1
|
Gümüş A, Sadeghian N, Sadeghi M, Taslimi P, Gümüş S. Novel triazole bridged quinoline-anthracene derivatives: synthesis, characterization, molecular docking, evaluation of electronic and enzyme inhibitory properties. J Biomol Struct Dyn 2025; 43:843-858. [PMID: 37982719 DOI: 10.1080/07391102.2023.2283870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
Two novel quinoline-anthracene conjugates comprising styrylquinoline and anthracene moieties linked by triazole bridges were designed and synthesized in good yields. These molecules were determined for some metabolic enzymes activities. Results indicated that the synthetic molecules exhibited powerful inhibitory actions against all aims as compared to the control molecules. Ki values of novel compound QA-1 for hCA I, hCA II, AChE, and α-glycosidase enzymes were obtained of 20.18 ± 2.46 µM, 14.63 ± 1.14 µM, 71.48 ± 7.76 nM, 401.35 ± 36.84 nM, respectively. Both compounds showed promising candidate complexes for drug development with considerable in vitro different enzymes inhibitory activities. The binding conformations patterns and interaction of QA-1 and QA-2 compounds with α-glucosidase, acetycholinesterase, carbonic anhydrase-I and carbonic anhydrase-II enzymes were investigated through molecular docking profiles. The docking outputs are consistent with the Ki and IC50 values of novel compounds. Three dimensional geometries and electronic properties of the title compounds were obtained by the applicational computational approach at B3LYP/6-31++G(d,p) level of theory.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ayşegül Gümüş
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Nastaran Sadeghian
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Morteza Sadeghi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Selçuk Gümüş
- Department of Basic Sciences, Faculty of Engineering, Architecture and Design, Bartin University, Bartin, Turkey
| |
Collapse
|
2
|
Eshal J, Tariq HZ, Li J, Aftab H, Şenol H, Taslimi P, Sadeghian N, Alharthy RD, Akram MS, Talib R, Shafiq Z. Synthesis, biological evaluation, and in silico studies of phenyl naphthalene-2-sulfonate derived thiosemicarbazones as potential carbonic anhydrase inhibitors. Bioorg Chem 2025; 155:108118. [PMID: 39793219 DOI: 10.1016/j.bioorg.2024.108118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/26/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025]
Abstract
A series of novel phenyl naphthalene-2-sulfonate-based thiosemicarbazones (5a-v) were synthesized and evaluated for their inhibitory activity against human carbonic anhydrases I and II (hCA I and hCA II). Compounds 5d and 5p demonstrated the highest inhibitory potency, with IC50 values of 4.32 ± 0.02 nM and 5.24 ± 0.03 nM for hCA I, and 3.89 ± 0.01 nM and 4.72 ± 0.01 nM for hCA II, respectively. Notably, compound 5d exhibited superior potency compared to the reference drug acetazolamide. The structure-activity relationship (SAR) analysis revealed that electron-withdrawing groups, particularly the dichlorophenyl group in 5d and 5p, enhanced inhibitory activity. Molecular docking and molecular dynamics simulations confirmed the high binding affinity of compound 5d, with docking scores of -9.7 kcal/mol for hCA I and -9.5 kcal/mol for hCA II. Stability in MD simulations further supported its potent inhibitory action. ADMET predictions suggested that compounds 5d and 5p have favorable pharmacokinetic profiles. In conclusion, phenyl naphthalene-2-sulfonate-based thiosemicarbazones, especially compound 5d, show strong potential as therapeutic agents targeting hCA I and hCA II.
Collapse
Affiliation(s)
- Javeria Eshal
- Institute of Chemical Sciences, Bahauddin Zakariya University, 60800 Multan, Pakistan
| | - Hafiza Zara Tariq
- School of Chemistry, Xi'an Jiaotong University, Xianning West Road, Xi'an 710049, China
| | - Jing Li
- School of Chemistry, Xi'an Jiaotong University, Xianning West Road, Xi'an 710049, China
| | - Hina Aftab
- Institute of Chemical Sciences, Bahauddin Zakariya University, 60800 Multan, Pakistan
| | - Halil Şenol
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 34093 Fatih, İstanbul, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, 74110 Bartin, Turkey.
| | - Nastaran Sadeghian
- Department of Biotechnology, Faculty of Science, Bartin University, 74110 Bartin, Turkey
| | - Rima D Alharthy
- Department of Chemistry, Science & Arts College, Rabigh Branch, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Muhammad Safwan Akram
- School of Science & Health, Teesside University, Middlesbrough TS1 3BA, UK; National Horizons Centre, Teesside University, 38 John Dixon Ln, Darlington DL1 1HG, UK
| | - Rimsha Talib
- Institute of Chemical Sciences, Bahauddin Zakariya University, 60800 Multan, Pakistan
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, 60800 Multan, Pakistan.
| |
Collapse
|
3
|
Ahmed S, Nilofar, Cvetanović Kljakić A, Stupar A, Lončar B, Božunović J, Gašić U, Yıldıztugay E, Ferrante C, Zengin G. Exploring traditional and modern approaches for extracting bioactive compounds from Ferulago trachycarpa. Prep Biochem Biotechnol 2024; 54:1306-1319. [PMID: 38756105 DOI: 10.1080/10826068.2024.2349937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
For more than two millennia, Ferulago species have been revered as therapeutic herbs, maintaining their significance in present-day folk medicine practices. Therefore, the present study was conducted to investigate the phytochemical composition, inhibitory effects on metabolic enzymes, and possible therapeutic applications of F. trachycarpa, specifically focusing on its efficacy in diabetes management, anticholinergic effects, and antioxidant capabilities. The current investigation comprised an evaluation of a range of extracts acquired via conventional and modern methodologies, such as soxhlet (SOX), maceration (MAC) accelerated solvent extraction (ASE), homogenizer-assisted extraction (HAE), supercritical fluid extraction (SFE), microwave-assisted extraction (MW), and ultrasound-assisted extraction (UAE). Various techniques were employed to assess their antioxidant capacity and enzyme inhibition. Furthermore, the research utilized ultra-high performance liquid chromatography-MS/MS (UHPLC-MS/MS) to ascertain the principal phenolic compounds that are responsible for the antioxidant capacity observed in the various F. trachycarpa extracts. Among these, extracts from HAE, ASE, and MW revealed the most promise across all methodologies tested for their antioxidant potential. Furthermore, SFE and MAC extracts inhibited the most enzymes, including cholinesterases, tyrosinase, α -amylase, and α -glycosidase, indicating their potential as efficient natural treatments for several health-related issues.
Collapse
Affiliation(s)
- Shakeel Ahmed
- Foodomics Laboratory, Instituto de Investigación en Ciencias de la Alimentación, CSIC-UAM, Madrid, Spain
| | - Nilofar
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", Università degli Studi "Gabriele d'Annunzio", Chieti, Italy
| | | | - Alena Stupar
- Institute of Food Technology, University of Novi Sad, Novi Sad, Serbia
| | - Biljana Lončar
- Faculty of Technology, University of Novi Sad, Novi Sad, Serbia
| | - Jelena Božunović
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Uroš Gašić
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Evren Yıldıztugay
- Department of Biotechnology, Science Faculty, Selcuk University, Konya, Turkey
| | - Claudio Ferrante
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", Università degli Studi "Gabriele d'Annunzio", Chieti, Italy
| | - Gokhan Zengin
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| |
Collapse
|
4
|
Artunç T, Çetinkaya Y, Taslimi P, Menzek A. Investigation of cholinesterase and α-glucosidase enzyme activities, and molecular docking and dft studies for 1,2-disubstituted cyclopentane derivatives with phenyl and benzyl units. Mol Divers 2024:10.1007/s11030-024-10911-y. [PMID: 38976121 DOI: 10.1007/s11030-024-10911-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024]
Abstract
Six known products (4-9) were prepared from reaction of adipoyl chloride with 1,2,3-trimethoxybenzene according to the literature. From (2,3,4-trimethoxyphenyl)(2-(2,3,4-trimethoxyphenyl)cyclopent-1-en-1-yl)methanone (4) of them, four new 1,2-disubstituted cyclopentane derivatives (10-13) with phenyl and benzyl units were synthesized by reactions such as hydrazonation, catalytic hydrogenation and bromination. The obtained compounds 4-13 were examined for their in vitro inhibitory activity against acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and α-glucosidase enzymes. All compounds 4-13 showed inhibition at nanomolar level with Ki values in the range of 45.53 ± 7.35-631.96 ± 18.88 nM for AChE, 84.30 ± 9.92-622.10 ± 35.14 nM for BChE, and 25.47 ± 4.46-48.87 ± 7.33 for α-Glu. In silico molecular docking studies of the potent compounds were performed in the active sites of AChE (PDB: 1E66), BChE (PDB: 1P0I), and α-glucosidase (PDB: 5ZCC) to compare the effect of bromine atom on the inhibition mechanism. The optimized molecular structures, HOMO-LUMO energies and molecular electrostatic potential maps for the compounds were calculated by using density functional theory with B3LYP/6-31 + G(d,p).
Collapse
Affiliation(s)
- Tekin Artunç
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey
| | - Yasin Çetinkaya
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey.
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, 74100, Bartin, Turkey.
| | - Abdullah Menzek
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey.
- Department of Emergency Aid and Disaster Management, Faculty of Health Sciences, Ardahan University, 75002, Ardahan, Turkey.
| |
Collapse
|
5
|
Behçet A, Taslimi P, Şen B, Taskın-Tok T, Aktaş A, Gök Y, Aygün M, Gülçin İ. New palladium complexes with N-heterocyclic carbene and morpholine ligands: Synthesis, characterization, crystal structure, molecular docking, and biological activities. J Biochem Mol Toxicol 2024; 38:e23554. [PMID: 37855258 DOI: 10.1002/jbt.23554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/12/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023]
Abstract
This work includes the synthesis of a new series of palladium-based complexes containing both morpholine and N-heterocyclic carbene (NHC) ligands. The new complexes were characterized using NMR (1 H and 13 C), FTIR spectroscopic, and elemental analysis techniques. The crystal structure of complex 1b was obtained by utilizing the single-crystal X-ray diffraction method. X-ray studies show that the coordination environment of palladium atom is completed by the carbene carbon atom of the NHC ligand, the nitrogen atom of the morpholine ring, and a pair of bromide ligand, resulting in the formation of slightly distorted square planar geometry. All complexes were determined for some metabolic enzyme activities. Results indicated that all the synthetic complexes exhibited powerful inhibitory actions against all aims as compared to the control molecules. Ki values of new morpholine-liganded complexes bearing 4-hydroxyphenylethyl group 1a-e for hCA I, hCA II, AChE, BChE, and α-glycosidase enzymes were obtained in the ranges 0.93-2.14, 1.01-2.03, 4.58-10.27, 7.02-13.75, and 73.86-102.65 µM, respectively. Designing of reported complexes is impacted by molecular docking study, and interaction with the current enzymes also proclaimed that compounds 1e (-12.25 kcal/mol for AChE and -11.63 kcal/mol for BChE), 1c (-10.77 kcal/mol and -9.26 kcal/mol for α-Gly and hCA II, respectively), and 1a (-8.31 kcal/mol for hCA I) are showing binding affinity and interaction from the synthesized five novel complexes.
