1
|
Singh H, Manaithiya A, Pathak D, Shakeel F. Exploring GABAA receptor modulation through integrated synthesis, bioactivity, and computational approach of 1,2,4-triazine derivatives. J Mol Struct 2025; 1325:140924. [DOI: 10.1016/j.molstruc.2024.140924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
2
|
Jakubiec M, Abram M, Zagaja M, Socała K, Panic V, Latacz G, Mogilski S, Szafarz M, Szala-Rycaj J, Saunders J, West PJ, Nieoczym D, Przejczowska-Pomierny K, Szulczyk B, Krupa A, Wyska E, Wlaź P, Metcalf CS, Wilcox K, Andres-Mach M, Kamiński RM, Kamiński K. Discovery and Profiling of New Multimodal Phenylglycinamide Derivatives as Potent Antiseizure and Antinociceptive Drug Candidates. ACS Chem Neurosci 2024; 15:3228-3256. [PMID: 39166702 PMCID: PMC11378297 DOI: 10.1021/acschemneuro.4c00438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
We developed a focused series of original phenyl-glycinamide derivatives which showed potent activity across in vivo mouse seizure models, namely, maximal electroshock (MES) and 6 Hz (using both 32 and 44 mA current intensities) seizure models. Following intraperitoneal (i.p.) administration, compound (R)-32, which was identified as a lead molecule, demonstrated potent protection against all seizure models with ED50 values of 73.9 mg/kg (MES test), 18.8 mg/kg (6 Hz, 32 mA test), and 26.5 mg/kg (6 Hz, 44 mA test). Furthermore, (R)-32 demonstrated efficacy in both the PTZ-induced kindling paradigm and the ivPTZ seizure threshold test. The expression of neurotrophic factors, such as mature brain-derived neurotrophic factor (mBDNF) and nerve growth factor (NGF), in the hippocampus and/or cortex of mice, and the levels of glutamate and GABA were normalized after PTZ-induced kindling by (R)-32. Importantly, besides antiseizure activity, (R)-32 demonstrated potent antinociceptive efficacy in formalin-induced pain, capsaicin-induced pain, as well as oxaliplatin- and streptozotocin-induced peripheral neuropathy in mice (i.p.). No influence on muscular strength and body temperature in mice was observed. Pharmacokinetic studies and in vitro ADME-Tox data (i.e., high metabolic stability in human liver microsomes, a weak influence on CYPs, no hepatotoxicity, satisfactory passive transport, etc.) proved favorable drug-like properties of (R)-32. Thermal stability of (R)-32 shown in thermogravimetry and differential scanning calorimetry gives the opportunity to develop innovative oral solid dosage forms loaded with this compound. The in vitro binding and functional assays indicated its multimodal mechanism of action. (R)-32, beyond TRPV1 antagonism, inhibited calcium and sodium currents at a concentration of 10 μM. Therefore, the data obtained in the current studies justify a more detailed preclinical development of (R)-32 for epilepsy and pain indications.
