DA against OA and further explored the mechanism. MATERIALS AND METHODS The effect of DA on cell viability was assessed by CCK-8. IL-1β-treated mouse chondrocytes were used as an in vitro model of OA, and apoptosis was detected by flow cytometry. QRT-PCR, western blotting, cell staining, and immunofluorescence were used to detect relevant inflammatory factors and cartilage-specific expression. RNA sequencing was used to identify pertinent signaling pathways. The therapeutic effect of DA was verified by micro-CT, histological analysis and immunohistochemical analysis in a mouse OA model. RESULTS DA demonstrated a high safety profile on chondrocytes, significantly reversing the inflammatory response induced by IL-1β, and promoting factors associated with cartilage regeneration. Moreover, DA exhibited a significant protective effect on the knee joints of mice undergoing ACLT-DMM, effectively preventing cartilage degeneration and subchondral bone tissue destruction. These positive therapeutic effects were achieved through the modulation of the NF-κB pathway and the Ca2+ signaling pathway by DA. CONCLUSION Being derived from a traditional herb, DA exhibits remarkable therapeutic potential and safety in OA treatment, presenting a promising option for patients dealing with osteoarthritis.
Collapse
Affiliation(s)
- Gan-Qing Xia
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430060, Hu bei Province, PR China
| | - Mei-Peng Zhu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430060, Hu bei Province, PR China
| | - Jian-Wen Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430060, Hu bei Province, PR China
| | - Hui Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430060, Hu bei Province, PR China.
| |
Collapse
|
6
|
Tuzimski T, Petruczynik A. New trends in the practical use of isoquinoline alkaloids as potential drugs applicated in infectious and non-infectious diseases. Biomed Pharmacother 2023; 168:115704. [PMID: 37862968 DOI: 10.1016/j.biopha.2023.115704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023] Open
Abstract
In the last years, traditional natural products have been the center of attention for the scientific community and exploration of their therapeutic abilities is proceeding permanently. Isoquinoline alkaloids have always attracted scientific interest due to either their positive or negative effects on human organism. The present review describes research on isoquinoline alkaloids isolated from different plant species. Alkaloids are one of the most important classes of plant derived compounds among these isoquinoline alkaloids possess varied biological activities such as anticancer, antineurodegenerative diseases, antidiabetic, antiinflammatory, antimicrobial, and many others. The use of plants against different disorders is entrenched in traditional medicine around the globe. Recent progress in modern therapeutics has stimulated the use of natural products worldwide for various ailments and diseases. The review provides a collection of information on the capabilities of some isoquinoline alkaloids, its potential for the treatment of various diseases and is designed to be a guide for future research on different biologically active isoquinoline alkaloids and plant species containing them. The authors are aware that they were not able to cover the whole area of the topic related to biological activity of isoquinoline alkaloids. This review is intended to suggest directions for further research and can also help other researchers in future studies.
Collapse
Affiliation(s)
- Tomasz Tuzimski
- Department of Physical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland.
| | - Anna Petruczynik
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland.
| |
Collapse
|
7
|
Feng X, Xie B, Han Y, Li Z, Cheng Y, Tian LW. Bisbenzylisoquinoline alkaloids from Plumula Nelumbinis inhibit vascular smooth muscle cells migration and proliferation by regulating the ORAI2/Akt pathway. PHYTOCHEMISTRY 2023; 211:113700. [PMID: 37119920 DOI: 10.1016/j.phytochem.2023.113700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
Plumula Nelumbinis, the embryo of the seed of Nelumbo nucifera Gaertn, is commonly used to make tea and nutritional supplements in East Asian countries. A bioassay-guided isolation of Plumula Nelumbinis afforded six previously undescribed bisbenzylisoquinoline alkaloids, as well as seven known alkaloids. Their structures were elucidated by extensive analysis of HRESIMS, NMR, and CD data. Pycnarrhine, neferine-2α,2'β-N,N-dioxides, neferine, linsinine, isolinsinine, and nelumboferine, at 2 μM significantly suppressed the migration of MOVAS cells with inhibition ratio above 50%, more active than that of the positive control cinnamaldehyde (inhibition ratio 26.9 ± 4.92%). Additionally, neferine, linsinine, isolinsinine, and nelumboferine, were also active against the proliferation of MOVAS cells with inhibition ratio greater than 45%. The preliminary structure-activity relationships were discussed. Mechanism studies revealed that nelumboferine inhibited the migration and proliferation of MOVAS cells by regulating ORAI2/Akt signaling pathway.