Collapse
Affiliation(s)
- Ayten Behçet
- Department of Chemistry, Faculty of Science and Arts, Inonu University, Malatya, Türkiye
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Türkiye
| | - Betül Şen
- Department of Physics, Faculty of Science, Dokuz Eylül University, Buca, Türkiye
| | - Tuğba Taskın-Tok
- Department of Chemistry, Faculty of Arts and Sciences, Gaziantep University, Gaziantep, Türkiye
- Institute of Health Sciences, Gaziantep University, Gaziantep, Türkiye
| | - Aydın Aktaş
- Vocational School of Health Service, Inonu University, Malatya, Türkiye
| | - Yetkin Gök
- Department of Chemistry, Faculty of Science and Arts, Inonu University, Malatya, Türkiye
| | - Muhittin Aygün
- Department of Physics, Faculty of Science, Dokuz Eylül University, Buca, Türkiye
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Türkiye
| |
Collapse
|
6
|
Alagöz T, Çalişkan FG, Bilgiçli HG, Zengin M, Sadeghi M, Taslimi P, Gulçin İ. Synthesis, characterization, biochemical, and molecular modeling studies of carvacrol-based new thiosemicarbazide and 1,3,4-thiadiazole derivatives. Arch Pharm (Weinheim) 2023; 356:e2300370. [PMID: 37743251 DOI: 10.1002/ardp.202300370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/26/2023]
Abstract
A series of carvacrol-based thiosemicarbazide (3a-e) and 1,3,4-thiadiazole-2-amine (4a-e) were designed and synthesized for the first time. The structures were characterized by nuclear magnetic resonance and high resolution mass spectroscopy techniques. All compounds were examined for some metabolic enzyme activities. Results indicated that all the synthetic molecules exhibited powerful inhibitory actions against human carbonic anhydrase I and II (hCAI and II), acetylcholinesterase (AChE), and butyrylcholinesterase (BChE) enzymes compared to the standard molecules. Ki values of five novel thiosemicarbazides and five new 1,3,4-thiadiazole-2-amine derivatives (3a-e and 4a-e) for hCA I, hCA II, AChE, and BChE enzymes were obtained in the ranges 0.73-21.60, 0.42-15.08 µM, 3.48-81.48, 92.61-211.40 nM, respectively. After the experimental undertaking, an extensive molecular docking analysis was conducted to scrutinize the intricate details of interactions between the ligand and the enzyme in question. The principal focus of this investigation was to appraise the potency and efficacy of the most active compound. In this context, the calculated docking scores were noted to be remarkably low, with values of -8.65, -7.97, -8.92, and -8.32 kcal/mol being recorded for hCA I, hCA II, AChE, and BChE, respectively. These observations suggest a high affinity and specificity of the studied compounds toward the enzymes, as mentioned earlier, which may pave the way for novel therapeutic interventions aimed at modulating the activity of these enzymes.
Collapse
Affiliation(s)
- Tenzile Alagöz
- Department of Chemistry, Faculty of Sciences, Sakarya University, Sakarya, Turkiye
| | - Fatma Güneş Çalişkan
- Department of Chemistry, Faculty of Sciences, Sakarya University, Sakarya, Turkiye
| | | | - Mustafa Zengin
- Department of Chemistry, Faculty of Sciences, Sakarya University, Sakarya, Turkiye
| | - Morteza Sadeghi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, Isfahan University, Isfahan, Iran
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkiye
| | - İlhami Gulçin
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkiye
| |
Collapse
|
7
|
Naseem S, Khan S, Hussain S, Mirza MU, Ashraf M, Shafiq Z, Trant JF. Synthesis, biological evaluation, and molecular docking study of xanthene-linked thiosemicarbazones as cholinesterase inhibitors. J Biomol Struct Dyn 2023; 42:13232-13246. [PMID: 37948312 DOI: 10.1080/07391102.2023.2274981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
This study delineates the design and synthesis of a series of xanthene-based thiosemicarbazones that show low μM inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), crucial enzymes associated with, among others, Alzheimer's Disease (AD) pathology. Despite FDA-approved AChE inhibitors being frontline treatments for AD, there remains a need for agents exhibiting improved efficacy and selectivity. Our synthesized series demonstrate meaningful inhibition against AChE (IC50 ranging from 4.2 to 62 μM). These compounds exhibit comparatively lower potency against BChE (IC50 values between 64 and 315 μM), showcasing a pronounced AChE selectivity compared to physostigmine. The selectivity index for the compounds between the two targets does vary between 0.02 and 0.75 highlighting that even minor structural differences can have drastic effects on protein interactions. Molecular docking insights further substantiated these observations, revealing the importance of the xanthene scaffold for AChE-binding and the aryl R2 moiety for BChE interactions. Notably, some compounds demonstrated dual enzyme targeting, emphasizing their interactions could be exploited for developing monotherapies against cholinesterase-associated neurodegenerative afflictions like AD. Collectively, these findings suggest that xanthene-based thiosemicarbazones are a promising and highly accessible scaffold that deserve further investigative exploration in the cholinesterase inhibitor therapeutic landscape.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saira Naseem
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Samra Khan
- Department of Chemistry and Biochemistry, University of Windsor, Canada
| | - Safdar Hussain
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Muhammad Ashraf
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
- Department of Pharmaceutical & Medicinal Chemistry, Universitat Bonn, Bonn, Germany
| | - John F Trant
- Department of Chemistry and Biochemistry, University of Windsor, Canada
| |
Collapse
|
8
|
Yalazan H, Koç D, Aydın Kose F, Fandaklı S, Tüzün B, Akgül Mİ, Sadeghian N, Taslimi P, Kantekin H. Design, syntheses, theoretical calculations, MM-GBSA, potential anti-cancer and enzyme activities of novel Schiff base compounds. J Biomol Struct Dyn 2023; 42:13100-13113. [PMID: 37921706 DOI: 10.1080/07391102.2023.2274972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
In this study, new Schiff base compounds (SB-F-OH, SB-Cl-OH and SB-Br-OH) were derived from chalcone-derived amine compounds containing halogen groups and 4-hydroxybenzaldehyde. Also, their phthalonitrile compounds (SB-F-CN, SB-Cl-CN and SB-Br-CN) have been synthesized. The structures of these compounds were elucidated by NMR, FT-IR and Mass spectroscopic methods. The quantum chemical parameters were calculated at B3LYP/6-31++g(d,p), HF/6-31++g(d,p) and M062X/6-31++g(d,p) levels. As the biological application of the synthesized compounds, (i) their inhibition properties of the synthesized compounds on Acetylcholinesterase (AChE) and Butyrylcholinesterase (BChE) metabolic enzymes were investigated, and their potential anticancer activities against neuroblastoma (NB; SH-SY5Y) and healthy fibroblast (NIH-3T3) cell lines were determined by in vitro assays. All compounds showed inhibition at nanomolar level with the Ki values in the range of 97.86 ± 30.51-516.82 ± 31.42 nM for AChE, 33.21 ± 4.45-78.50 ± 8.91 nM for BChE, respectively. It has been determined that all tested compounds have a remarkable cytotoxic effect against SH-SY5Y, and IC50 values were significantly lower than NIH-3T3 cells. The lowest IC50 value was observed in SB-Cl-OH (7.48 ± 0.86 µM) and SB-Cl-CN (7.31 ± 0.69 µM). The molecular docking of the molecules was also investigated using crystal structure of AChE enzyme protein (PDB ID: 4M0E), crystal structure of BChE protein (PDB ID: 6R6V) and SH-SY5Y cancer protein (PDB ID: 2F3F, 3PBL and 5WIV). The ADME properties of the compounds were investigated. MM/GBSA method is calculated binding free energy. Afterwards, ADME/T analysis was performed to examine the some properties of the molecules.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Halise Yalazan
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, Trabzon, Türkiye
| | - Damla Koç
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Türkiye
| | - Fadime Aydın Kose
- Department of Biochemistry, Faculty of Pharmacy, Izmir Katip Celebi University, İzmir, Türkiye
| | - Seda Fandaklı
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, Trabzon, Türkiye
| | - Burak Tüzün
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Muhammed İsmail Akgül
- Department of Biochemistry, Faculty of Pharmacy, Izmir Katip Celebi University, İzmir, Türkiye
| | - Nastaran Sadeghian
- Department of Biotechnology, Faculty of Sciences, Bartin University, Bartin, Türkiye
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Sciences, Bartin University, Bartin, Türkiye
| | - Halit Kantekin
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, Trabzon, Türkiye
| |
Collapse
|
9
|
Erdoğan M, Serdar Çavuş M, Muğlu H, Yakan H, Türkeş C, Demir Y, Beydemir Ş. Synthesis, Theoretical, in Silico and in Vitro Biological Evaluation Studies of New Thiosemicarbazones as Enzyme Inhibitors. Chem Biodivers 2023; 20:e202301063. [PMID: 37769192 DOI: 10.1002/cbdv.202301063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 09/30/2023]
Abstract
Eleven new thiosemicarbazone derivatives (1-11) were designed from nine different biologically and pharmacologically important isothiocyanate derivatives containing functional groups such as fluorine, chlorine, methoxy, methyl, and nitro at various positions of the phenyl ring, in addition to the benzyl unit in the molecular skeletal structure. First, their substituted-thiosemicarbazide derivatives were synthesized from the treatment of isothiocyanate with hydrazine to synthesize the designed compounds. Through a one-step easy synthesis and an eco-friendly process, the designed compounds were synthesized with yields of up to 95 % from the treatment of the thiosemicarbazides with aldehyde derivatives having methoxy and hydroxy groups. The structures of the synthesized molecules were elucidated with elemental analysis and FT-IR, 1 H-NMR, and 13 C-NMR spectroscopic methods. The electronic and spectroscopic properties of the compounds were determined by the DFT calculations performed at the B3LYP/6-311++G(2d,2p) level of theory, and the experimental findings were supported. The effects of some global reactivity parameters and nucleophilic-electrophilic attack abilities of the compounds on the enzyme inhibition properties were also investigated. They exhibited a highly potent inhibition effect on acetylcholinesterase (AChE) and carbonic anhydrases (hCAs) (KI values are in the range of 23.54±4.34 to 185.90±26.16 nM, 103.90±23.49 to 325.90±77.99 nM, and 86.15±18.58 to 287.70±43.09 nM for AChE, hCA I, and hCA II, respectively). Furthermore, molecular docking simulations were performed to explain each enzyme-ligand complex's interaction.
Collapse
Affiliation(s)
- Musa Erdoğan
- Department of Food Engineering, Faculty of Engineering and Architecture, Kafkas University, 36100, Kars, Turkey
| | - M Serdar Çavuş
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Kastamonu University, 37200, Kastamonu, Turkey
| | - Halit Muğlu
- Department of Chemistry, Faculty of Sciences, Kastamonu University, 37200, Kastamonu, Turkey
| | - Hasan Yakan
- Department of Chemistry Education, Faculty of Education, Ondokuz Mayis University, 55200, Samsun, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, 24002, Erzincan, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, 75700, Ardahan, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
- Bilecik Şeyh Edebali University, 11230 Bilecik, Turkey, Department of Chemistry Education, Faculty of Education, Ondokuz Mayis University, Samsun, 55200, Turkey
| |
Collapse
|
10
|
Durmaz L, Karagecili H, Gulcin İ. Evaluation of Carbonic Anhydrase, Acetylcholinesterase, Butyrylcholinesterase, and α-Glycosidase Inhibition Effects and Antioxidant Activity of Baicalin Hydrate. Life (Basel) 2023; 13:2136. [PMID: 38004276 PMCID: PMC10672269 DOI: 10.3390/life13112136] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Baicalin is the foremost prevalent flavonoid found in Scutellaria baicalensis. It also frequently occurs in many multi-herbal preparations utilized in Eastern countries. The current research has assessed and compared the antioxidant, antidiabetic, anticholinergic, and antiglaucoma properties of baicalin hydrate. Baicalin hydrate was tested for its antioxidant capacity using a variety of techniques, including N,N-dimethyl-p-phenylenediamine dihydrochloride radical (DMPD•+) scavenging activity, 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonate) radical (ABTS•+) scavenging activity, 1,1-diphenyl-2-picrylhydrazyl radical (DPPH•) scavenging activity, potassium ferric cyanide reduction ability, and cupric ions (Cu2+) reducing activities. Also, for comparative purposes, reference antioxidants, such as butylated hydroxyanisole (BHA), Trolox, α-Tocopherol, and butylated hydroxytoluene (BHT) were employed. Baicalin hydrate had an IC50 value of 13.40 μg/mL (r2: 0.9940) for DPPH radical scavenging, whereas BHA, BHT, Trolox, and α-Tocopherol had IC50 values of 10.10, 25.95, 7.059, and 11.31 μg/mL for DPPH• scavenging, respectively. These findings showed that baicalin hydrate had comparably close and similar DPPH• scavenging capability to BHA, α-tocopherol, and Trolox, but it performed better than BHT. Additionally, apart from these studies, baicalin hydrate was tested for its ability to inhibit a number of metabolic enzymes, including acetylcholinesterase (AChE), butyrylcholinesterase (BChE), carbonic anhydrase II (CA II), and α-glycosidase, which have been linked to several serious illnesses, such as Alzheimer's disease (AD), glaucoma, and diabetes, where the Ki values of baicalin hydrate toward the aforementioned enzymes were 10.01 ± 2.86, 3.50 ± 0.68, 19.25 ± 1.79, and 26.98 ± 9.91 nM, respectively.
