1
|
Hassan RM, Yehia H, El-Behairy MF, El-Azzouny AAS, Aboul-Enein MN. Design and synthesis of new quinazolinone derivatives: investigation of antimicrobial and biofilm inhibition effects. Mol Divers 2024:10.1007/s11030-024-10830-y. [PMID: 38656598 DOI: 10.1007/s11030-024-10830-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/25/2024] [Indexed: 04/26/2024]
Abstract
New quinazolin-4-ones 9-32 were synthesized in an attempt to overcome the life-threatening antibiotic resistance phenomenon. The antimicrobial screening revealed that compounds 9, 15, 16, 18, 19, 20 and 29 are the most broad spectrum antimicrobial agents in this study with safe profile on human cell lines. Additionally, compounds 19 and 20 inhibited biofilm formation in Pseudomonas aeruginosa, which is regulated by quorum sensing system, at sub-minimum inhibitory concentrations (sub-MICs) with IC50 values 3.55 and 6.86 µM, respectively. By assessing other pseudomonal virulence factors suppression, it was found that compound 20 decreased cell surface hydrophobicity compromising bacterial cells adhesion, while both compounds 19 and 20 curtailed the exopolysaccharide production which constitutes the major component of the matrix binding biofilm components together. Also, at sub-MICs Pseudomonas cells twitching motility was impeded by compounds 19 and 20, a trait which augments the cells pathogenicity and invasion potential. Molecular docking study was performed to further evaluate the binding mode of candidates 19 and 20 as inhibitors of P. aeruginosa quorum sensing transcriptional regulator PqsR. The achieved results demonstrate that both compounds bear promising potential for discovering new anti-biofilm and quorum quenching agents against Pseudomonas aeruginosa without triggering resistance mechanisms as the normal bacterial life cycle is not disturbed.
Collapse
Affiliation(s)
- Rasha Mohamed Hassan
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt.
| | - Heba Yehia
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt
| | - Mohammed F El-Behairy
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, 32897, Sadat City, Egypt
| | - Aida Abdel-Sattar El-Azzouny
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt
| | - Mohamed Nabil Aboul-Enein
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt.
| |
Collapse
|
2
|
Pakeeraiah K, Mal S, Mahapatra M, Mekap SK, Sahu PK, Paidesetty SK. Schematic-portfolio of potent anti-microbial scaffolds targeting DNA gyrase: Unlocking ways to overcome resistance. Int J Biol Macromol 2024; 256:128402. [PMID: 38035955 DOI: 10.1016/j.ijbiomac.2023.128402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
Drug development process demands validation of specific drug target impeding the Multi Drug Resistance (MDR). DNA gyrase, as a bacterial target has been in trend for developing newer antibacterial candidates due to its absence in higher eukaryotes. The fluoroquinolones are the leading molecules in the drug discovery pipeline for gyrase inhibition due to its diversity. The fluoroquinolones like levofloxacin and moxifloxacin have been listed in class A drugs for treating MDR. Gatifloxacin and ciprofloxacin also proved its efficacy against MDR TB and MDR enteric fever in adults, whereas nemonoxacin can induce anti-MDR activity of other antibiotics already suggested by studies. Though fluoroquinolones already proved its effectiveness against gyrase, other molecules viz., benzothiazinone, phenyl pyrrolamide, substituted oxadiazoles, triazolopyrimidine, arylbenzothiazole, coumarinyl amino alcohols and ciprofloxacin uracil, can inhibit the target more precisely. The structure-activity-relationships of the different scaffolds along with their synthetic strategies have been deciphered in the current review. Also, the naturally occurring compounds along with their extraction procedure have also been highlighted as potent DNA gyrase inhibitors. In addition to fluoroquinolone, the natural compounds novobiocin and simocyclinone could also inhibit the gyrase, impressively which has been designed with the gyrase structure for better understanding. Herein, ongoing clinical development of some novel drugs possessing triazaacenaphthylenes, spiropyrimidinetriones, and oxazolidinone-quinolone hybrids have been highlighted which could further assist the future generation antibiotic development corroborating gyrase as a potential target against MDR pathogens.
Collapse
Affiliation(s)
- Kakarla Pakeeraiah
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar 751003, Odisha, India
| | - Suvadeep Mal
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar 751003, Odisha, India
| | - Monalisa Mahapatra
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar 751003, Odisha, India
| | - Suman Kumar Mekap
- School of Pharmacy and Life Sciences, Centurion University of technology and management, Bhubaneswar 752050, Odisha, India
| | - Pratap Kumar Sahu
- Department of Pharmacology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar 751003, Odisha, India
| | - Sudhir Kumar Paidesetty
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar 751003, Odisha, India.