Collapse
Affiliation(s)
- Xiao Feng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Baoping Xie
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, People's Republic of China
| | - Yuantao Han
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Zhiying Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yuanyuan Cheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China.
| | - Li-Wen Tian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
8
|
Research Progress on Chemical Constituents and Pharmacological Activities of Menispermi Rhizoma. Molecules 2023; 28:molecules28062701. [PMID: 36985672 PMCID: PMC10054850 DOI: 10.3390/molecules28062701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Menispermi Rhizoma, the rhizome of Menispermum dauricum DC., is a traditional Chinese medicine, which has the effect of clearing away heat and detoxification, dispelling wind, and relieving pain. It is often used in the treatment of sore throat, enteritis, dysentery, and rheumatism. The chemical constituents of M. Rhizoma mainly include alkaloids, phenolic acids, quinones, cardiotonic glycosides, and so on. Modern pharmacological studies have proved that M. Rhizoma has the effects of anti-tumour, anti-inflammation, anti-oxidation, bacteriostasis, cardio-cerebrovascular protection, anti-depression and anti-Alzheimer’s disease. In recent years, the chemical constituents of M. Rhizoma have been found continuously, and the pharmacological studies have deepened gradually. This paper reviews the research progress on the chemical composition and pharmacological effects of M. Rhizoma, to provide a basis for further research and development of its medicinal value.
Collapse
|
9
|
Ren WJ, Zhu GY, Ma Y, Cao YH, Duan BG, Liu YH. A novel oxoisoaporphine-type alkaloid from the rhizome of Menispermum dauricum. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2023; 25:95-101. [PMID: 35291901 DOI: 10.1080/10286020.2022.2050706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
A phytochemical investigation of Menispermum dauricum led to the isolation of five oxoisoaporphine-type alkaloids (1-5) and five aporphine-type alkaloids (6-10), including a novel oxoisoaporphine-type alkaloid: menispeimin A (1). Their structures were elucidated by spectroscopic studies including MS, 1 D and 2 D NMR, and confirmed by comparing with literature data. Among them, alkaloids 4-10 were obtained for the first time from Menispermum genus. Natural products 2, 4 and 6 exhibited significant cytotoxic activity against A549, Bel-7402 and MCF-7 cell lines.
Collapse
Affiliation(s)
- Wen-Jing Ren
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Guo-Yuan Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Yan Ma
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yan-Hua Cao
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Bao-Guo Duan
- Sishui Siheyuan Culture and Tourism Development Company, Ltd, Sisui 273200, China
| | - Yu-Hong Liu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
10
|
Hao DC, Xu LJ, Zheng YW, Lyu HY, Xiao PG. Mining Therapeutic Efficacy from Treasure Chest of Biodiversity and Chemodiversity: Pharmacophylogeny of Ranunculales Medicinal Plants. Chin J Integr Med 2022; 28:1111-1126. [PMID: 35809180 PMCID: PMC9282152 DOI: 10.1007/s11655-022-3576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 11/17/2022]
Abstract
Ranunculales, comprising of 7 families that are rich in medicinal species frequently utilized by traditional medicine and ethnomedicine, represents a treasure chest of biodiversity and chemodiversity. The phylogenetically related species often have similar chemical profile, which makes them often possess similar therapeutic spectrum. This has been validated by both ethnomedicinal experiences and pharmacological investigations. This paper summarizes molecular phylogeny, chemical constituents, and therapeutic applications of Ranunculales, i.e., a pharmacophylogeny study of this representative medicinal order. The phytochemistry/metabolome, ethnomedicine and bioactivity/pharmacology data are incorporated within the phylogenetic framework of Ranunculales. The most studied compounds of this order include benzylisoquinoline alkaloid, flavonoid, terpenoid, saponin and lignan, etc. Bisbenzylisoquinoline alkaloids are especially abundant in Berberidaceae and Menispermaceae. The most frequent ethnomedicinal uses are arthritis, heat-clearing and detoxification, carbuncle-abscess and sore-toxin. The most studied bioactivities are anticancer/cytotoxic, antimicrobial, and anti-inflammatory activities, etc. The pharmacophylogeny analysis, integrated with both traditional and modern medicinal uses, agrees with the molecular phylogeny based on chloroplast and nuclear DNA sequences, in which Ranunculales is divided into Ranunculaceae, Berberidaceae, Menispermaceae, Lardizabalaceae, Circaeasteraceae, Papaveraceae, and Eupteleaceae families. Chemical constituents and therapeutic efficacy of each taxonomic group are reviewed and the underlying connection between phylogeny, chemodiversity and clinical uses is revealed, which facilitate the conservation and sustainable utilization of Ranunculales pharmaceutical resources, as well as developing novel plant-based pharmacotherapy.