Collapse
Affiliation(s)
- Lokman Durmaz
- Department of Medical Services and Technology, Cayirli Vocational School, Erzincan Binali Yildirim University, Erzincan 24500, Türkiye;
| | - Hasan Karagecili
- Department of Nursing, Faculty of Health Sciences, Siirt University, Siirt 56100, Türkiye;
| | - İlhami Gulcin
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum 25240, Türkiye
| |
Collapse
|
11
|
Zahra SB, Ullah S, Halim SA, Waqas M, Huda NU, Khan A, Binsaleh AY, El-Kott AF, Hussain J, Al-Harrasi A, Shafiq Z. Synthesis of novel coumarin-based thiosemicarbazones and their implications in diabetic management via in-vitro and in-silico approaches. Sci Rep 2023; 13:18014. [PMID: 37865657 PMCID: PMC10590377 DOI: 10.1038/s41598-023-44837-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/12/2023] [Indexed: 10/23/2023] Open
Abstract
Diabetes mellitus has a high prevalence rate and it has been deemed a severe chronic metabolic disorder with long-term complications. This research aimed to identify compounds that could potentially inhibit the vital metabolic enzyme α-glucosidase and thereby exert an anti-hyperglycemic effect. The main goal was to establish an effective approach to control diabetes. To proceed with this study, a series of novel coumarin-derived thiosemicarbazones 3a-3m was synthesized and examined using a variety of spectroscopic methods. Moreover, all the compounds were subjected to α-glucosidase inhibition bioassay to evaluate their antidiabetic potential. Fortunately, all the compounds exhibited several folds potent α-glucosidase inhibitory activities with IC50 values ranging from 2.33 to 22.11 µM, in comparison to the standard drug acarbose (IC50 = 873.34 ± 1.67 µM). The kinetic studies of compound 3c displayed concentration-dependent inhibition. Furthermore, the binding modes of these molecules were elucidated through a molecular docking strategy which depicted that the thiosemicarbazide moiety of these molecules plays a significant role in the interaction with different residues of the α-glucosidase enzyme. However, their conformational difference is responsible for their varied inhibitory potential. The molecular dynamics simulations suggested that the top-ranked compounds (3c, 3g and 3i) have a substantial effect on the protein dynamics which alter the protein function and have stable attachment in the protein active pocket. The findings suggest that these molecules have the potential to be investigated further as novel antidiabetic medications.
Collapse
Affiliation(s)
- Syeda Bakhtawar Zahra
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Saeed Ullah
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, P.O. Box 33, 616, Nizwa, Oman
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, P.O. Box 33, 616, Nizwa, Oman
| | - Muhammad Waqas
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, P.O. Box 33, 616, Nizwa, Oman
| | - Noor Ul Huda
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Ajmal Khan
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, P.O. Box 33, 616, Nizwa, Oman
| | - Ammena Y Binsaleh
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, 61421, Abha, Saudi Arabia
- Department of Zoology, College of Science, Damanhour University, Damanhour, 22511, Egypt
| | - Javid Hussain
- Department of Biological Sciences & Chemistry, College of Arts and Sciences, University of Nizwa, Nizwa, 616, Oman.
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, P.O. Box 33, 616, Nizwa, Oman.
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| |
Collapse
|
12
|
Durmaz L, Kiziltas H, Karagecili H, Alwasel S, Gulcin İ. Potential antioxidant, anticholinergic, antidiabetic and antiglaucoma activities and molecular docking of spiraeoside as a secondary metabolite of onion ( Allium cepa). Saudi Pharm J 2023; 31:101760. [PMID: 37693735 PMCID: PMC10485163 DOI: 10.1016/j.jsps.2023.101760] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/20/2023] [Indexed: 09/12/2023] Open
Abstract
Onion contains many dietary and bioactive components including phenolics and flavonoids. Spiraeoside (quercetin-4-O-β-D-glucoside) is one of the most putative flavonoids in onion. Several antioxidant techniques were used in this investigation to assess the antioxidant capabilities of spiraeoside, including 1,1-diphenyl-2-picrylhydrazyl radical (DPPH·) scavenging, N,N-dimethyl-p-phenylenediamine radical (DMPD•+) scavenging, 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonate) radical (ABTS•+) scavenging activities, cupric ions (Cu2+) reducing and potassium ferric cyanide reduction abilities. In contrast, the water-soluble α-tocopherol analogue trolox and the conventional antioxidants butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), and α-tocopherol were utilized as the standards for evaluation. Spiraeoside scavenged the DPPH radicals an IC50 of 28.51 μg/mL (r2: 0.9705) meanwhile BHA, BHT, trolox, and α-tocopherol displayed IC50 of 10.10 μg/mL (r2: 0.9015), 25.95 μg/mL (r2: 0.9221), 7.059 μg/mL (r2: 0.9614) and 11.31 μg/mL (r2: 0.9642), accordingly. The results exhibited that spiraeoside had effects similar to BHT, but less potent than α-tocopherol, trolox and BHA. Also, inhibitory effects of spiraeoside were evaluated toward some metabolic enzymes including acetylcholinesterase (AChE), butyrylcholinesterase (BChE), carbonic anhydrase II (CA II) and α-glycosidase, which are related to a number of illnesses, such as Alzheimer's disease (AD), diabetes mellitus and glaucoma disorder. Spiraeoside exhibited IC50 values of 4.44 nM (r2: 0.9610), 7.88 nM (r2: 0.9784), 19.42 nM (r2: 0.9673) and 29.17 mM (r2: 0.9209), respectively against these enzymes. Enzyme inhibition abilities were compared to clinical used inhibitors including acetazolamide (for CA II), tacrine (for AChE and BChE) and acarbose (for α-glycosidase). Spiraeoside demonstrated effective antioxidant, anticholinergic, antidiabetic and antiglaucoma activities. With these properties, it has shown that Spiraeoside has the potential to be a medicine for some metabolic diseases.
Collapse
Affiliation(s)
- Lokman Durmaz
- Department of Medical Services and Technology, Cayirli Vocational School, Erzincan Binali Yildirim University, 24500, Cayirli, Erzincan, Turkey
| | - Hatice Kiziltas
- Department of Pharmacy Services, Vocational School of Health Services, Van Yuzuncu Yil University, 65080, Van, Turkey
| | - Hasan Karagecili
- Department of Nursing, Faculty of Health Sciences, Siirt University, 56100, Siirt, Turkey
| | - Saleh Alwasel
- King Saud University, College of Science, Department of Zoology, 11362, Riyadh, Saudi Arabia
| | - İlhami Gulcin
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey
| |
Collapse
|
13
|
Bayrak C, Taslimi P, Kilinc N, Gulcin I, Menzek A. Synthesis and Biological Activity of Some Bromophenols and Their Derivatives Including Natural Products. Chem Biodivers 2023; 20:e202300469. [PMID: 37432096 DOI: 10.1002/cbdv.202300469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023]
Abstract
In addition to the first synthesis of the natural bromophenol butyl 2-(3,5-dibromo-4-hydroxyphenyl)acetate (1), indene derivatives 34 and 35 were synthesized from 3-phenylpropenal derivatives in BBr3 medium. Five known natural bromophenols and some derivatives were synthesized by known methods. Cholinesterase (ChEs) inhibitors reduce the breakdown of acetylcholine and are used in the treatment of Alzheimer's disease (AD) and dementia symptoms. The inhibition effects of all obtained compounds were examined towards acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and α-glycosidase enzymes. All synthesized compounds demonstrated the strong inhibition effects against both cholinergic enzymes. For determination of Ki values of novel bromophenols Lineweaver-Burk graphs were obtained. Ki values were found in the ranging of 0.13-14.74 nM for AChE, 5.11-23.95 nM for BChE, and 63.96-206.78 nM for α-glycosidase, respectively. All bromophenols and their derivatives exhibit effective inhibition profile when compared to positive controls.
Collapse
Affiliation(s)
- Cetin Bayrak
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Turkiye
- Dogubayazit Ahmed-i Hani Vocational School, Agri Ibrahim Cecen University, 04400, Agri, Turkiye
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, 74100, Bartin, Turkiye
| | - Namik Kilinc
- Department of Medical Services and Techniques, Vocational School of Health Service, Igdir University, 76000, Igdir, Turkiye
| | - Ilhami Gulcin
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Turkiye
| | - Abdullah Menzek
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Turkiye
- Department of Emergency Aid and Disaster Management, Faculty of Health Sciences, Ardahan University, 75002, Ardahan, Turkiye
| |
Collapse
|
14
|
Basri R, Ullah S, Halim SA, Alharthy RD, Rauf U, Khan A, Hussain J, Al-Ghafri A, Al-Harrasi A, Shafiq Z. Synthesis, biological evaluation, and molecular docking study of chromen-linked hydrazine carbothioamides as potent α-glucosidase inhibitors. Drug Dev Res 2023; 84:962-974. [PMID: 37186392 DOI: 10.1002/ddr.22065] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/29/2023] [Accepted: 04/08/2023] [Indexed: 05/17/2023]
Abstract
Inhibiting α-glucosidase is a reliable method for reducing blood sugar levels in diabetic individuals. Several novel chromen-linked hydrazine carbothioamide (3a-r) were designed and synthesized by condensation of chromone-3-carbaldehyde with a variety of substituted thiosemicarbazides. The structures of these new analogues were elucidated through various advanced spectroscopic techniques (1 H NMR, 13 C NMR, and ESI-MS). The resulted compounds were screened for α-glucosidase inhibitory potential and all the compounds (3a-r) exhibited potent inhibition of α-glucosidase with IC50 values ranging 0.29-53.70 µM. Among them compounds 3c, 3f, 3h, and 3r displayed the highest α-glucosidase inhibitor capability with IC50 values of 1.50, 1.28, 1.08, and 0.29 µM, respectively. Structure-activity relationship showed that different substituted groups are responsible for the variation in the α-glucosidase inhibition. The kinetics studies of the most active inhibitor (3r) were performed, to investigate the mode of inhibition and dissociation constants (Ki), that indicated a competitive inhibitor with Ki value of 1.47 ± 0.31 µM. Furthermore, molecular docking studies was performed to reveal the possible interactions, such as H-bonding, or π-π stacking, with the key residues of α-glucosidase. Docking analysis revealed the importance of hydrazine carbothioamide moiety of compounds in the attachment of ligands with the crucial residues of α-glucosidase. The estimated pharmacokinetic, physicochemical, and drug likeness properties of compounds 3a-r reflects that these molecules have acceptable range of these properties.