| |
Collapse
|
3
|
Kumar H, Sharma A, Kumar D, Marwaha MG, Dhanawat M, Aggarwal N, Marwaha RK. Synthesis, biological evaluation and in silico studies of some new analogues of 3,5-vdisubstituted thiazolidin-2,4-dione. Future Med Chem 2023; 15:2257-2268. [PMID: 37982252 DOI: 10.4155/fmc-2023-0237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/30/2023] [Indexed: 11/21/2023] Open
Abstract
Background: A new series of 3,5-disubstituted thiazolidin-2,4-dione molecules were derived and characterized using various spectral techniques (1H NMR, IR, carbon, hydrogen, nitrogen, etc.) and physicochemical parameters. Materials & methods: The molecules were derived using Knoevenagel condensation followed by Mannich reaction and further synthesized analogues were screened for their antioxidant and antimicrobial potential using 2,2-diphenyl-1-picrylhydrazyl free radical scavenging method and serial tube dilution method, respectively, along with in silico studies (docking and absorption, distribution, metabolism and excretion parameters) to explore the drug-receptor interaction and druglikeness. Results & conclusion: In antimicrobial screening, the analogs MP2, MM6, MM7 and MM8 displayed promising activity while molecule MM4 exhibited better antioxidant potential in the series. In molecular docking analysis, the best-fitted analogs, namely, MM6 and MM7, showed good interactions.
Collapse
Affiliation(s)
- Harsh Kumar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
- Vaish Institute of Pharmaceutical Education and Research, Rohtak, 124001, India
| | - Aastha Sharma
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Davinder Kumar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Minakshi Gupta Marwaha
- Department of Pharmaceutical Sciences, Sat Priya College of Pharmacy, Rohtak, 124001, India
| | - Meenakshi Dhanawat
- Àmity institute of Pharmacy, Amity University Haryana, Gurugram, 122105, India
| | - Navidha Aggarwal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, 133207, India
| | - Rakesh Kumar Marwaha
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| |
Collapse
|
4
|
Zelelew D, Endale M, Melaku Y, Geremew T, Eswaramoorthy R, Tufa LT, Choi Y, Lee J. Ultrasonic-Assisted Synthesis of Heterocyclic Curcumin Analogs as Antidiabetic, Antibacterial, and Antioxidant Agents Combined with in vitro and in silico Studies. Adv Appl Bioinform Chem 2023; 16:61-91. [PMID: 37533689 PMCID: PMC10392906 DOI: 10.2147/aabc.s403413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023] Open
Abstract
Background Heterocyclic analogs of curcumin have a wide range of therapeutic potential and the ability to control the activity of a variety of metabolic enzymes. Methods 1H-NMR and 13C-NMR spectroscopic techniques were used to determine the structures of synthesized compounds. The agar disc diffusion method and α-amylase inhibition assay were used to examine the antibacterial and anti-diabetic potential of the compounds against α-amylase enzyme inhibitory activity, respectively. DPPH-free radical scavenging and lipid peroxidation inhibition assays were used to assess the in vitro antioxidant potential. Results and Discussion In this work, nine heterocyclic analogs derived from curcumin precursors under ultrasonic irradiation were synthesized in excellent yields (81.4-93.7%) with improved reaction time. Results of antibacterial activities revealed that compounds 8, and 11 displayed mean inhibition zone of 13.00±0.57, and 19.66±00 mm, respectively, compared to amoxicillin (12.87±1.41 mm) at 500 μg/mL against E. coli, while compounds 8, 11 and 16 displayed mean inhibition zone of 17.67±0.57, 14.33±0.57 and 23.33±00 mm, respectively, compared to amoxicillin (13.75±1.83 mm) at 500 μg/mL against P. aeruginosa. Compound 11 displayed a mean inhibition zone of 11.33±0.57 mm compared to amoxicillin (10.75±1.83 mm) at 500 μg/mL against S. aureus. Compound 11 displayed higher binding affinities of -7.5 and -8.3 Kcal/mol with penicillin-binding proteins (PBPs) and β-lactamases producing bacterial strains, compared to amoxicillin (-7.2 and -7.9 Kcal/mol, respectively), these results are in good agreement with the in vitro antibacterial activities. In vitro antidiabetic potential on α-amylase enzyme revealed that compounds 11 (IC50=7.59 µg/mL) and 16 (IC50=4.08 µg/mL) have higher inhibitory activities than acarbose (IC50=8.0 µg/mL). Compound 8 showed promising antioxidant inhibition efficacy of DPPH (IC50 = 2.44 g/mL) compared to ascorbic acid (IC50=1.24 g/mL), while compound 16 revealed 89.9±20.42% inhibition of peroxide generation showing its potential in reducing the development of lipid peroxides. In silico molecular docking analysis, results are in good agreement with in vitro biological activity. In silico ADMET profiles suggested the adequate oral drug-likeness potential of the compounds without adverse effects. Conclusion According to our findings, both biological activities and in silico computational studies results demonstrated that compounds 8, 11, and 16 are promising α-amylase inhibitors and antibacterial agents against E. coli, P. aeruginosa, and S. aureus, whereas compound 8 was found to be a promising antioxidant agent.