Collapse
Affiliation(s)
- Da-Cheng Hao
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian, 116028, China
| | - Li-Jia Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Yu-Wei Zheng
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian, 116028, China
| | - Huai-Yu Lyu
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian, 116028, China
| | - Pei-Gen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, 100193, China.
| |
Collapse
|
11
|
Wei J, Yu Y, Zhang Y, Li L, Li X, Shao J, Li Y. Integrated Serum Pharmacochemistry and Network Pharmacology Approach to Explore the Effective Components and Potential Mechanisms of Menispermi Rhizoma Against Myocardial Ischemia. Front Chem 2022; 10:869972. [PMID: 35665070 PMCID: PMC9160829 DOI: 10.3389/fchem.2022.869972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Myocardial ischemia (MI) is a leading cause of death worldwide. Menispermi Rhizoma is a traditional Chinese medicine that exerts a variety of beneficial pharmacological activities in many diseases, including MI. Purpose: Serum pharmacochemistry and network pharmacology were used to explore the material basis and mechanism of action of Menispermi Rhizoma against MI. Methods: The absorbed components of Menispermi Rhizoma in rat plasma were analyzed by ultra-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF/MS). The key components, targets, pathways, and interrelated information were obtained by network pharmacology. The potential effective components of Menispermi Rhizoma against MI were screened by methyl-thiazolyl-tetrazolium (MTT) assay, and the cardioprotective effect and mechanism of active components were verified by Western blotting and molecular docking. Results: In total, 25 absorbed components of Menispermi Rhizoma in plasma were identified. Network pharmacology revealed 81 major targets of Menispermi Rhizoma against MI, mainly involving the regulation of the PI3K/AKT and MAPK pathways. In vitro validation of H9c2 cells revealed that acutumine, daurisoline, dauricoside, and 6-O-demethylmenisporphine are the main bioactive components of Menispermi Rhizoma. The levels of lactate dehydrogenase, creatine kinase, and malondialdehyde (MDA) were significantly decreased by four alkaloids, whereas the activities of superoxide dismutase (SOD) and glutathione (GSH) were significantly increased. Four alkaloids effectively protected H9c2 cells against OGD-induced apoptosis by Hoechst/PI staining and flow cytometry assay. Western blotting results showed that the four alkaloids upregulated the expression ratio of Bcl-2/Bax and downregulated the expression levels of Cyt-C and cleaved caspase 3, which further supported the anti-cardiomyocyte apoptosis and antioxidative stress effect of Menispermi Rhizoma. Molecular docking confirmed that the four compounds were capable of binding to AKT1, MAPK1, EGFR, CASP3, and MAPK8 proteins, suggesting the protective effect of Menispermi Rhizoma on MI via PI3K/AKT, MAPK, and apoptosis pathways. Conclusion: Menispermi Rhizoma exerted cardioprotective effects through the effect characteristics: multiple-ingredient, multi-target, and multi-pathway. This research provided a reference for further mechanistic research on wider applications of Menispermi Rhizoma for MI treatment.