Collapse
Affiliation(s)
- Marcin Jakubiec
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland
| | - Michał Abram
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland
| | - Mirosław Zagaja
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, Lublin 20-950, Poland
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, Lublin 20-033, Poland
| | - Vanja Panic
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112, United States
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland
| | - Szczepan Mogilski
- Department Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland
| | - Małgorzata Szafarz
- Department of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland
| | - Joanna Szala-Rycaj
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, Lublin 20-950, Poland
| | - Jerry Saunders
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112, United States
| | - Peter J West
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112, United States
| | - Dorota Nieoczym
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, Lublin 20-033, Poland
| | - Katarzyna Przejczowska-Pomierny
- Department of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland
| | - Bartłomiej Szulczyk
- Chair and Department of Pharmacotherapy and Pharmaceutical Care, Centre for Preclinical Research and Technology, Medical University of Warsaw, Banacha 1B, Warsaw 02-097, Poland
| | - Anna Krupa
- Department of Pharmaceutical Technology and Biopharmaceutics, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, Lublin 20-033, Poland
| | - Cameron S Metcalf
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112, United States
| | - Karen Wilcox
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112, United States
| | - Marta Andres-Mach
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, Lublin 20-950, Poland
| | - Rafał M Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland
| | - Krzysztof Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland
| |
Collapse
|
3
|
Socała K, Jakubiec M, Abram M, Mlost J, Starowicz K, Kamiński RM, Ciepiela K, Andres-Mach M, Zagaja M, Metcalf CS, Zawadzki P, Wlaź P, Kamiński K. TRPV1 channel in the pathophysiology of epilepsy and its potential as a molecular target for the development of new antiseizure drug candidates. Prog Neurobiol 2024; 240:102634. [PMID: 38834133 DOI: 10.1016/j.pneurobio.2024.102634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/26/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
Identification of transient receptor potential cation channel, subfamily V member 1 (TRPV1), also known as capsaicin receptor, in 1997 was a milestone achievement in the research on temperature sensation and pain signalling. Very soon after it became evident that TRPV1 is implicated in a wide array of physiological processes in different peripheral tissues, as well as in the central nervous system, and thereby could be involved in the pathophysiology of numerous diseases. Increasing evidence suggests that modulation of TRPV1 may also affect seizure susceptibility and epilepsy. This channel is localized in brain regions associated with seizures and epilepsy, and its overexpression was found both in animal models of seizures and in brain samples from epileptic patients. Moreover, modulation of TRPV1 on non-neuronal cells (microglia, astrocytes, and/or peripheral immune cells) may have an impact on the neuroinflammatory processes that play a role in epilepsy and epileptogenesis. In this paper, we provide a comprehensive and critical overview of currently available data on TRPV1 as a possible molecular target for epilepsy management, trying to identify research gaps and future directions. Overall, several converging lines of evidence implicate TRPV1 channel as a potentially attractive target in epilepsy research but more studies are needed to exploit the possible role of TRPV1 in seizures/epilepsy and to evaluate the value of TRPV1 ligands as candidates for new antiseizure drugs.
Collapse
Affiliation(s)
- Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, Lublin PL 20-033, Poland.
| | - Marcin Jakubiec
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| | - Michał Abram
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| | - Jakub Mlost
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Cracow PL 31-343, Poland
| | - Katarzyna Starowicz
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Cracow PL 31-343, Poland
| | - Rafał M Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| | - Katarzyna Ciepiela
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland; Selvita S.A., Bobrzyńskiego 14, Cracow PL 30-348, Poland
| | - Marta Andres-Mach
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, Lublin PL 20-090, Poland
| | - Mirosław Zagaja
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, Lublin PL 20-090, Poland
| | - Cameron S Metcalf
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Przemysław Zawadzki
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, Lublin PL 20-033, Poland
| | - Krzysztof Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| |
Collapse
|
4
|
Jakubiec M, Abram M, Zagaja M, Andres-Mach M, Szala-Rycaj J, Latacz G, Honkisz-Orzechowska E, Mogilski S, Kubacka M, Szafarz M, Pociecha K, Przejczowska-Pomierny K, Wyska E, Socała K, Nieoczym D, Szulczyk B, Wlaź P, Metcalf CS, Wilcox K, Kamiński RM, Kamiński K. Novel Alaninamide Derivatives with Drug-like Potential for Development as Antiseizure and Antinociceptive Therapies─In Vitro and In Vivo Characterization. ACS Chem Neurosci 2024; 15:2198-2222. [PMID: 38741575 PMCID: PMC11157491 DOI: 10.1021/acschemneuro.4c00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
In the present study, a series of original alaninamide derivatives have been designed applying a combinatorial chemistry approach, synthesized, and characterized in the in vivo and in vitro assays. The obtained molecules showed potent and broad-spectrum activity in basic seizure models, namely, the maximal electroshock (MES) test, the 6 Hz (32 mA) seizure model, and notably, the 6 Hz (44 mA) model of pharmacoresistant seizures. Most potent compounds 26 and 28 displayed the following pharmacological values: ED50 = 64.3 mg/kg (MES), ED50 = 15.6 mg/kg (6 Hz, 32 mA), ED50 = 29.9 mg/kg (6 Hz, 44 mA), and ED50 = 34.9 mg/kg (MES), ED50 = 12.1 mg/kg (6 Hz, 32 mA), ED50 = 29.5 mg/kg (6 Hz, 44 mA), respectively. Additionally, 26 and 28 were effective in the ivPTZ seizure threshold test and had no influence on the grip strength. Moreover, lead compound 28 was tested in the PTZ-induced kindling model, and then, its influence on glutamate and GABA levels in the hippocampus and cortex was evaluated by the high-performance liquid chromatography (HPLC) method. In addition, 28 revealed potent efficacy in formalin-induced tonic pain, capsaicin-induced pain, and oxaliplatin- and streptozotocin-induced peripheral neuropathy. Pharmacokinetic studies and in vitro ADME-Tox data proved favorable drug-like properties of 28. The patch-clamp recordings in rat cortical neurons showed that 28 at a concentration of 10 μM significantly inhibited fast sodium currents. Therefore, 28 seems to be an interesting candidate for future preclinical development in epilepsy and pain indications.