Collapse
Affiliation(s)
- Demis Zelelew
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | - Milkyas Endale
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | - Yadessa Melaku
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | - Teshome Geremew
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | | | - Lemma Teshome Tufa
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
- Research Institute of Materials Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Youngeun Choi
- Department of Chemistry, Department of Chemistry Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jaebeom Lee
- Department of Chemistry, Department of Chemistry Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| |
Collapse
|
5
|
Yan C, Zhang M, Li J, Zhang J, Wu Y. Thiol-promoted intermolecular cyclization to synthesize 1,2,4-oxadiazoles including tioxazafen under transition metal-free conditions. Org Biomol Chem 2023. [PMID: 37376991 DOI: 10.1039/d3ob00770g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
A simple and efficient one-pot intermolecular annulation reaction for the synthesis of 1,2,4-oxadiazoles from amidoximes and benzyl thiols has been developed, in which benzyl thiols act as not only reactants but also organo-catalysts. The control experiments proved that thiol substrates could facilitate the dehydroaromatization step. High yield, functional group diversity and transition metal-free, extra oxidant-free, and mild conditions are the important practical features. Moreover, this protocol provides an effective alternative method for the synthesis of a commercially available broad-spectrum nematicide, tioxazafen.
Collapse
Affiliation(s)
- Congcong Yan
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Min Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jiaxin Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jinli Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
- Henan Key Laboratory of Chemical Biology and Organic Chemistry; Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou, 450052, P.R. China.
| | - Yangjie Wu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
- Henan Key Laboratory of Chemical Biology and Organic Chemistry; Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou, 450052, P.R. China.
| |
Collapse
|
6
|
Kumar M, Rani I, Mujwar S, Narang R, Devgun M, Khokra SL. In-Silico Design, Synthesis, and Pharmacological Evaluation of Oxadiazole-Based Selective Cyclo-oxygenase-2 Inhibitors. Assay Drug Dev Technol 2023; 21:166-179. [PMID: 37318837 DOI: 10.1089/adt.2022.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
A series of oxadiazole-based five-membered heterocyclic derivatives was designed and synthesized with the intent of exclusive cyclo-oxygenase-2 (COX-2) inhibition to acquire anti-inflammatory activity without the presence of gastric toxicity. Oxadiazole-based novel analogs were designed by using bioisosteric substitutions and were screened against the macromolecular target by using docking-based virtual screening to identify their potential inhibitors. These selective COX-2 inhibitors were further evaluated for their stability within the binding cavity of macromolecular complex by performing molecular dynamic simulation for 100 ns. Selected compounds were synthesized by using Naphthalene-2-yl-acetic acid as a starting material based on the fundamental structure of naphthalene. The naphthalene ring and methylene bridge of naphthalene-2-yl-acetic acid were retained in the rational molecular design by replacing the carboxyl group with biologically significant groups like 1,3,4-oxadiazoles, with the goal of obtaining a novel, superior, and relatively safe anti-inflammatory molecule with better efficacy and optimized pharmacokinetics. Anti-inflammatory as well as analgesic properties of the compounds were evaluated experimentally for their pharmacological efficiency.
Collapse
Affiliation(s)
- Manish Kumar
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, India
| | - Isha Rani
- Spurthy College of Pharmacy, Bengaluru, Karnataka, India
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Rakesh Narang
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, India
| | - Manish Devgun
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, India
| | - Sukhbir Lal Khokra
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
7
|
da Silva L, Donato IA, Gonçalves CAC, Scherf JR, dos Santos HS, Mori E, Coutinho HDM, da Cunha FAB. Antibacterial potential of chalcones and its derivatives against Staphylococcus aureus. 3 Biotech 2023; 13:1. [PMID: 36466769 PMCID: PMC9712905 DOI: 10.1007/s13205-022-03398-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/12/2022] [Indexed: 12/02/2022] Open
Abstract
Chalcones are natural substances found in the metabolism of several botanical families. Their structure consists of 1,3-diphenyl-2-propen-1-one and they are characterized by having in their chains an α, β-unsaturated carbonyl system, two phenol rings and a three-carbon chain that unites them. In plants, Chalcones are mainly involved in the biosynthesis of flavonoids and isoflavonoids through the phenylalanine derivation. This group of substances has been shown to be a viable alternative for the investigation of its antibacterial potential, considering the numerous biological activities reported and the increase of the microbial resistance that concern global health agencies. Staphylococcus aureus is a bacterium that has stood out for its ability to adapt and develop resistance to a wide variety of drugs. This literature review aimed to highlight recent advances in the use of Chalcones and derivatives as antibacterial agents against S. aureus, focusing on research articles available on the Science Direct, Pub Med and Scopus data platforms in the period 2015-2021. It was constructed informative tables that provided an overview of which types of Chalcones are being studied more (Natural or Synthetic); its chemical name and main Synthesis Methodology. From the analysis of the data, it was observed that the compounds based on Chalcones have great potential in medicinal chemistry as antibacterial agents and that the molecular skeletons of these compounds as well as their derivatives can be easily obtained through substitutions in the A and B rings of Chalcones, in order to obtain the desired bioactivity. It was verified that Chalcones and derivatives are promising agents for combating the multidrug resistance of S. aureus to drugs. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03398-7.
Collapse
Affiliation(s)
- Larissa da Silva
- