1
|
Sun L, Liu J, He Z, Du R. Plant-Derived as Alternatives to Animal-Derived Bioactive Peptides: A Review of the Preparation, Bioactivities, Structure-Activity Relationships, and Applications in Chronic Diseases. Nutrients 2024; 16:3277. [PMID: 39408244 PMCID: PMC11479132 DOI: 10.3390/nu16193277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: At present, a large number of bioactive peptides have been found from plant sources with potential applications for the prevention of chronic diseases. By promoting plant-derived bioactive peptides (PDBPs), we can reduce dependence on animals, reduce greenhouse gas emissions, and protect the ecological environment. Methods: In this review, we summarize recent advances in sustainably sourced PDBPs in terms of preparation methods, biological activity, structure-activity relationships, and their use in chronic diseases. Results: Firstly, the current preparation methods of PDBPs were summarized, and the advantages and disadvantages of enzymatic method and microbial fermentation method were introduced. Secondly, the biological activities of PDBPs that have been explored are summarized, including antioxidant, antibacterial, anticancer and antihypertensive activities. Finally, based on the biological activity, the structure-activity relationship of PDBPs and its application in chronic diseases were discussed. All these provide the foundation for the development of PDBPs. However, the study of PDBPs still has some limitations. Conclusions: Overall, PDBPs is a good candidate for the prevention and treatment of chronic diseases in humans. This work provides important information for exploring the source of PDBPs, optimizing its biological activity, and accurately designing functional foods or drugs.
Collapse
Affiliation(s)
- Li Sun
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (L.S.); (J.L.)
| | - Jinze Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (L.S.); (J.L.)
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (L.S.); (J.L.)
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (L.S.); (J.L.)
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China
| |
Collapse
|
2
|
Ahmad SS, Garg C, Kour R, Bhat AH, Raja V, Gandhi SG, Ataya FS, Fouad D, Radhakrishnan A, Kaur S. Metabolomic insights and bioactive efficacies of Tragopogon dubius root fractions: Antioxidant and antiproliferative assessments. Heliyon 2024; 10:e34746. [PMID: 39253191 PMCID: PMC11381734 DOI: 10.1016/j.heliyon.2024.e34746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 09/11/2024] Open
Abstract
Tragopogon dubius is commonly consumed as a vegetable and used in traditional medicine for treating inflammatory skin conditions and cutaneous swelling. Despite known pharmacological properties of its leaves and roots, many of its biological characteristics and active phytochemicals remain unexplored. The present study investigates the phytochemical composition, antioxidant, and anticancer properties of methanolic root extracts and isolated fractions (TdRM-1 and TdRM-2) of T. dubius. Utilizing preparative thin-layer chromatography, the crude extract was successfully separated into TdRM-1 and TdRM-2, characterized by GC-MS and FTIR analysis, revealing a diverse range of bioactive compounds including terpenes, flavonoids, and phenolic acids. Qualitative phytochemical screening indicated the presence of carbohydrates, tannins, alkaloids, and other phytoconstituents. Advanced UPLC-ESI-QTOF-MS analysis identified 54 metabolites, significantly contributing to the chemical profiling of the extract. The antioxidant activities of the fractions were quantitatively assessed using ABTS, DPPH, and superoxide radical scavenging assays, where TdRM-2 exhibited superior activity with IC50 values ranging from 51.29 to 60.03 μg/mL. Anticancer potential was evaluated against A549, LN-18, and MCF-7 cancer cell lines, demonstrating that TdRM-2 significantly inhibited cell proliferation with GI50 values as low as 31.62 μg/mL for A549 cells. Additionally, fluorescence microscopy revealed that TdRM-2 induces apoptosis, indicated by changes in nuclear morphology and loss of mitochondrial membrane potential. Annexin V-FITC/PI double staining indicate that the TdRM-2 fractions from T. dubius can significantly inhibit the growth of A-549, LN-18, and MCF-7 cancer cell lines by inducing apoptosis These findings suggest that T. dubius root extracts, particularly the TdRM-2 fraction, hold promising therapeutic potential due to their significant antioxidant and anticancer activities, underpinned by their rich phytochemical composition. This study underscores the importance of T. dubius as a source of natural bioactive compounds with potential health benefits.