Collapse
Affiliation(s)
- Marcin Jakubiec
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Michał Abram
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Mirosław Zagaja
- Department
of Experimental Pharmacology, Institute
of Rural Health, Jaczewskiego 2, 20-950 Lublin, Poland
| | - Marta Andres-Mach
- Department
of Experimental Pharmacology, Institute
of Rural Health, Jaczewskiego 2, 20-950 Lublin, Poland
| | - Joanna Szala-Rycaj
- Department
of Experimental Pharmacology, Institute
of Rural Health, Jaczewskiego 2, 20-950 Lublin, Poland
| | - Gniewomir Latacz
- Department
of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Ewelina Honkisz-Orzechowska
- Department
of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Szczepan Mogilski
- Department
Pharmacodynamics, Faculty of Pharmacy, Jagiellonian
University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Monika Kubacka
- Department
Pharmacodynamics, Faculty of Pharmacy, Jagiellonian
University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Małgorzata Szafarz
- Department
of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Krzysztof Pociecha
- Department
of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Katarzyna Przejczowska-Pomierny
- Department
of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Elżbieta Wyska
- Department
of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Katarzyna Socała
- Department
of Animal Physiology and Pharmacology, Institute of Biological Sciences,
Faculty of Biology and Biotechnology, Maria
Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Dorota Nieoczym
- Department
of Animal Physiology and Pharmacology, Institute of Biological Sciences,
Faculty of Biology and Biotechnology, Maria
Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Bartłomiej Szulczyk
- Chair
and Department of Pharmacotherapy and Pharmaceutical Care, Centre
for Preclinical Research and Technology, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Piotr Wlaź
- Department
of Animal Physiology and Pharmacology, Institute of Biological Sciences,
Faculty of Biology and Biotechnology, Maria
Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Cameron S. Metcalf
- Department
of Pharmacology and Toxicology, University
of Utah, Salt Lake City, Utah 84112, United States
| | - Karen Wilcox
- Department
of Pharmacology and Toxicology, University
of Utah, Salt Lake City, Utah 84112, United States
| | - Rafał M. Kamiński
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Krzysztof Kamiński
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| |
Collapse
|
5
|
Zhu K, Wang L, Liao T, Li W, Zhou J, You Y, Shi J. Progress in the development of TRPV1 small-molecule antagonists: Novel Strategies for pain management. Eur J Med Chem 2023; 261:115806. [PMID: 37713804 DOI: 10.1016/j.ejmech.2023.115806] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023]
Abstract
Transient receptor potential vanilloid 1 (TRPV1) channels are widely distributed in sensory nerve endings, the central nervous system, and other tissues, functioning as ion channel proteins responsive to thermal pain and chemical stimuli. In recent years, the TRPV1 receptor has garnered significant interest as a potential therapeutic approach for various pain-related disorders, particularly TRPV1 antagonists. The present review offers a comprehensive, systematic exploration of both first- and second-generation TRPV1 antagonists in the context of pain management. Antagonists are categorized and explicated according to their structural characteristics. Detailed examination of binding modes, structural features, and pharmacological activities, alongside a critical appraisal of the advantages and limitations inherent to typical compounds within each structural category, are undertaken. Detailed discussions of the binding modes, structural features, pharmacological activities, advantages, and limitations of typical compounds within each structural category offer valuable insights and guidance for the future research and development of safer, more effective, and more targeted TRPV1 antagonists.