Collapse
Affiliation(s)
- Rabia Basri
- Institute of Chemical Sciences, Bahauddin Zakariya University, 60800, Multan, Pakistan
| | - Saeed Ullah
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Sultanate of Oman
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Sultanate of Oman
| | - Rima D Alharthy
- Department of Chemistry, Faculty of Science & Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Umair Rauf
- Institute of Chemical Sciences, Bahauddin Zakariya University, 60800, Multan, Pakistan
| | - Ajmal Khan
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Sultanate of Oman
| | - Javid Hussain
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, 616, Nizwa, Birkat Al- Mouz Nizwa, Oman
| | - Ahmed Al-Ghafri
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Sultanate of Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Sultanate of Oman
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, 60800, Multan, Pakistan
| |
Collapse
|
15
|
Tokalı FS, Taslimi P, Sadeghian N, Taskin‐To T, Gülçin İ. Synthesis, Characterization, Bioactivity Impacts of New Anthranilic Acid Hydrazones Containing Aryl Sulfonate Moiety as Fenamate Isosteres. ChemistrySelect 2023. [DOI: 10.1002/slct.202300241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Feyzi Sinan Tokalı
- Department of Material and Material Processing Technologies Kars Vocational School Kafkas University 36100 Kars Türkiye
| | - Parham Taslimi
- Department of Biotechnology Faculty of Science Bartin University 74100 Bartin Türkiye
| | - Nastaran Sadeghian
- Department of Biotechnology Faculty of Science Bartin University 74100 Bartin Türkiye
| | - Tugba Taskin‐To
- Department of Chemistry Faculty of Arts and Sciences Gaziantep University 27310- Gaziantep Türkiye
- Department of Bioinformatics and Computational Biology Institute of Health Sciences Gaziantep University 27310- Gaziantep Türkiye
| | - İlhami Gülçin
- Department of Chemistry Faculty of Science Ataturk University Erzurum Türkiye
| |
Collapse
|
16
|
Gök Y, Taslimi P, Şen B, Bal S, Aktaş A, Aygün M, Sadeghi M, Gülçin İ. Design, Synthesis, Characterization, Crystal Structure, In silico Studies, and Inhibitory Properties of the PEPPSI Type Pd(II)NHC Complexes Bearing Chloro/Fluorobenzyl Group. Bioorg Chem 2023; 135:106513. [PMID: 37030104 DOI: 10.1016/j.bioorg.2023.106513] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/26/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
This work contains synthesis, characterization, crystal structure, and biological activity of a new series of the PEPPSI type Pd(II)NHC complexes [(NHC)Pd(II)(3-Cl-py)]. NMR, FTIR, and elemental analysis techniques were used to characterize all (NHC)Pd(II)(3-Cl-py) complexes. Also, molecular and crystal structures of complex 1c were established by single-crystal X-ray diffraction. Regarding the X-ray studies, the palladium(II) atom has a slightly distorted square-planar coordination environment. Additionally, the enzyme inhibitory effect of new (NHC)Pd(II)(3-Cl-py) complexes (1a-1g) was studied. They exhibited highly potent inhibition effect on acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and carbonic anhydrases (hCAs) (Ki values are in the range of 0.08 ± 0.01 to 0.65 ± 0.06 µM, 10.43 ± 0.98 to 22.48 ± 2.01 µM, 6.58 ± 0.30 to 10.88 ± 1.01 µM and 6.34 ± 0.37 to 9.02 ± 0.72 µM for AChE, BChE, hCA I, and hCA II, respectively). Based on the molecular docking, among the seven synthesized complexes, 1c, 1b, 1e, and 1a significantly inhibited AChE, BChE, hCA I, and hCA II enzymes, respectively. The findings highpoint that (NHC)Pd(II)(3-Cl-py) complexes can be considered as possible inhibitors via metabolic enzyme inhibition.
Collapse
|
17
|
Karagecili H, İzol E, Kirecci E, Gulcin İ. Determination of Antioxidant, Anti-Alzheimer, Antidiabetic, Antiglaucoma and Antimicrobial Effects of Zivzik Pomegran-ate (Punica granatum)—A Chemical Profiling by LC-MS/MS). Life (Basel) 2023; 13:life13030735. [PMID: 36983890 PMCID: PMC10058309 DOI: 10.3390/life13030735] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Zivzik pomegranate (Punica granatum) has recently sparked considerable interest due to its nutritional and antioxidant properties. To evaluate the antioxidant capacities of P. granatum juice, ethanol (EEZP), and water (WEZP) extracts from peel and seed, the antioxidant methods of 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid radical (ABTS•+) scavenging, 1,1-diphenyl-2-picrylhydrazyl free radical (DPPH•) scavenging, Fe3+-2,4,6-tris(2-pyridyl)-S-triazine (TPTZ) reducing, Fe3+ reducing, and Cu2+ reducing methods were used. The antioxidant capacities of samples were compared with the most commonly used synthetic antioxidants, i.e., BHA, BHT, α-tocopherol, and Trolox. In terms of setting an example, the IC50 values of EEZP for ABTS•+ and DPPH• scavenging activities were found to be lower than standards, at 5.9 and 16.1 μg/mL, respectively. The phenolic and flavonoid contents in EEZP peel were 59.7 mg GAE/g and 88.0 mg QE/g, respectively. Inhibition of α-glycosidase, α-amylase, acetylcholinesterase, and human carbonic anhydrase II (hCA II) enzymes was also investigated. EEZP demonstrated IC50 values of 7.3 μg/mL against α-glycosidase, 317.7 μg/mL against α-amylase, 19.7 μg/mL against acetylcholinesterase (AChE), and 106.3 μg/mL against CA II enzymes. A total of 53 phenolic compounds were scanned, and 30 compounds were determined using LC-MS/MS. E. coli and S. aureus bacteria were resistant to all four antibiotics used as standards in hospitals.
Collapse
Affiliation(s)
- Hasan Karagecili
- Department of Nursing, Faculty of Health Sciences, Siirt University, 56100 Siirt, Turkey
- Correspondence: (H.K.); (İ.G.); Tel.: +90-4422314375 (İ.G.)
| | - Ebubekir İzol
- Bee and Natural Products R & D and P & D Application and Research Center, Bingöl University, 12000 Bingol, Turkey
- Department of Chemistry, Faculty of Science, Ataturk University, 25240 Erzurum, Turkey
| | - Ekrem Kirecci
- Department of Basic Medical Sciences, Faculty of Medicine, Microbiology, Kahramanmaraş Sütçü İmam University, 46050 Kahramanmaras, Turkey
| | - İlhami Gulcin
- Department of Chemistry, Faculty of Science, Ataturk University, 25240 Erzurum, Turkey
- Correspondence: (H.K.); (İ.G.); Tel.: +90-4422314375 (İ.G.)
| |
Collapse
|
18
|
Wang GY, Wei WT, Rong RX, Su SS, Yan DX, Yin FQ, Li XL, Wang KR. Fluorescence sensing and glycosidase inhibition effect of multivalent glycosidase inhibitors based on Naphthalimide-deoxynojirimycin conjugates. Bioorg Chem 2023; 132:106373. [PMID: 36681043 DOI: 10.1016/j.bioorg.2023.106373] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Synthetic glycoconjugates as chemical probes have been widely developed for the detection of glycosidase enzymes. However, the binding interactions between iminosugar derivatives and glycosidases were limited, especially for the binding interactions between multivalent glycosidase inhibitors and α-glycosidases. In this paper, three naphthalimide-DNJ conjugates were synthesized. Furthermore, the binding interactions and glycosidase inhibition effects of them were investigated. It was found that the strong binding interactions of multivalent glycosidase inhibitors with enzymes were related to the efficient inhibitory activity against glycosidase. Moreover, the lengths of the chain between DNJ moieties and the triazole ring for the naphthalimide-DNJ conjugates influenced the self-assembly properties, binding interactions and glycosidase inhibition activities with multisource glycosidases. Compound 13 with six carbons between the DNJ moiety and triazole ring showed the stronger binding interactions and better glycosidase inhibition activities against α-mannosidase (jack bean) and α-glucosidase (aspergillus niger). In addition, compound 13 showed an effective PBG inhibition effect in mice with 51.18 % decrease in blood glucose at 30 min. This result opens a way for detection of multivalent glycosidase inhibition effect by a fluorescent sensing method.
Collapse
Affiliation(s)
- Guang-Yuan Wang
- College of chemistry and environmental science, Hebei University, Baoding 071002, PR China; Key laboratory of medicinal chemistry and molecular diagnosis (Ministry of education), Key laboratory of chemical biology of Hebei province, Baoding 071002, PR China; College of Chemical Engineering & Material, Hebei Key Laboratory of Heterocyclic Compounds, Handan University, Handan 056005, PR China
| | - Wen-Tong Wei
- College of chemistry and environmental science, Hebei University, Baoding 071002, PR China; Key laboratory of medicinal chemistry and molecular diagnosis (Ministry of education), Key laboratory of chemical biology of Hebei province, Baoding 071002, PR China
| | - Rui-Xue Rong
- Key laboratory of medicinal chemistry and molecular diagnosis (Ministry of education), Key laboratory of chemical biology of Hebei province, Baoding 071002, PR China; Department of Immunology, Medical Comprehensive Experimental Center, School of Basic Medical Science, Hebei University, Baoding 071002, PR China
| | - Shan-Shan Su
- College of chemistry and environmental science, Hebei University, Baoding 071002, PR China; Key laboratory of medicinal chemistry and molecular diagnosis (Ministry of education), Key laboratory of chemical biology of Hebei province, Baoding 071002, PR China
| | - Dong-Xiao Yan
- Key laboratory of medicinal chemistry and molecular diagnosis (Ministry of education), Key laboratory of chemical biology of Hebei province, Baoding 071002, PR China; Department of Immunology, Medical Comprehensive Experimental Center, School of Basic Medical Science, Hebei University, Baoding 071002, PR China
| | - Fang-Qian Yin
- College of chemistry and environmental science, Hebei University, Baoding 071002, PR China; Key laboratory of medicinal chemistry and molecular diagnosis (Ministry of education), Key laboratory of chemical biology of Hebei province, Baoding 071002, PR China; College of Chemical Engineering & Material, Hebei Key Laboratory of Heterocyclic Compounds, Handan University, Handan 056005, PR China
| | - Xiao-Liu Li
- College of chemistry and environmental science, Hebei University, Baoding 071002, PR China; Key laboratory of medicinal chemistry and molecular diagnosis (Ministry of education), Key laboratory of chemical biology of Hebei province, Baoding 071002, PR China.
| | - Ke-Rang Wang
- College of chemistry and environmental science, Hebei University, Baoding 071002, PR China; Key laboratory of medicinal chemistry and molecular diagnosis (Ministry of education), Key laboratory of chemical biology of Hebei province, Baoding 071002, PR China.
| |
Collapse
|
19
|
Yakan H, Muğlu H, Türkeş C, Demir Y, Erdoğan M, Çavuş MS, Beydemir Ş. A novel series of thiosemicarbazone hybrid scaffolds: Design, Synthesis, DFT studies, metabolic enzyme inhibition properties, and molecular docking calculations. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
20
|
Israfilova Z, Taslimi P, Gülçin İ, Abdullayev Y, Farzaliyev V, Karaman M, Sujayev A, Alwasel SH. Some Thiocyanate Containing Heterocyclic Compounds: Synthesis, Bioactivity and Molecular Docking Study. ChemistrySelect 2023. [DOI: 10.1002/slct.202203653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Zubeyda Israfilova
- Laboratory of Physiologically Active Organic Compounds Institute of Chemistry of Additives 1029 Baku Azerbaijan
| | - Parham Taslimi
- Department of Biotechnology Faculty of Science Bartin University 74100- Bartin Turkey
| | - İlhami Gülçin
- Department of Chemistry Faculty of Sciences Atatürk University 25240 -Erzurum Turkey
| | - Yusif Abdullayev
- Institute of Petrochemical Processes 1025 Baku Azerbaijan
- Baku Engineering University 0101- Baku Azerbaijan
| | - Vagif Farzaliyev
- Laboratory of Physiologically Active Organic Compounds Institute of Chemistry of Additives 1029 Baku Azerbaijan
| | - Muhammet Karaman
- Department of Molecular Biology and Genetics Faculty of Arts and Science Kilis 7 Aralık University 79000- Kilis Turkey
| | - Afsun Sujayev
- Laboratory of Physiologically Active Organic Compounds Institute of Chemistry of Additives 1029 Baku Azerbaijan
| | - Saleh H. Alwasel
- Department of Zoology College of Science King Saud University 11451- Riyadh Saudi Arabia
| |
Collapse
|
21
|
Mutlu M, Bingol Z, Uc EM, Köksal E, Goren AC, Alwasel SH, Gulcin İ. Comprehensive Metabolite Profiling of Cinnamon ( Cinnamomum zeylanicum) Leaf Oil Using LC-HR/MS, GC/MS, and GC-FID: Determination of Antiglaucoma, Antioxidant, Anticholinergic, and Antidiabetic Profiles. Life (Basel) 2023; 13:136. [PMID: 36676085 PMCID: PMC9865886 DOI: 10.3390/life13010136] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
In this study, for the first time, the antioxidant and antidiabetic properties of the essential oil from cinnamon (Cinnamomum zeylanicum) leaves were evaluated and investigated using various bioanalytical methods. In addition, the inhibitory effects of cinnamon oil on carbonic anhydrase II (hCA II), acetylcholinesterase (AChE), and α-amylase, which are associated with various metabolic diseases, were determined. Further, the phenolic contents of the essential oil were determined using LC-HRMS chromatography. Twenty-seven phenolic molecules were detected in cinnamon oil. Moreover, the amount and chemical profile of the essential oils present in cinnamon oil was determined using GC/MS and GC-FID analyses. (E)-cinnamaldehyde (72.98%), benzyl benzoate (4.01%), and trans-Cinnamyl acetate (3.36%) were the most common essential oils in cinnamon leaf oil. The radical scavenging activities of cinnamon oil were investigated using 1,1-diphenyl-2-picryl-hydrazil (DPPH•), 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid), and (ABTS•+) bioanalytical scavenging methods, which revealed its strong radical scavenging abilities (DPPH•, IC50: 4.78 μg/mL; and ABTS•+, IC50: 5.21 μg/mL). Similarly, the reducing capacities for iron (Fe3+), copper (Cu2+), and Fe3+-2,4,6-tri(2-pyridyl)-S-triazine (TPTZ) were investigated. Cinnamon oil also exhibited highly effective inhibition against hCA II (IC50: 243.24 μg/mL), AChE (IC50: 16.03 μg/mL), and α-amylase (IC50: 7.54μg/mL). This multidisciplinary study will be useful and pave the way for further studies for the determination of antioxidant properties and enzyme inhibition profiles of medically and industrially important plants and their oils.