Collapse
Affiliation(s)
- Sheikh Showkat Ahmad
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Chandni Garg
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Rasdeep Kour
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Aashaq Hussain Bhat
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, India
| | - Vaseem Raja
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
| | - Sumit G Gandhi
- CSIR-Indian Institute of Integrative Medicines, Kanal Road, Jammu, Jammu & Kashmir, 180001, India
| | - Farid S Ataya
- Department of Biochemistry, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Dalia Fouad
- Department of Zoology, College of Science, King Saud University, PO Box.22452, Riyadh, 11495, Saudi Arabia
| | - Arunkumar Radhakrishnan
- Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Satwinderjeet Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| |
Collapse
|
3
|
Tonini S, Tlais AZA, Filannino P, Di Cagno R, Gobbetti M. Apple Blossom Agricultural Residues as a Sustainable Source of Bioactive Peptides through Microbial Fermentation Bioprocessing. Antioxidants (Basel) 2024; 13:837. [PMID: 39061905 PMCID: PMC11273824 DOI: 10.3390/antiox13070837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
This study explored the impact of starter-assisted fermentation on apple blossoms to enhance their potential as a source of antioxidant and antifungal molecules. Fructobacillus fructosus PL22 and Wickerhamomyces anomalus GY1 were chosen as starters owing to their origin and promising ability to modify plant secondary metabolites. An initial assessment through microbiological and physicochemical analyses showed superior outcomes for starter-assisted fermentation compared to the spontaneous process. Enzymatic hydrolysis of proteins, primarily controlled by starters, orchestrated the generation of new low-molecular-weight peptides. W. anomalus GY1 also induced modifications in the phenolic profile, generating a diverse array of bioactive metabolites. These metabolic changes, particularly the release of potentially bioactive peptides, were associated with significant antioxidant activity and marked antifungal efficacy against three common mold species. Our results shed light on the potential of microbial starters to valorize agricultural wastes and convert them into a valuable resource for industry.
Collapse
Affiliation(s)
- Stefano Tonini
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano-Bozen, 39100 Bolzano, Italy; (S.T.); (R.D.C.); (M.G.)
| | - Ali Zein Alabiden Tlais
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano-Bozen, 39100 Bolzano, Italy; (S.T.); (R.D.C.); (M.G.)
| | - Pasquale Filannino
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Raffaella Di Cagno
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano-Bozen, 39100 Bolzano, Italy; (S.T.); (R.D.C.); (M.G.)
- International Center on Food Fermentation, 39100 Bolzano, Italy
| | - Marco Gobbetti
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano-Bozen, 39100 Bolzano, Italy; (S.T.); (R.D.C.); (M.G.)
| |
Collapse
|
4
|
Shafique B, Murtaza MA, Hafiz I, Ameer K, Basharat S, Mohamed Ahmed IA. Proteolysis and therapeutic potential of bioactive peptides derived from Cheddar cheese. Food Sci Nutr 2023; 11:4948-4963. [PMID: 37701240 PMCID: PMC10494659 DOI: 10.1002/fsn3.3501] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/26/2023] [Accepted: 06/02/2023] [Indexed: 09/14/2023] Open
Abstract
Cheddar cheese-derived bioactive peptides are considered a potential component of functional foods. A positive impact of bioactive peptides on diet-related chronic, non-communicable diseases, like obesity, cardiovascular diseases, and diabetes, has been observed. Bioactive peptides possess multifunctional therapeutic potentials, including antimicrobial, immunomodulatory, antioxidant, enzyme inhibitory effects, anti-thrombotic, and phyto-pathological activities against various toxic compounds. Peptides can regulate human immune, gastrointestinal, hormonal, and neurological responses, which play an integral role in the deterrence and treatment of certain diseases like cancer, osteoporosis, hypertension, and other health disorders, as described in the present review. This review summarizes the categories of the Cheddar cheese-derived bioactive peptides, their general characteristics, physiological functions, and possible applications in healthcare.