Collapse
Affiliation(s)
- Kun Zhu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Lin Wang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China; State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - TingTing Liao
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Wen Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Jing Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yaodong You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, 610072, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
6
|
Jarzyński S, Rapacz A, Dziubina A, Pękala E, Popiół J, Piska K, Wojtulewski S, Rudolf B. Mechanochemical synthesis and anticonvulsant activity of 3-aminopyrrolidine-2,5-dione derivatives. Biomed Pharmacother 2023; 168:115749. [PMID: 37879208 DOI: 10.1016/j.biopha.2023.115749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023] Open
Abstract
A series of 3-aminopyrrolidine-2,5-dione derivatives was synthesized and tested for anticonvulsant activity. Succinimide derivatives were obtained from a simple solvent-based reaction and a mechanochemical aza-Michael reaction of maleimide or its N-substituted derivatives with selected amines. The structure of the compounds was confirmed by spectroscopic methods (NMR, FT-IR, HPLC, ESI-MS, EA and XRD for four compounds). The cytotoxic activity of the succinimide derivatives was evaluated using HepG2 cells for hepatocytotoxicity and SH-SY5Y cells for neurocytotoxicity. None of the studied compounds showed hepatocytotoxicity and two showed neurocytotoxicity. Initial anticonvulsant screening was performed in mice using the psychomotor seizure test (6 Hz, 32 mA). The selected compounds were evaluated in the following acute models of epilepsy: the maximal electroshock test, psychomotor seizure test (6 Hz, 44 mA), subcutaneous pentylenetetrazole seizure test, and acute neurotoxicity (rotarod test). The most active compound 3-((4-chlorophenyl)amino)pyrrolidine-2,5-dione revealed antiseizure activity in all seizure models (including pharmacoresistant seizures) and showed better median effective doses (ED50) and protective index values than the reference compound, ethosuximide. Furthermore, 3-(benzylamino)pyrrolidine-2,5-dione and 3-(phenylamino)pyrrolidine-2,5-dione exhibited antiseizure activity in the 6 Hz and MES tests, and 3-(butylamino)-1-phenylpyrrolidine-2,5-dione and 3-(benzylamino)-1-phenylpyrrolidine-2,5-dione exhibited antiseizure activity in the 6 Hz test. All active compounds demonstrated low in vivo neurotoxicity in the rotarod test and yielded favourable protective indices.
Collapse
Affiliation(s)
- Szymon Jarzyński
- Faculty of Chemistry, Department of Organic Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland
| | - Anna Rapacz
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Krakow, Poland
| | - Anna Dziubina
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Krakow, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Krakow, Poland
| | - Justyna Popiół
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Krakow, Poland
| | - Kamil Piska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Krakow, Poland
| | - Sławomir Wojtulewski
- Department of Structural Chemistry, Faculty of Chemistry, University of Bialystok, Ciołkowskiego 1K, 15-245 Bialystok, Poland
| | - Bogna Rudolf
- Faculty of Chemistry, Department of Organic Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland.