Collapse
Affiliation(s)
- Muzaffer Mutlu
- Vocational School of Applied Sciences, Gelişim University, Istanbul 34315, Turkey
| | - Zeynebe Bingol
- Department of Medical Services and Techniques, Tokat Vocational School of Health Services, Gaziosmanpasa University, Tokat 60250, Turkey
| | - Eda Mehtap Uc
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum 25240, Turkey
| | - Ekrem Köksal
- Department of Chemistry, Faculty of Science and Arts, Erzincan Binali Yildirim University, Erzincan 24100, Turkey
| | - Ahmet C. Goren
- Department Chemistry, Faculty of Sciences, Gebze Technical University, Kocaeli 41400, Turkey
| | - Saleh H. Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh 11362, Saudi Arabia
| | - İlhami Gulcin
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum 25240, Turkey
| |
Collapse
|
22
|
Zareei S, Mohammadi-Khanaposhtani M, Adib M, Mahdavi M, Taslimi P. Sulfonamide-phosphonate hybrids as new carbonic anhydrase inhibitors: In vitro enzymatic inhibition, molecular modeling, and ADMET prediction. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
23
|
Zahedi NA, Mohammadi-Khanaposhtani M, Rezaei P, Askarzadeh M, Alikhani M, Adib M, Mahdavi M, Larijani B, Niakan S, Tehrani MB, Taslimi P, Gulçin I. Dual functional cholinesterase and carbonic anhydrase inhibitors for the treatment of Alzheimer's disease: Design, synthesis, in vitro, and in silico evaluations of coumarin-dihydropyridine derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Khan M, Avula SK, Halim SA, Waqas M, Asmari M, Khan A, Al-Harrasi A. Biochemical and in silico inhibition of bovine and human carbonic anhydrase-II by 1H-1,2,3-triazole analogs. Front Chem 2022; 10:1072337. [PMID: 36505753 PMCID: PMC9732439 DOI: 10.3389/fchem.2022.1072337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/09/2022] [Indexed: 11/26/2022] Open
Abstract
A series of 1H-1,2,3-triazole analogs (7a-7d and 9a-9s) were synthesized via "click" chemistry and evaluated for in vitro carbonic anhydrase-II (bovine and human) inhibitory activity. The synthesis of intermediates, 7a and 7c, was achieved by using (S)-(-)ethyl lactate as a starting material. These compounds (7a and 7c) underwent Suzuki-Miyaura cross-coupling reaction with different arylboronic acids in 1,4-dioxane, reflux at 90-120°C for 8 h using Pd(PPh3)4 as a catalyst (5 mol%), and K2CO3 (3.0 equiv)/K2PO4 (3.0 equiv) as a base to produce target 1H-1,2,3-triazole molecules (9a-9s) for a good yield of 67-86%. All the synthesized compounds were characterized through NMR spectroscopic techniques. Furthermore, all those compounds have shown significant inhibitory potential for both sources of carbonic anhydrase-II (CA-II). In the case of bCA-II, compounds 9i, 7d, 9h, 9o, 9g, and 9e showed potent activity with IC50 values in the range of 11.1-17.8 µM. Whereas for hCA-II, compounds 9i, 9c, 9o, and 9j showed great potential with IC50 values in the range of 10.9-18.5 µM. The preliminary structure-activity relationship indicates that the presence of the 1H-1,2,3-triazole moiety in those synthesized 1H-1,2,3-triazole analogs (7a-7d and 9a-9s) significantly contributes to the overall activity. However, several substitutions on this scaffold affect the activity to several folds. The selectivity index showed that compounds 9c, 9k, and 9p are selective inhibitors of hCA-II. Kinetics studies showed that these compounds inhibited both enzymes (bCA-II and hCA-II) in a competitive manner. Molecular docking indicates that all the active compounds fit well in the active site of CA-II. This study has explored the role of 1H-1,2,3-triazole-containing compounds in the inhibition of CA-II to combat CA-II-related disorders.
Collapse
Affiliation(s)
- Majid Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, Nizwa, Oman,H.E.J Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Satya Kumar Avula
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
| | - Muhammad Waqas
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
| | - Mufarreh Asmari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, Nizwa, Oman,*Correspondence: Ajmal Khan, ; Ahmed Al-Harrasi,
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, Nizwa, Oman,*Correspondence: Ajmal Khan, ; Ahmed Al-Harrasi,
| |
Collapse
|
25
|
Improvement of photochemical and enzyme inhibition properties of new BODIPY compound by conjugation with cisplatin. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Rasool A, Batool Z, Khan M, Halim SA, Shafiq Z, Temirak A, Salem MA, Ali TE, Khan A, Al-Harrasi A. Bis-pharmacophore of cinnamaldehyde-clubbed thiosemicarbazones as potent carbonic anhydrase-II inhibitors. Sci Rep 2022; 12:16095. [PMID: 36167735 PMCID: PMC9515202 DOI: 10.1038/s41598-022-19975-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/07/2022] [Indexed: 11/24/2022] Open
Abstract
Here, we report the synthesis, carbonic anhydrase-II (CA-II) inhibition and structure–activity relationship studies of cinnamaldehyde-clubbed thiosemicarbazones derivatives. The derivatives showed potent activities in the range of 10.3 ± 0.62–46.6 ± 0.62 µM. Among all the synthesized derivatives, compound 3n (IC50 = 10.3 ± 0.62 µM), 3g (IC50 = 12.1 ± 1.01 µM), and 3h (IC50 = 13.4 ± 0.52 µM) showed higher inhibitory activity as compared to the standard inhibitor, acetazolamide. Furthermore, molecular docking of all the active compounds was carried out to predict their behavior of molecular binding. The docking results indicate that the most active hit (3n) specifically mediate ionic interaction with the Zn ion in the active site of CA-II. Furthermore, the The199 and Thr200 support the binding of thiosemicarbazide moiety of 3n, while Gln 92 supports the interactions of all the compounds by hydrogen bonding. In addition to Gln92, few other residues including Asn62, Asn67, The199, and Thr200 play important role in the stabilization of these molecules in the active site by specifically providing H-bonds to the thiosemicarbazide moiety of compounds. The docking score of active hits are found in range of − 6.75 to − 4.42 kcal/mol, which indicates that the computational prediction correlates well with the in vitro results.
Collapse
Affiliation(s)
- Asif Rasool
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Zahra Batool
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Majid Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan. .,Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany.
| | - Ahmed Temirak
- National Research Centre, Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, Dokki, P.O. Box 12622, Cairo, Egypt
| | - Mohamed A Salem
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Muhayil, Assir, Saudi Arabia.,Department of Chemistry, Faculty of Science, Al-Azhar University, 11284 Nasr City, Cairo, Egypt
| | - Tarik E Ali
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia.,Department of Chemistry, Faculty of Education, Ain Shams University, Cairo, Egypt
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman.
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman.
| |
Collapse
|
27
|
Durmaz L, Kiziltas H, Guven L, Karagecili H, Alwasel S, Gulcin İ. Antioxidant, Antidiabetic, Anticholinergic, and Antiglaucoma Effects of Magnofluorine. Molecules 2022; 27:5902. [PMID: 36144638 PMCID: PMC9502953 DOI: 10.3390/molecules27185902] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Magnofluorine, a secondary metabolite commonly found in various plants, has pharmacological potential; however, its antioxidant and enzyme inhibition effects have not been investigated. We investigated the antioxidant potential of Magnofluorine using bioanalytical assays with 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS•+), N,N-dimethyl-p-phenylenediamine dihydrochloride (DMPD•+), and 1,1-diphenyl-2-picrylhydrazyl (DPPH•) scavenging abilities and K3[Fe(CN)6] and Cu2+ reduction abilities. Further, we compared the effects of Magnofluorine and butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), α-Tocopherol, and Trolox as positive antioxidant controls. According to the analysis results, Magnofluorine removed 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals with an IC50 value of 10.58 μg/mL. The IC50 values of BHA, BHT, Trolox, and α-Tocopherol were 10.10 μg/mL, 25.95 μg/mL, 7.059 μg/mL, and 11.31 μg/mL, respectively. Our results indicated that the DPPH· scavenging effect of Magnofluorine was similar to that of BHA, close to that of Trolox, and better than that of BHT and α-tocopherol. The inhibition effect of Magnofluorine was examined against enzymes, such as acetylcholinesterase (AChE), α-glycosidase, butyrylcholinesterase (BChE), and human carbonic anhydrase II (hCA II), which are linked to global disorders, such as diabetes, Alzheimer's disease (AD), and glaucoma. Magnofluorine inhibited these metabolic enzymes with Ki values of 10.251.94, 5.991.79, 25.411.10, and 30.563.36 nM, respectively. Thus, Magnofluorine, which has been proven to be an antioxidant, antidiabetic, and anticholinergic in our study, can treat glaucoma. In addition, molecular docking was performed to understand the interactions between Magnofluorine and target enzymes BChE (D: 6T9P), hCA II (A:3HS4), AChE (B:4EY7), and α-glycosidase (C:5NN8). The results suggest that Magnofluorine may be an important compound in the transition from natural sources to industrial applications, especially new drugs.
Collapse
Affiliation(s)
- Lokman Durmaz
- Department of Medical Services and Technology, Cayirli Vocational School, Erzincan Binali Yildirim University, Erzincan 24500, Turkey
| | - Hatice Kiziltas
- Department of Pharmacy Services, Vocational School of Health Services, Van Yuzuncu Yil University, Van 65080, Turkey
| | - Leyla Guven
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ataturk University, Erzurum 25240, Turkey
| | - Hasan Karagecili
- Department of Nursing, Faculty of Health Science, Siirt University, Siirt 56100, Turkey
| | - Saleh Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh 11362, Saudi Arabia
| | - İlhami Gulcin
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum 25240, Turkey
| |
Collapse
|
28
|
Behçet A, Taslimi P, Gök Y, Aktaş A, Taskin‐Tok T, Gülçin İ. New PEPPSI‐Pd‐NHC complexes bearing 4‐hydroxyphenylethyl group: Synthesis, characterization, molecular docking, and bioactivity properties. Arch Pharm (Weinheim) 2022; 355:e2200276. [DOI: 10.1002/ardp.202200276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Ayten Behçet
- Department of Chemistry, Faculty of Science and Arts Inonu University Malatya Türkiye
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science Bartin University Bartin Türkiye
| | - Yetkin Gök
- Department of Chemistry, Faculty of Science and Arts Inonu University Malatya Türkiye
| | - Aydın Aktaş
- Vocational School of Health Service Inonu University Malatya Türkiye
| | - Tugba Taskin‐Tok
- Department of Chemistry, Faculty of Arts and Sciences Gaziantep University Gaziantep Türkiye
- Department of Bioinformatics and Computational Biology, Institute of Health Sciences Gaziantep University Gaziantep Türkiye
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science Atatürk University Erzurum Türkiye
| |
Collapse
|
29
|
Characterization of phenolics and discovery of α-glucosidase inhibitors in Artemisia argyi leaves based on ultra-performance liquid chromatography-tandem mass spectrometry and relevance analysis. J Pharm Biomed Anal 2022; 220:114982. [PMID: 35944337 DOI: 10.1016/j.jpba.2022.114982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 12/20/2022]
Abstract
Artemisia argyi leaves (AAL) has been widely used as herbal medicine and food supplement and in China and other Asian countries. The aim of this work is to qualitative and quantitative characterization of phenolic compounds in AAL and screening of natural product inhibitors of α-glucosidase from AAL. Ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS) was employed to rapid and comprehensive identification of phenolic compounds in AAL, and a total of thirty-three phenolic compounds were identified. High performance liquid chromatography with diode array detection (HPLC-DAD) was established and validated to simultaneously determinate ten main bioactive phenolics compounds in different batches of AAL samples. Meanwhile, the inhibitory capacities of different batches of AAL samples on α-glucosidase were evaluated. Then, relevance analysis, including grey relational analysis and Pearson correlation analysis were employed to investigate the correlations between the contents of phenolic compounds and α-glucosidase inhibitory activities, and discover the α-glucosidase inhibitors in AAL. The relevance analysis results indicated that three phenolic compounds, 3-caffeoylquinic acid, 3,4-dicaffeoylquinic acid and 3,5-dicaffeoylquinic acid could be potential α-glucosidase inhibitors in AAL. Moreover, the α-glucosidase inhibitory activities of the three phenolic compounds were validated by in vitro and in vivo experiments. The possible inhibiting effect of the three phenolic compounds on α-glucosidase was also explored by molecular docking analysis, and the results indicated that the binding of the three α-glucosidase inhibitors to α-glucosidase mainly by hydrogen bonds, hydrophobic forces and ionic bonds. The present research provided a deep insight into phenolic compounds and α-glucosidase inhibitory activities of AAL, and discovered the α-glucosidase inhibitors in AAL.
Collapse
|
30
|
Topal M, Gulcin İ. Evaluation of the in vitro antioxidant, antidiabetic and anticholinergic properties of rosmarinic acid from rosemary (Rosmarinus officinalis L.). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
31
|
Doğan M, Koçyiğit ÜM, Gürdere MB, Ceylan M, Budak Y. Synthesis and biological evaluation of thiosemicarbazone derivatives. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:157. [PMID: 35861942 DOI: 10.1007/s12032-022-01784-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/22/2022] [Indexed: 11/26/2022]
Abstract
In this study, firstly, 22 thiosemicarbazone derivatives (3a-y) were synthesized. Then, ADME parameters, pharmacokinetic properties, drug-like structures, and suitability for medicinal chemistry of these molecules were studied theoretically by using SwissADME and admetSAR programs. According to the results of these theoretical studies, it can be said that the bioavailability and bioactivity of these compounds may be high. In silico molecular docking between ligands (thiosemicarbazone derivatives) and targeted proteins (protein-78 (GRP78) for C6 and quinone reductase-2 (4ZVM for MCF 7) was analyzed using Hex 8.0.0 docking software. According to the docking data, almost all molecules had higher negative E values than Imatinib (already used as a drug). For this, in vitro anticancer studies of these molecules were done. The cytotoxic activities of thiosemicarbazone derivatives (3a-y) were evaluated on C6 glioma and MCF7 breast cancer cell lines at 24 h, and Imatinib was used as the positive control. According to the results of the cytotoxicity assay, it can be said that the five compounds (3b, c, f, g, and m with IC50 = 10.59-9.08 μg/mL; Imatinib IC50 = 11.68 μg/mL) showed more potent cytotoxic activity than Imatinib on C6 cell line. Together with to these results ten compounds (3b, d, f, g, I, k, l, m, n, and r with IC50 = 7.02-9.08 μg/mL; Imatinib IC50 = 9.24 μg/mL) had a more effective cytotoxic activity against MCF7 cell line than Imatinib. Compound 3 m showed the highest antiproliferative effect against C6 and MCF7 cell lines.
Collapse
Affiliation(s)
- Murat Doğan
- Department of Basic Pharmaceutical Sciences, Cumhuriyet University, Sivas, Turkey
| | - Ümit M Koçyiğit
- Department of Pharmaceutical Biotechnology, Cumhuriyet University, Sivas, Turkey
| | - Meliha Burcu Gürdere
- Faculty of Science and Arts, Department of Chemistry, Tokat Gaziosmanpaşa University, 60250, Tokat, Turkey.
| | - Mustafa Ceylan
- Faculty of Science and Arts, Department of Chemistry, Tokat Gaziosmanpaşa University, 60250, Tokat, Turkey
| | - Yakup Budak
- Faculty of Science and Arts, Department of Chemistry, Tokat Gaziosmanpaşa University, 60250, Tokat, Turkey
| |
Collapse
|
32
|
Çol S, Emirik M, Alım Z, Baran A. Physical–chemical studies of new, versatile carbazole derivatives and zinc complexes: Their synthesis, investigation of
in–vitro
inhibitory effects on
α
–glucosidase and human erythrocyte carbonic anhydrase I and II isoenzymes. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sümeyye Çol
- Sakarya University, Faculty of Arts and Sciences, Chemistry Department Sakarya Turkey
| | - Mustafa Emirik
- Recep Tayyip Erdoğan University, Faculty of Arts and Sciences, Chemistry Department Rize Turkey
| | - Zuhal Alım
- Ahi Evran University, Faculty of Arts and Sciences, Chemistry Department Kırşehir Turkey
| | - Arif Baran
- Sakarya University, Faculty of Arts and Sciences, Chemistry Department Sakarya Turkey
| |
Collapse
|
33
|
Mackie ERR, Barrow AS, Christoff RM, Abbott BM, Gendall AR, Soares da Costa TP. A dual-target herbicidal inhibitor of lysine biosynthesis. eLife 2022; 11:78235. [PMID: 35723913 PMCID: PMC9208756 DOI: 10.7554/elife.78235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/10/2022] [Indexed: 11/29/2022] Open
Abstract
Herbicides with novel modes of action are urgently needed to safeguard global agricultural industries against the damaging effects of herbicide-resistant weeds. We recently developed the first herbicidal inhibitors of lysine biosynthesis, which provided proof-of-concept for a promising novel herbicide target. In this study, we expanded upon our understanding of the mode of action of herbicidal lysine biosynthesis inhibitors. We previously postulated that these inhibitors may act as proherbicides. Here, we show this is not the case. We report an additional mode of action of these inhibitors, through their inhibition of a second lysine biosynthesis enzyme, and investigate the molecular determinants of inhibition. Furthermore, we extend our herbicidal activity analyses to include a weed species of global significance.
Collapse
Affiliation(s)
- Emily R R Mackie
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia.,School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Waite Campus, Glen Osmond, Australia
| | - Andrew S Barrow
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Rebecca M Christoff
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Belinda M Abbott
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Anthony R Gendall
- Australian Research Council Industrial Transformation Research Hub for Medicinal Agriculture, AgriBio, La Trobe University, Bundoora, Australia.,Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Australia
| | - Tatiana P Soares da Costa
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia.,School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Waite Campus, Glen Osmond, Australia
| |
Collapse
|
34
|
Gulcin İ, Petrova OV, Taslimi P, Malysheva SF, Schmidt EY, Sobenina LN, Gusarova NK, Trofimov BA, Tuzun B, Farzaliyev VM, Alwasel S, Sujayev AR. Synthesis, Characterization, Molecular Docking, Acetylcholinesterase and α‐Glycosidase Inhibition Profiles of Nitrogen‐Based Novel Heterocyclic Compounds. ChemistrySelect 2022. [DOI: 10.1002/slct.202200370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- İlhami Gulcin
- Department of Chemistry Faculty of Science Ataturk University TR 25240 Erzurum Turkey
| | - Olga V. Petrova
- Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences Moskva 664033-Irkutsk Russia
| | - Parham Taslimi
- Department of Biotechnology Faculty of Science Bartin University 74100- Bartin Turkey
| | - Svetlana F. Malysheva
- Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences Moskva 664033-Irkutsk Russia
| | - Elena Yu. Schmidt
- Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences Moskva 664033-Irkutsk Russia
| | - Lyubov N. Sobenina
- Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences Moskva 664033-Irkutsk Russia
| | - Nina K. Gusarova
- Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences Moskva 664033-Irkutsk Russia
| | - Boris A. Trofimov
- Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences Moskva 664033-Irkutsk Russia
| | - Burak Tuzun
- Plant and Animal Production Department Technical Sciences Vocational School of Sivas Sivas Cumhuriyet University 58140 Sivas Turkey
| | - Vagif M. Farzaliyev
- Institute of Chemistry of Additives Azerbaijan National Academy of Sciences Bakı 1029-Baku Azerbaijan
| | - Saleh Alwasel
- Department of Zoology College of Science King Saud University Riyadh Saudi Arabia
| | - Afsun R. Sujayev
- Institute of Chemistry of Additives Azerbaijan National Academy of Sciences Bakı 1029-Baku Azerbaijan
| |
Collapse
|
35
|
Durmaz L, Erturk A, Akyüz M, Polat Kose L, Uc EM, Bingol Z, Saglamtas R, Alwasel S, Gulcin İ. Screening of Carbonic Anhydrase, Acetylcholinesterase, Butyrylcholinesterase, and α-Glycosidase Enzyme Inhibition Effects and Antioxidant Activity of Coumestrol. Molecules 2022; 27:3091. [PMID: 35630566 PMCID: PMC9143817 DOI: 10.3390/molecules27103091] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Coumestrol (3,9-dihydroxy-6-benzofuran [3,2-c] chromenone) as a phytoestrogen and polyphenolic compound is a member of the Coumestans family and is quite common in plants. In this study, antiglaucoma, antidiabetic, anticholinergic, and antioxidant effects of Coumestrol were evaluated and compared with standards. To determine the antioxidant activity of coumestrol, several methods-namely N,N-dimethyl-p-phenylenediamine dihydrochloride radical (DMPD•+)-scavenging activity, 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonate) radical (ABTS•+)-scavenging activity, 1,1-diphenyl-2-picrylhydrazyl radical (DPPH•)-scavenging activity, potassium ferric cyanide reduction ability, and cupric ion (Cu2+)-reducing activity-were performed. Butylated hydroxyanisole (BHA), Trolox, α-Tocopherol, and butylated hydroxytoluene (BHT) were used as the reference antioxidants for comparison. Coumestrol scavenged the DPPH radical with an IC50 value of 25.95 μg/mL (r2: 0.9005) while BHA, BHT, Trolox, and α-Tocopherol demonstrated IC50 values of 10.10, 25.95, 7.059, and 11.31 μg/mL, respectively. When these results evaluated, Coumestrol had similar DPPH•-scavenging effect to BHT and lower better than Trolox, BHA and α-tocopherol. In addition, the inhibition effects of Coumestrol were tested against the metabolic enzymes acetylcholinesterase (AChE), butyrylcholinesterase (BChE), carbonic anhydrase II (CA II), and α-glycosidase, which are associated with some global diseases such as Alzheimer's disease (AD), glaucoma, and diabetes. Coumestrol exhibited Ki values of 10.25 ± 1.94, 5.99 ± 1.79, 25.41 ± 1.10, and 30.56 ± 3.36 nM towards these enzymes, respectively.
Collapse
Affiliation(s)
- Lokman Durmaz
- Department of Medical Services and Technology, Cayirli Vocational School, Erzincan Binali Yildirim University, Erzincan 24500, Turkey;
| | - Adem Erturk
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum 25240, Turkey; (A.E.); (E.M.U.); (Z.B.)
| | - Mehmet Akyüz
- Department of Chemistry, Faculty of Science and Arts, Kilis 7 Aralık University, Kilis 79000, Turkey;
| | - Leyla Polat Kose
- Department of Pharmacy Services, Vocational School, Beykent University, Istanbul 34500, Turkey;
| | - Eda Mehtap Uc
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum 25240, Turkey; (A.E.); (E.M.U.); (Z.B.)
| | - Zeynebe Bingol
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum 25240, Turkey; (A.E.); (E.M.U.); (Z.B.)