Collapse
Affiliation(s)
- Jinxia Wei
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Jinxia Wei, ; Jia Shao, ; Yubo Li,
| | - Yingying Yu
- Department of Pharmacy, Logistical University of Chinese People’s Armed Police, Tianjin, China
- Department of Health Service, Hunan Provincial Hospital of Chinese People’s Armed Police, Changsha, China
| | - Yue Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lingzhi Li
- Department of Pharmacy, Logistical University of Chinese People’s Armed Police, Tianjin, China
| | - Xia Li
- Department of Pharmacy, Logistical University of Chinese People’s Armed Police, Tianjin, China
| | - Jia Shao
- Department of Pharmacy, Tianjin First Central Hospital, Tianjin, China
- *Correspondence: Jinxia Wei, ; Jia Shao, ; Yubo Li,
| | - Yubo Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Jinxia Wei, ; Jia Shao, ; Yubo Li,
| |
Collapse
|
12
|
Daurisoline alleviated experimental colitis in vivo and in vitro: Involvement of NF-κB and Wnt/β-Catenin pathway. Int Immunopharmacol 2022; 108:108714. [PMID: 35366641 DOI: 10.1016/j.intimp.2022.108714] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/07/2022] [Accepted: 03/16/2022] [Indexed: 11/24/2022]
Abstract
Daurisoline (DS) is one of the most abundant alkaloids extracted from the rhizome of Menispermum Dauricum DC, which is traditionally used to treat inflammatory diseases, especially intestinal inflammation. In this study, we established lipopolysaccharide (LPS)-induced RAW 264.7 macrophages in vitro and Dextran sulfate sodium (DSS)-induced colitis mice model in vivo to investigate the anti-inflammatory effect of DS and its underlying mechanisms. Disease activity index (DAI) was detected during drug intervention. The colon length, macroscopic changes and histopathological scores were adopted to observe the physiological status and the colon injury. The apoptosis of intestinal mucosa was detected using TUNEL. In addition, involved molecular indicators were measured by ELISA kits, RT-qPCR, immunofluorescence (IF), immunohistochemistry (IHC) and western blotting. The vitro experiments indicated that DS significantly suppressed the production of Nitric oxide (NO), reactive oxygen species (ROS) and glutathione (GSH), as well as inhibited the expression of NF-κB signaling pathway in RAW 264.7 cells induced by LPS. Consistent with the vitro experimental results, different doses of DS significantly reduced the incidence of diarrhea, DAI, shortening of the colon, visible damage and histological damage in DSS-induced colitis mice. Moreover, DS treatment decreased the levels of pro-inflammatory mediators cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2) and interleukin (IL)-1β, and increased the anti-inflammatory cytokines IL-4 and IL-10 in colon tissues. RT-qPCR, western blotting and immunofluorescence analyses further demonstrated that DS inhibits the expression of Wnt/β-Catenin pathway. We reported for the first time that DS may be an active ingredient in treating ulcerative colitis. Its mechanism might be related to the regulation of the NF-κB and Wnt/β-Catenin signaling pathway.
Collapse
|
13
|
Wei HL, Han Y, Zhou H, Hou T, Yao YM, Wen CM, Wang CR, Wang JX, Shen AJ, Zhang XL, Li H, Liu YF. Isoquinoline alkaloid dimers with dopamine D1 receptor activities from Menispermum dauricum DC. PHYTOCHEMISTRY 2022; 194:113015. [PMID: 34798412 DOI: 10.1016/j.phytochem.2021.113015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/20/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
A phytochemical investigation on chemical constituents from the rhizomes of Menispermum dauricum DC. identified eight undescribed dimeric alkaloids with structurally diverse monomeric isoquinoline. Alkaloid structures were elucidated by a combination of spectroscopic data analyses and time-dependent density functional theory (TDDFT) ECD calculation. The isolates were evaluated for inhibitory effect on dopamine D1 receptor and compound 1 exhibited potent D1 receptor antagonistic activity with an IC50 value of 8.4 ± 2.0 μM.
Collapse
Affiliation(s)
- Hong-Li Wei
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yang Han
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Han Zhou
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Tao Hou
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Yu-Min Yao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Chun-Mei Wen
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, People's Republic of China
| | - Chao-Ran Wang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Ji-Xia Wang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Ai-Jin Shen
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Xiu-Li Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215006, People's Republic of China
| | - Hao Li
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, People's Republic of China
| | - Yan-Fang Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China; Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, People's Republic of China.
| |
Collapse
|