| |
Collapse
|
7
|
Andres-Mach M, Zagaja M, Szala-Rycaj J, Szewczyk A, Abram M, Jakubiec M, Ciepiela K, Socała K, Wlaź P, Latacz G, Khan N, Kaminski K. In Vivo and In Vitro Characterization of Close Analogs of Compound KA-11, a New Antiseizure Drug Candidate. Int J Mol Sci 2023; 24:ijms24098302. [PMID: 37176010 PMCID: PMC10179080 DOI: 10.3390/ijms24098302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
Epilepsy is a neurological disorder involving a number of disease syndromes with a complex etiology. A properly matched antiseizure drug (ASD) gives remission in up to 70% of patients. Nevertheless, there is still a group of about 30% of patients suffering from drug-resistant epilepsy. Consequently, the development of new more effective and/or safer ASDs is still an unmet clinical need. Thus, our current studies were focused on the structural optimization/modifications of one of the leading compounds, KA-11, aiming at the improvement of its antiseizure activity. As a result, we designed and synthesized two close analogs with highly pronounced drug-like physicochemical properties according to in silico predictions, namely KA-228 and KA-232, which were subsequently tested in a panel of animal seizure models, i.e., MES, 6 Hz (32 mA), scPTZ and ivPTZ. Among these compounds, KA-232, which was designed as a water-soluble salt, was distinctly more effective than KA-228 and assured similar antiseizure protection as its chemical prototype KA-11. With the aim of a more detailed characterization of both new molecules, in vitro binding tests were performed to evaluate the potential mechanisms of action. Furthermore, KA-232 was also evaluated in several ADME-Tox studies, and the results obtained strongly supported its drug-like potential. The proposed chemical modification of KA-11 enabled the identification of new pharmacologically active chemotypes, particularly water-soluble KA-232, which, despite the lack of better efficacy than the leading compound, may be used as a chemical prototype for the development of new ASDs, as well as substances potentially active in other neurological or neurodegenerative conditions.
Collapse
Affiliation(s)
- Marta Andres-Mach
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, 20-950 Lublin, Poland
| | - Mirosław Zagaja
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, 20-950 Lublin, Poland
| | - Joanna Szala-Rycaj
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, 20-950 Lublin, Poland
| | - Aleksandra Szewczyk
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, 20-950 Lublin, Poland
| | - Michał Abram
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Marcin Jakubiec
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Katarzyna Ciepiela
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Krakow, Poland
| | - Nadia Khan
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Krakow, Poland
| | - Krzysztof Kaminski
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| |
Collapse
|
8
|
Abram M, Jakubiec M, Reeb K, Cheng MH, Gedschold R, Rapacz A, Mogilski S, Socała K, Nieoczym D, Szafarz M, Latacz G, Szulczyk B, Kalinowska-Tłuścik J, Gawel K, Esguerra CV, Wyska E, Müller CE, Bahar I, Fontana ACK, Wlaź P, Kamiński RM, Kamiński K. Discovery of ( R)- N-Benzyl-2-(2,5-dioxopyrrolidin-1-yl)propanamide [ (R)-AS-1], a Novel Orally Bioavailable EAAT2 Modulator with Drug-like Properties and Potent Antiseizure Activity In Vivo. J Med Chem 2022; 65:11703-11725. [PMID: 35984707 PMCID: PMC9469208 DOI: 10.1021/acs.jmedchem.2c00534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
(R)-7 [(R)-AS-1] showed broad-spectrum antiseizure activity across in vivo mouse seizure models: maximal electroshock (MES), 6 Hz (32/44 mA), acute pentylenetetrazol (PTZ), and PTZ-kindling. A remarkable separation between antiseizure activity and CNS-related adverse effects was also observed. In vitro studies with primary glia cultures and COS-7 cells expressing the glutamate transporter EAAT2 showed enhancement of glutamate uptake, revealing a stereoselective positive allosteric modulator (PAM) effect, further supported by molecular docking simulations. (R)-7 [(R)-AS-1] was not active in EAAT1 and EAAT3 assays and did not show significant off-target activity, including interactions with targets reported for marketed antiseizure drugs, indicative of a novel and unprecedented mechanism of action. Both in vivo pharmacokinetic and in vitro absorption, distribution, metabolism, excretion, toxicity (ADME-Tox) profiles confirmed the favorable drug-like potential of the compound. Thus, (R)-7 [(R)-AS-1] may be considered as the first-in-class small-molecule PAM of EAAT2 with potential for further preclinical and clinical development in epilepsy and possibly other CNS disorders.