- Vocational School of Health Services, Tokat Gaziosmanpasa University, Tokat 60250, Turkey
| | - Ruya Saglamtas
- Department of Medical Services and Technology, Vocational School of Health Services, Agri Ibrahim Cecen University, Agri 04100, Turkey;
| | - Saleh Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh 11362, Saudi Arabia;
| | - İlhami Gulcin
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum 25240, Turkey; (A.E.); (E.M.U.); (Z.B.)
| |
Collapse
|
36
|
Şahin İ, Bingöl Z, Onur S, Güngör SA, Köse M, Gülçin İ, Tümer F. Enzyme Inhibition Properties and Molecular Docking Studies of 4-Sulfonate Containing Aryl α-Hydroxyphosphonates Based Hybrid Molecules. Chem Biodivers 2022; 19:e202100787. [PMID: 35315972 DOI: 10.1002/cbdv.202100787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/18/2022] [Indexed: 11/10/2022]
Abstract
In this study, a series of new hybrid molecules containing two important functional groups on the same skeleton were designed. 4-Hydroxybenzaldehyde and its two different derivatives were converted into their respective sulphonates by interacting with tosylchloride and methanesulfonyl chloride. Then, the desired molecules were synthesized by adding diethoxyphosphonate to the aldehyde group. Also, novel synthesis of hybrid compounds (4a-c and 5a-c) were tested toward some metabolic enzymes like carbonic anhydrase I and II isoenzymes (hCA I and hCA II) and acetylcholinesterase (AChE) enzyme. The synthesis of hybrid compounds (4a-c and 5a-c) showed Ki values of in range of 25.084±4.73-69.853±15.19 nM against hCA I, 32.325±1.67-82.761±22.73 nM against hCA II and 1.699±0.25 and 3.500±0.91 nM against AChE. For these compounds, compound 4c showed maximum inhibition effect against hCA I and hCA II isoenzymes and compound 5b showed maximum inhibition effect against AChE enzyme. By performing docking studies of the most active compounds for their binding modes and interactions were determined.
Collapse
Affiliation(s)
- İrfan Şahin
- Department of Chemistry, Faculty of Sciences and Arts, Kahramanmaras Sutcu Imam University, TR, 46100, Kahramanmaras, Turkey
| | - Zeynebe Bingöl
- Department of Chemistry, Faculty of Sciences, Ataturk University, 25240-Erzurum, Turkey
| | - Sultan Onur
- Department of Chemistry, Faculty of Sciences and Arts, Kahramanmaras Sutcu Imam University, TR, 46100, Kahramanmaras, Turkey
| | - Seyit Ali Güngör
- Department of Chemistry, Faculty of Sciences and Arts, Kahramanmaras Sutcu Imam University, TR, 46100, Kahramanmaras, Turkey
| | - Muhammet Köse
- Department of Chemistry, Faculty of Sciences and Arts, Kahramanmaras Sutcu Imam University, TR, 46100, Kahramanmaras, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Sciences, Ataturk University, 25240-Erzurum, Turkey
| | - Ferhan Tümer
- Department of Chemistry, Faculty of Sciences and Arts, Kahramanmaras Sutcu Imam University, TR, 46100, Kahramanmaras, Turkey
| |
Collapse
|
37
|
Li S, Wang R, Hu X, Li C, Wang L. Bio-affinity ultra-filtration combined with HPLC-ESI-qTOF-MS/MS for screening potential α-glucosidase inhibitors from Cerasus humilis (Bge.) Sok. leaf-tea and in silico analysis. Food Chem 2022; 373:131528. [PMID: 34774376 DOI: 10.1016/j.foodchem.2021.131528] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 10/06/2021] [Accepted: 11/01/2021] [Indexed: 12/11/2022]
Abstract
Cerasus humilis(Bge.) Sok. leaf-tea (CLT) has a potential anti-α-glucosidase effect. However, its anti-α-glucosidase functional compositions remain unclear. Results showed that 70% methanol extract of CLT (IC50 = 36.57 μg/mL) with the highest total phenolic/flavonoid contents exhibited significantly higher α-glucosidase inhibitory activity (α-GIA) than acarbose (IC50 = 189.57 μg/mL). Additionally, phenolic constituents of the CLT extract were analyzed for the first time in this work. Ten major potential α-glucosidase inhibitors (α-GIs) with high bio-affinity degree in the CLT extract were recognized using a bio-affinity ultra-filtration and HPLC-ESI-qTOF-MS/MS method. In vitro α-GIA assay confirmed that myricetin (IC50 = 36.17 μg/mL), avicularin (IC50 = 69.84 μg/mL), quercitrin, isoquercitrin, prunin and guajavarin were responsible for the α-GIA of the CLT extract. More importantly, the interaction mechanism between α-GIs and α-glucosidase was investigated via in silico analysis. This study provides a high-throughput screening platform for identification of the potential α-GIs from natural products.
Collapse
Affiliation(s)
- Songjie Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Ruimin Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Xiaoping Hu
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, PR China
| | - Congfa Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, PR China
| | - Lu Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
38
|
Mahmudov I, Demir Y, Sert Y, Abdullayev Y, Sujayev A, Alwasel SH, Gulcin I. Synthesis and inhibition profiles of N-benzyl- and N-allyl aniline derivatives against carbonic anhydrase and acetylcholinesterase – A molecular docking study. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103645] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
39
|
Tezcan B, Gök Y, Sevinçek R, Taslimi P, Taskin‐Tok T, Aktaş A, Güzel B, Aygün M, Gülçin I. Benzimidazolium salts bearing the trifluoromethyl group as organofluorine compounds: Synthesis, characterization, crystal structure, in silico study, and inhibitory profiles against acetylcholinesterase and α‐glycosidase. J Biochem Mol Toxicol 2022; 36:e23001. [DOI: 10.1002/jbt.23001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/16/2021] [Accepted: 01/28/2022] [Indexed: 02/02/2023]
Affiliation(s)
- Burcu Tezcan
- Department of Chemistry, Faculty of Arts and Science Cukurova University Adana Turkey
| | - Yetkin Gök
- Department of Chemistry, Faculty of Arts and Science Inonu University Malatya Turkey
| | - Resul Sevinçek
- Department of Physics, Faculty of Science Dokuz Eylul University İzmir Buca Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science Bartin University Bartin Turkey
| | - Tugba Taskin‐Tok
- Department of Chemistry, Faculty of Arts and Sciences Gaziantep University Gaziantep Turkey
- Department of Bioinformatics and Computational Biology Institute of Health Sciences, Gaziantep University Gaziantep Turkey
| | - Aydın Aktaş
- Department of Pathology, Vocational School of Health Service Inonu University Malatya Turkey
| | - Bilgehan Güzel
- Department of Chemistry, Faculty of Arts and Science Cukurova University Adana Turkey
| | - Muhittin Aygün
- Department of Physics, Faculty of Science Dokuz Eylul University İzmir Buca Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science Atatürk University Erzurum Turkey
| |
Collapse
|
40
|
Yiğit M, Demir Y, Arınç A, Yiğit B, Koca M, Özdemir İ, Gulcin I. Synthesis and Enzyme Inhibitory Properties of Quinoxaline Bridged Bis(imidazolium) Salts. HETEROCYCLES 2022. [DOI: 10.3987/com-22-14668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
41
|
Yavari MA, Adiloglu Y, Saglamtas R, Tutar A, Gulcin I, Menzek A. Synthesis and some enzyme inhibition effects of isoxazoline and pyrazoline derivatives including benzonorbornene unit. J Biochem Mol Toxicol 2021; 36:e22952. [PMID: 34783117 DOI: 10.1002/jbt.22952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/27/2021] [Accepted: 11/01/2021] [Indexed: 12/22/2022]
Abstract
Four new and four known isoxazoline derivatives were synthesized from the reactions of benzonorbornadiene with nitrile oxides formed from the corresponding benzaldehydes. Three new and one known pyrazoline derivatives were also synthesized from the reactions of the benzonorbornadiene with nitrile imines formed from the corresponding compounds. The synthesized nitrogen-based novel heterocyclic compounds were evaluated against the human carbonic anhydrase isoenzymes I and II (hCA I and hCA II), acetylcholinesterase (AChE), and butyrylcholinesterase (BChE) enzymes. The synthesized nitrogen-based novel heterocyclic compounds showed IC50 values in the range of 2.69-7.01 against hCA I, 2.40-4.59 against hCA II, 0.81-1.32 µM against AChE, and 20.83-1.70 µM against BChE enzymes. On the contrary, nitrogen-based novel heterocyclic compounds demonstrated Ki values between 2.93 ± 0.59-8.61 ± 1.39 against hCA I, 2.05 ± 0.62-4.97 ± 0.95 against hCA II, 0.34 ± 0.02-0.92 ± 0.17 nM against AChE, and 0.50 ± 0.04-1.20 ± 0.16 µM against BChE enzymes. The synthesized nitrogen-based novel heterocyclic compounds exhibited effective inhibition profiles against both indicated metabolic enzymes. These results may contribute to the development of new drugs particularly to treat some disorders, which are widespread in the world including glaucoma and Alzheimer's diseases.
Collapse
Affiliation(s)
- Mirali A Yavari
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Yadigar Adiloglu
- Department of Chemistry, Faculty of Science, Sakarya University, Sakarya, Turkey
| | - Ruya Saglamtas
- Central Research and Application Laboratory, Agri Ibrahim Cecen University, Agri, Turkey
| | - Ahmet Tutar
- Department of Chemistry, Faculty of Science, Sakarya University, Sakarya, Turkey
| | - Ilhami Gulcin
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Abdullah Menzek
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| |
Collapse
|
42
|
Zaib S, Munir R, Younas MT, Kausar N, Ibrar A, Aqsa S, Shahid N, Asif TT, Alsaab HO, Khan I. Hybrid Quinoline-Thiosemicarbazone Therapeutics as a New Treatment Opportunity for Alzheimer's Disease‒Synthesis, In Vitro Cholinesterase Inhibitory Potential and Computational Modeling Analysis. Molecules 2021; 26:molecules26216573. [PMID: 34770983 PMCID: PMC8587653 DOI: 10.3390/molecules26216573] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the leading cause of dementia worldwide. The limited pharmacological approaches based on cholinesterase inhibitors only provide symptomatic relief to AD patients. Moreover, the adverse side effects such as nausea, vomiting, loss of appetite, muscle cramps, and headaches associated with these drugs and numerous clinical trial failures present substantial limitations on the use of medications and call for a detailed insight of disease heterogeneity and development of preventive and multifactorial therapeutic strategies on urgent basis. In this context, we herein report a series of quinoline-thiosemicarbazone hybrid therapeutics as selective and potent inhibitors of cholinesterases. A facile multistep synthetic approach was utilized to generate target structures bearing multiple sites for chemical modifications and establishing drug-receptor interactions. The structures of all the synthesized compounds were fully established using readily available spectroscopic techniques (FTIR, 1H- and 13C-NMR). In vitro inhibitory results revealed compound 5b as a promising and lead inhibitor with an IC50 value of 0.12 ± 0.02 μM, a 5-fold higher potency than standard drug (galantamine; IC50 = 0.62 ± 0.01 μM). The synergistic effect of electron-rich (methoxy) group and ethylmorpholine moiety in quinoline-thiosemicarbazone conjugates contributes significantly in improving the inhibition level. Molecular docking analysis revealed various vital interactions of potent compounds with amino acid residues and reinforced the in vitro results. Kinetics experiments revealed the competitive mode of inhibition while ADME properties favored the translation of identified inhibitors into safe and promising drug candidates for pre-clinical testing. Collectively, inhibitory activity data and results from key physicochemical properties merit further research to ensure the design and development of safe and high-quality drug candidates for Alzheimer’s disease.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan;
- Correspondence: (S.Z.); (R.M.); (I.K.)
| | - Rubina Munir
- Department of Chemistry, Kinnaird College for Women, Lahore 54000, Pakistan; (S.A.); (N.S.); (T.T.A.)