Collapse
Affiliation(s)
- Bakhtawar Shafique
- Institute of Food Science and NutritionUniversity of SargodhaSargodhaPakistan
| | - Mian Anjum Murtaza
- Institute of Food Science and NutritionUniversity of SargodhaSargodhaPakistan
| | - Iram Hafiz
- Institute of ChemistryUniversity of SargodhaSargodhaPakistan
| | - Kashif Ameer
- Institute of Food Science and NutritionUniversity of SargodhaSargodhaPakistan
| | - Shahnai Basharat
- The University Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Isam A. Mohamed Ahmed
- Department of Food Science and Nutrition, College of Food and Agricultural SciencesKing Saud UniversityRiyadhSaudi Arabia
- Department of Food Science and Technology, Faculty of AgricultureUniversity of KhartoumShambatSudan
| |
Collapse
|
5
|
Taghipour MJ, Ezzatpanah H, Ghahderijani M. In vitro and in silico studies for the identification of anti-cancer and antibacterial peptides from camel milk protein hydrolysates. PLoS One 2023; 18:e0288260. [PMID: 37437001 DOI: 10.1371/journal.pone.0288260] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/22/2023] [Indexed: 07/14/2023] Open
Abstract
Today, breast cancer and infectious diseases are very worrying that led to a widespread effort by researchers to discover natural remedies with no side effects to fight them. In the present study, we isolated camel milk protein fractions, casein and whey proteins, and hydrolyzed them using pepsin, trypsin, and both enzymes. Screening of peptides with anti-breast cancer and antibacterial activity against pathogens was performed. Peptides derived from whey protein fraction with the use of both enzymes showed very good activity against MCF-7 breast cancer with cell viability of 7.13%. The separate use of trypsin and pepsin to digest whey protein fraction yielded peptides with high antibacterial activity against S. aureus (inhibition zone of 4.17 ± 0.30 and 4.23 ± 0.32 cm, respectively) and E. coli (inhibition zone of 4.03 ± 0.15 and 4.03 ± 0.05 cm, respectively). Notably, in order to identify the effective peptides in camel milk, its protein sequences were retrieved and enzymatically digested in silico. Peptides that showed both anticancer and antibacterial properties and the highest stability in intestinal conditions were selected for the next step. Molecular interaction analysis was performed on specific receptors associated with breast cancer and/or antibacterial activity using molecular docking. The results showed that P3 (WNHIKRYF) and P5 (WSVGH) peptides had low binding energy and inhibition constant so that they specifically occupied active sites of protein targets. Our results introduced two peptide-drug candidates and new natural food additive that can be delivered to further animal and clinical trials.
Collapse
Affiliation(s)
- Mohammad Javad Taghipour
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamid Ezzatpanah
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Ghahderijani
- Department of Agricultural Systems Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
6
|
Kiersnowska K, Jakubczyk A. Bioactive Peptides Obtained from Legume Seeds as New Compounds in Metabolic Syndrome Prevention and Diet Therapy. Foods 2022; 11:3300. [PMCID: PMC9602117 DOI: 10.3390/foods11203300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Currently, food is regarded not only as a source of nutrients, vitamins, and minerals but also as a source of bioactive compounds that can play a significant role in the prevention and diet therapy of many diseases. Metabolic syndrome (MS) is a complex disorder defined as a set of interrelated factors that increase the risk of cardiovascular disease, atherosclerosis, type 2 diabetes, or dyslipidemia. MS affects not only adults but also children. Peptides are one of the compounds that exhibit a variety of bioactive properties. They are derived from food proteins, which are usually obtained through enzymatic hydrolysis or digestion in the digestive system. Legume seeds are a good source of bioactive peptides. In addition to their high protein content, they contain high levels of dietary fiber, vitamins, and minerals. The aim of this review is to present new bioactive peptides derived from legume seeds and showing inhibitory properties against MS. These compounds may find application in MS diet therapy or functional food production.