Collapse
Affiliation(s)
- Michał Abram
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688Krakow, Poland
| | - Marcin Jakubiec
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688Krakow, Poland
| | - Katelyn Reeb
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania19102, United States
| | - Mary Hongying Cheng
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania15213, United States
| | - Robin Gedschold
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, An der Immenburg 4, D-53121Bonn, Germany
| | - Anna Rapacz
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688Krakow, Poland
| | - Szczepan Mogilski
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688Krakow, Poland
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033Lublin, Poland
| | - Dorota Nieoczym
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033Lublin, Poland
| | - Małgorzata Szafarz
- Department of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688Krakow, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688Krakow, Poland
| | - Bartłomiej Szulczyk
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, Banacha 1B, 02-097Warsaw, Poland
| | - Justyna Kalinowska-Tłuścik
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387Krakow, Poland
| | - Kinga Gawel
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8B, 20-090Lublin, Poland
| | - Camila V Esguerra
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalléen 21, Forskningsparken, 0349Oslo, Norway
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688Krakow, Poland
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, An der Immenburg 4, D-53121Bonn, Germany
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania15213, United States
| | - Andréia C K Fontana
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania19102, United States
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033Lublin, Poland
| | - Rafał M Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688Krakow, Poland
| | - Krzysztof Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688Krakow, Poland
| |
Collapse
|
9
|
Jakubiec M, Abram M, Zagaja M, Andres-Mach M, Szewczyk A, Latacz G, Szulczyk B, Socała K, Nieoczym D, Wlaź P, Metcalf CS, Wilcox K, Kamiński RM, Kamiński K. New Phenylglycinamide Derivatives with Hybrid Structure as Candidates for New Broad-Spectrum Anticonvulsants. Cells 2022; 11:cells11121862. [PMID: 35740990 PMCID: PMC9221546 DOI: 10.3390/cells11121862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 02/01/2023] Open
Abstract
In the present study, a focused combinatorial chemistry approach was applied to merge structural fragments of well-known TRPV1 antagonists with a potent anticonvulsant lead compound, KA-104, that was previously discovered by our group. Consequently, a series of 22 original compounds has been designed, synthesized, and characterized in the in vivo and in vitro assays. The obtained compounds showed robust in vivo antiseizure activity in the maximal electroshock (MES) test and in the 6 Hz seizure model (using both 32 and 44 mA current intensities). The most potent compounds 53 and 60 displayed the following pharmacological profile: ED50 = 89.7 mg/kg (MES), ED50 = 29.9 mg/kg (6 Hz, 32 mA), ED50 = 68.0 mg/kg (6 Hz, 44 mA), and ED50 = 73.6 mg/kg (MES), ED50 = 24.6 mg/kg (6 Hz, 32 mA), and ED50 = 56.3 mg/kg (6 Hz, 44 mA), respectively. Additionally, 53 and 60 were effective in the ivPTZ seizure threshold and had no influence on the grip strength and body temperature in mice. The in vitro binding and functional assays indicated a multimodal mechanism of action for 53 and 60. These molecules, beyond TRPV1 antagonism, inhibited calcium currents and fast sodium currents in patch-clamp assays. Further studies proved beneficial in vitro ADME-Tox properties for 53 and 60 (i.e., high metabolic stability, weak influence on CYPs, no neurotoxicity, etc.). Overall, 53 and 60 seem to be interesting candidates for future preclinical development in epilepsy and pain indications due to their interaction with the TRPV1 channel.
Collapse
Affiliation(s)
- Marcin Jakubiec
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (M.J.); (M.A.); (R.M.K.)
| | - Michał Abram
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (M.J.); (M.A.); (R.M.K.)
| | - Mirosław Zagaja
- Isobolographic Analysis Laboratory, Institute of Rural Health, Jaczewskiego 2, 20-950 Lublin, Poland; (M.Z.); (M.A.-M.); (A.S.)
| | - Marta Andres-Mach
- Isobolographic Analysis Laboratory, Institute of Rural Health, Jaczewskiego 2, 20-950 Lublin, Poland; (M.Z.); (M.A.-M.); (A.S.)
| | - Aleksandra Szewczyk
- Isobolographic Analysis Laboratory, Institute of Rural Health, Jaczewskiego 2, 20-950 Lublin, Poland; (M.Z.); (M.A.-M.); (A.S.)
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland;
| | - Bartłomiej Szulczyk
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (K.S.); (D.N.); (P.W.)
| | - Dorota Nieoczym
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (K.S.); (D.N.); (P.W.)
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (K.S.); (D.N.); (P.W.)
| | - Cameron S. Metcalf
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA; (C.S.M.); (K.W.)
| | - Karen Wilcox
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA; (C.S.M.); (K.W.)
| | - Rafał M. Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (M.J.); (M.A.); (R.M.K.)
| | - Krzysztof Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (M.J.); (M.A.); (R.M.K.)
- Correspondence: ; Tel.: +48-12-620-54-59
| |
Collapse
|
10
|
Abram M, Jakubiec M, Rapacz A, Mogilski S, Latacz G, Szulczyk B, Szafarz M, Socała K, Nieoczym D, Wyska E, Wlaź P, Kamiński RM, Kamiński K. Identification of New Compounds with Anticonvulsant and Antinociceptive Properties in a Group of 3-substituted (2,5-dioxo-pyrrolidin-1-yl)(phenyl)-Acetamides. Int J Mol Sci 2021; 22:ijms222313092. [PMID: 34884898 PMCID: PMC8658016 DOI: 10.3390/ijms222313092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/30/2022] Open
Abstract
We report herein a series of water-soluble analogues of previously described anticonvulsants and their detailed in vivo and in vitro characterization. The majority of these compounds demonstrated broad-spectrum anticonvulsant properties in animal seizure models, including the maximal electroshock (MES) test, the pentylenetetrazole-induced seizure model (scPTZ), and the psychomotor 6 Hz (32 mA) seizure model in mice. Compound 14 showed the most robust anticonvulsant activity (ED50 MES = 49.6 mg/kg, ED50 6 Hz (32 mA) = 31.3 mg/kg, ED50scPTZ = 67.4 mg/kg). Notably, it was also effective in the 6 Hz (44 mA) model of drug-resistant epilepsy (ED50 = 63.2 mg/kg). Apart from favorable anticonvulsant properties, compound 14 revealed a high efficacy against pain responses in the formalin-induced tonic pain, the capsaicin-induced neurogenic pain, as well as in the oxaliplatin-induced neuropathic pain in mice. Moreover, compound 14 showed distinct anti-inflammatory activity in the model of carrageenan-induced aseptic inflammation. The mechanism of action of compound 14 is likely complex and may result from the inhibition of peripheral and central sodium and calcium currents, as well as the TRPV1 receptor antagonism as observed in the in vitro studies. This lead compound also revealed beneficial in vitro ADME-Tox properties and an in vivo pharmacokinetic profile, making it a potential candidate for future preclinical development. Interestingly, the in vitro studies also showed a favorable induction effect of compound 14 on the viability of neuroblastoma SH-SY5Y cells.
Collapse
Affiliation(s)
- Michał Abram
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (M.A.); (M.J.); (R.M.K.)
| | - Marcin Jakubiec
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (M.A.); (M.J.); (R.M.K.)
| | - Anna Rapacz
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (A.R.); (S.M.)
| | - Szczepan Mogilski
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (A.R.); (S.M.)
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland;
| | - Bartłomiej Szulczyk
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
| | - Małgorzata Szafarz
- Department of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (M.S.); (E.W.)
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (K.S.); (D.N.); (P.W.)
| | - Dorota Nieoczym
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (K.S.); (D.N.); (P.W.)
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (M.S.); (E.W.)
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (K.S.); (D.N.); (P.W.)
| | - Rafał M. Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (M.A.); (M.J.); (R.M.K.)
| | - Krzysztof Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (M.A.); (M.J.); (R.M.K.)
- Correspondence: ; Tel.: +48-12-620-54-59
| |
Collapse
|