- Correspondence: (S.Z.); (R.M.); (I.K.)
| | - Muhammad Tayyab Younas
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan;
| | - Naghmana Kausar
- Department of Chemistry, University of Gujrat, Gujrat 50700, Pakistan;
| | - Aliya Ibrar
- Department of Chemistry, Faculty of Natural Sciences, The University of Haripur, Haripur 22620, Pakistan;
| | - Sehar Aqsa
- Department of Chemistry, Kinnaird College for Women, Lahore 54000, Pakistan; (S.A.); (N.S.); (T.T.A.)
| | - Noorma Shahid
- Department of Chemistry, Kinnaird College for Women, Lahore 54000, Pakistan; (S.A.); (N.S.); (T.T.A.)
| | - Tahira Tasneem Asif
- Department of Chemistry, Kinnaird College for Women, Lahore 54000, Pakistan; (S.A.); (N.S.); (T.T.A.)
| | - Hashem O. Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Imtiaz Khan
- Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
- Correspondence: (S.Z.); (R.M.); (I.K.)
| |
Collapse
|
43
|
Gümüş M, Babacan ŞN, Demir Y, Sert Y, Koca İ, Gülçin İ. Discovery of sulfadrug-pyrrole conjugates as carbonic anhydrase and acetylcholinesterase inhibitors. Arch Pharm (Weinheim) 2021; 355:e2100242. [PMID: 34609760 DOI: 10.1002/ardp.202100242] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 01/11/2023]
Abstract
Human carbonic anhydrase (hCA) isoenzymes are zinc ion-containing, widespread metalloenzymes and they classically play a role in pH homeostasis maintenance. CA inhibitors suppress the CA activity and their usage has been clinically established as antiglaucoma agents, antiepileptics, diuretics, and in some other disorders. Alzheimer's disease (AD) is a slowly progressive neurodegenerative disorder and a fatal disease of the brain. An advanced method to cure AD includes the strategy to design acetylcholinesterase (AChE) inhibitors. A novel series of pyrrole-3-one derivatives containing sulfa drugs (5a-i) were determined to be highly potent inhibitors for AChE and hCA I and hCA II (inhibitory constant [Ki ] values are in the range of 6.50 ± 1.02-37.46 ± 4.12 nM, 1.20 ± 0.19-44.21 ± 1.09 nM, and 8.93 ± 1.58-46.86 ± 8.41 nM for AChE, hCA I, and hCA II, respectively). The designed compounds often show a more effective inhibition than the chemicals used as the standard. Among these compounds, 5f was the most effective compound against hCA I, and compound 5e was the most effective compound against hCA II. It was determined that compound 5c was the most effective inhibitor for AChE.
Collapse
Affiliation(s)
- Mehmet Gümüş
- Department of Occupational Health and Safety, Akdagmadeni Health College, Yozgat Bozok University, Yozgat, Turkey
| | - Şemsi N Babacan
- Department of Occupational Health and Safety, Akdagmadeni Health College, Yozgat Bozok University, Yozgat, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Gole Vocational High School, Ardahan University, Ardahan, Turkey
| | - Yusuf Sert
- Department of Physics, Faculty of Art & Sciences, Yozgat Bozok University, Yozgat, Turkey
| | - İrfan Koca
- Department of Chemistry, Faculty of Art & Sciences, Yozgat Bozok University, Yozgat, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| |
Collapse
|
44
|
Manzoor S, Gabr MT, Rasool B, Pal K, Hoda N. Dual targeting of acetylcholinesterase and tau aggregation: Design, synthesis and evaluation of multifunctional deoxyvasicinone analogues for Alzheimer's disease. Bioorg Chem 2021; 116:105354. [PMID: 34562674 DOI: 10.1016/j.bioorg.2021.105354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/18/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022]
Abstract
Development of multitargeted ligands have demonstrated remarkable efficiency as potential therapeutics for Alzheimer's disease (AD). Herein, we reported a new series of deoxyvasicinone analogues as dual inhibitor of acetylcholinesterase (AChE) and tau aggregation that function as multitargeted ligands for AD. All the multitargeted ligands 11(a-j) and 15(a-g) were designed, synthesized, and validated by 1HNMR, 13CNMR and mass spectrometry. All the synthesized compounds 11(a-j) and 15(a-g) were screened for their ability to inhibit AChE, BACE1, amyloid fibrillation, α-syn aggregation, and tau aggregation. All the screened compounds possessed weak inhibition of BACE-1, Aβ42 and α-syn aggregation. However, several compounds were identified as potential hits in the AChE inhibitory screening assay and cellular tau aggregation screening. Among all compounds, 11f remarkably inhibited AChE activity and cellular tau oligomerization at single-dose screening (10 µM). Moreover, 11f displayed a half-maximal inhibitory concentration (IC50) value of 0.91 ± 0.05 µM and half-maximal effective concentration (EC50) value of 3.83 ± 0.51 µM for the inhibition of AChE and cellular tau oligomerization, respectively. In addition, the neuroprotective effect of 11f was determined in tau-expressing SH-SY5Y cells incubated with Aβ oligomers. These findings highlighted the potential of 11f to function as a multifunctional ligand for the development of promising anti-AD drugs.
Collapse
Affiliation(s)
- Shoaib Manzoor
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India.
| | - Moustafa T Gabr
- Department of Radiology, Stanford University, Stanford, CA 94305, United States.
| | - Bisma Rasool
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Kavita Pal
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Nasimul Hoda
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
45
|
Nasli Esfahani A, Iraji A, Alamir A, Moradi S, Asgari MS, Hosseini S, Mojtabavi S, Nasli-Esfahani E, Faramarzi MA, Bandarian F, Larijani B, Hamedifar H, Hajimiri MH, Mahdavi M. Design and synthesis of phenoxymethybenzoimidazole incorporating different aryl thiazole-triazole acetamide derivatives as α-glycosidase inhibitors. Mol Divers 2021; 26:1995-2009. [PMID: 34515954 PMCID: PMC8436581 DOI: 10.1007/s11030-021-10310-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/01/2021] [Indexed: 11/30/2022]
Abstract
A novel series of phenoxymethybenzoimidazole derivatives (9a-n) were rationally designed, synthesized, and evaluated for their α-glycosidase inhibitory activity. All tested compounds displayed promising α-glycosidase inhibitory potential with IC50 values in the range of 6.31 to 49.89 μM compared to standard drug acarbose (IC50 = 750.0 ± 10.0 μM). Enzyme kinetic studies on 9c, 9g, and 9m as the most potent compounds revealed that these compounds were uncompetitive inhibitors into α-glycosidase. Docking studies confirmed the important role of benzoimidazole and triazole rings of the synthesized compounds to fit properly into the α-glycosidase active site. This study showed that this scaffold can be considered as a highly potent α-glycosidase inhibitor.
Collapse
Affiliation(s)
- Anita Nasli Esfahani
- Department of Chemistry Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Alamir
- Department of Chemistry Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Shahram Moradi
- Department of Chemistry Tehran North Branch, Islamic Azad University, Tehran, Iran
| | | | - Samanesadat Hosseini
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ensieh Nasli-Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Bandarian
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mir Hamed Hajimiri
- Nano Alvand Company, Tehran University of Medical Sciences, Avicenna Tech Park, 1439955991, Tehran, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
46
|
Topal F, Aksu K, Gulcin I, Tümer F, Goksu S. Inhibition Profiles of Some Symmetric Sulfamides Derived from Phenethylamines on Human Carbonic Anhydrase I, and II Isoenzymes. Chem Biodivers 2021; 18:e2100422. [PMID: 34387019 DOI: 10.1002/cbdv.202100422] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/12/2021] [Indexed: 12/21/2022]
Abstract
In this work, the inhibitory effect of some symmetric sulfamides derived from phenethylamines were determined against human carbonic anhydrase (hCA) I, and II isoenzymes, and compared with standard compound acetazolamide. IC50 values were obtained from the Enzyme activity (%)-[Symmetric sulfamides] graphs. Also, Ki values were calculated from the Lineweaver-Burk graphs. Some symmetric sulfamides compounds (11-18) demonstrated excellent inhibition effects against hCA I, and II isoenzymes. These compounds demonstrated effective inhibitory profiles with IC50 values in ranging from 21.66-28.88 nM against hCA I, 14.44-30.13 nM against hCA II. Among these compounds, the best Ki value for hCA I (Ki : 8.34±1.60 nM) and hCA II (Ki : 16.40±1.00 nM) is compound number 11. Besides, the IC50 value of acetazolamide used as a standard was determined as hCA I, hCA II 57.75 nM, 49.50 nM, respectively. Moreover, in silico ADME-Tox study showed that all synthesized compounds (11-18) had good oral bioavailability in light of Jorgensen's rule of three, and of Lipinski's rule of five.
Collapse
Affiliation(s)
- Fevzi Topal
- Department of Chemical and Chemical Processing Technologies, Gümüşhane Vocational School, Gümüşhane University, Gümüşhane, 29100, Turkey
| | - Kadir Aksu
- Department of Chemistry, Faculty of Sciences and Arts, Ordu University, Ordu, 52200, Turkey
| | - Ilhami Gulcin
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, 25240, Turkey
| | - Ferhan Tümer
- Department of Chemistry, Faculty of Sciences and Arts, Sütçü İmam University, Kahramanmaraş, 46100, Turkey
| | - Süleyman Goksu
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, 25240, Turkey
| |
Collapse
|
47
|
Bingol Z, Kızıltaş H, Gören AC, Kose LP, Topal M, Durmaz L, Alwasel SH, Gulcin İ. Antidiabetic, anticholinergic and antioxidant activities of aerial parts of shaggy bindweed ( Convulvulus betonicifolia Miller subsp.) - profiling of phenolic compounds by LC-HRMS. Heliyon 2021; 7:e06986. [PMID: 34027185 PMCID: PMC8129935 DOI: 10.1016/j.heliyon.2021.e06986] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/21/2021] [Accepted: 04/29/2021] [Indexed: 12/24/2022] Open
Abstract
In order to evaluate the antioxidant activity of evaporated ethanolic extract (EESB) and lyophilized water extract (WESB) of Shaggy bindweed (Convulvulus betonicifolia Mill. Subs), some putative antioxidant methods such as DPPH· scavenging activity, ABTS•+ scavenging effect, ferric ions (Fe3+) reduction method, cupric ions (Cu2+) reducing capacity, and ferrous ions (Fe2+) binding activities were separately performed. Also, ascorbic acid, α-tocopherol and BHT were used as the standard compounds. Additionally, some phenolic compounds that responsible for antioxidant abilities of EESB and WESB were screened by liquid chromatography-high resolution mass spectrometry (LC-HRMS). At the same concentration, EESB and WESB demonstrated effective antioxidant abilities when compared to standards. In addition, EESB demonstrated IC50 values of 1.946 μg/mL against acetylcholinesterase (AChE), 0.815 μg/mL against α-glycosidase and 0.675 μg/mL against α-amylase enzymes.
Collapse
Affiliation(s)
- Zeynebe Bingol
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum 25240, Turkey
| | - Hatice Kızıltaş
- Vocational School of Health Services, Van Yuzuncu Yil University, Van 65080, Turkey
| | - Ahmet C Gören
- Department of Analytical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul 34093, Turkey.,Drug Application and Research Center, Bezmialem Vakif University, Istanbul 34093, Turkey
| | - Leyla Polat Kose
- Vocational School, Department of Pharmacy Services, Beykent University, Buyukcekmece, Istanbul 34500, Turkey
| | - Meryem Topal
- Vocational School of Health Services, Gumushane University, Gumushane 29000, Turkey
| | - Lokman Durmaz
- Department of Medical Services and Technology, Cayirli Vocational School, Erzincan Binali Yildirim University, Cayirli, Erzincan 24500, Turkey
| | - Saleh H Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - İlhami Gulcin
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum 25240, Turkey
| |
Collapse
|
48
|
LC-HRMS Profiling and Antidiabetic, Anticholinergic, and Antioxidant Activities of Aerial Parts of Kınkor ( Ferulago stellata). Molecules 2021; 26:molecules26092469. [PMID: 33922645 PMCID: PMC8122897 DOI: 10.3390/molecules26092469] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/31/2022] Open
Abstract
Kınkor (Ferulago stellata) is Turkish medicinal plant species and used in folk medicine against some diseases. As far as we know, the data are not available on the biological activities and chemical composition of this medicinal plant. In this study, the phytochemical composition; some metabolic enzyme inhibition; and antidiabetic, anticholinergic, and antioxidant activities of this plant were assessed. In order to evaluate the antioxidant activity of evaporated ethanolic extract (EEFS) and lyophilized water extract (WEFS) of kınkor (Ferulago stellata), some putative antioxidant methods such as DPPH· scavenging activity, ABTS•+ scavenging activity, ferric ions (Fe3+) reduction method, cupric ions (Cu2+) reducing capacity, and ferrous ions (Fe2+)-binding activities were separately performed. Furthermore, ascorbic acid, BHT, and α-tocopherol were used as the standard compounds. Additionally, the main phenolic compounds that are responsible for antioxidant abilities of ethanol and water extracts of kınkor (Ferulago stellata) were determined by liquid chromatography-high-resolution mass spectrometry (LC-HRMS). Ethanol and water extracts of kınkor (Ferulago stellata) demonstrated effective antioxidant abilities when compared to standards. Moreover, ethanol extract of kınkor (Ferulago stellata) demonstrated IC50 values of 1.772 μg/mL against acetylcholinesterase (AChE), 33.56 ± 2.96 μg/mL against α-glycosidase, and 0.639 μg/mL against α-amylase enzyme respectively.
Collapse
|