Collapse
|
7
|
Taghizadeh MS, Niazi A, Moghadam A, Afsharifar A. Experimental, molecular docking and molecular dynamic studies of natural products targeting overexpressed receptors in breast cancer. PLoS One 2022; 17:e0267961. [PMID: 35536789 PMCID: PMC9089900 DOI: 10.1371/journal.pone.0267961] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 04/19/2022] [Indexed: 11/18/2022] Open
Abstract
Natural compounds are proper tools for inhibiting cancer cell proliferation. Hence, the search for these ligands of overexpressed receptors in breast cancer has been a competitive challenge recently and opens new avenues for drug discovery. In this research, we have investigated molecular interactions between natural products and overexpressed receptors in breast cancer using molecular docking and dynamic simulation approaches followed by extraction of the best ligand from Citrus limetta and developing for nanoscale encapsulation composed of soy lecithin using a sonicator machine. The encapsulation process was confirmed by DLS and TEM analyses. Anticancer activity was also examined using MTT method. Among the investigated natural compounds, hesperidin was found to bind to specific targets with stronger binding energy. The molecular dynamics results indicated that the hesperidin-MCL-1 complex is very stable at 310.15 K for 200 ns. The RP-HPLC analysis revealed that the purity of extracted hesperidin was 98.8% with a yield of 1.72%. The results of DLS and TEM showed a strong interaction between hesperidin and lecithin with an entrapped efficiency of 92.02 ± 1.08%. Finally, the cytotoxicity effect of hesperidin was increased against the MDA-MB-231 cell line with an IC50 value of 62.93 μg/mL after encapsulation, whereas no significant effect against the MCF10A cell line. We showed for the first time that hesperidin is a flexible and strong ligand for the MCL-1 receptor. Also, it has the in vitro ability to kill the MDA-MB-231 cell lines without having a significant effect on the MCF10A cell lines. Therefore, hesperidin could be used as a food ingredient to generate functional foods.
Collapse
Affiliation(s)
| | - Ali Niazi
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Ali Moghadam
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
8
|
Singh BP, Bangar SP, Alblooshi M, Ajayi FF, Mudgil P, Maqsood S. Plant-derived proteins as a sustainable source of bioactive peptides: recent research updates on emerging production methods, bioactivities, and potential application. Crit Rev Food Sci Nutr 2022; 63:9539-9560. [PMID: 35521961 DOI: 10.1080/10408398.2022.2067120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The development of novel protein sources to compensate for the expected future shortage of traditional animal proteins due to their high carbon footprint is a major contemporary challenge in the agri-food industry currently. Therefore, both industry and consumers are placing a greater emphasis on plant proteins as a sustainable source of protein to meet the growing nutritional demand of ever increasing population. In addition to being key alternatives, many plant-based foods have biological properties that make them potentially functional or health-promoting foods, particularly physiologically active peptides and proteins accounting for most of these properties. This review discusses the importance of plant-based protein as a viable and sustainable alternative to animal proteins. The current advances in plant protein isolation and production and characterization of bioactive hydrolysates and peptides from plant proteins are described comprehensively. Furthermore, the recent research on bioactivities and bioavailability of plant protein-derived bioactive peptides is reviewed briefly. The limitations of using bioactive peptides, regulatory criteria, and the possible future applications of plant protein-derived bioactive peptides are highlighted. This review may help understand plant proteins and their bioactive peptides and provide valuable suggestions for future research and applications in the food industry.
Collapse
Affiliation(s)
- Brij Pal Singh
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Sneh Punia Bangar
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
| | - Munira Alblooshi
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Feyisola Fisayo Ajayi
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Priti Mudgil
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
9
|
Ayati S, Eun J, Atoub N, Mirzapour‐Kouhdasht A. Functional yogurt fortified with fish collagen‐derived bioactive peptides: Antioxidant capacity, ACE and DPP‐IV inhibitory. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Samaneh Ayati
- Department of Food Science and Technology Faculty of Agriculture Jahrom University Jahrom Iran
| | - Jong‐Bang Eun
- Department of Integrative Food, Bioscience and Biotechnology Chonnam National University Gwangju South Korea
| | - Najme Atoub
- Atoub Sanat Nanotechnologists Company Agricultural Growth Center, Science and Technology Park Shiraz Iran
| | - Armin Mirzapour‐Kouhdasht
- Atoub Sanat Nanotechnologists Company Agricultural Growth Center, Science and Technology Park Shiraz Iran
- School of Agriculture and Food Science University College Dublin Dublin Ireland
| |
Collapse
|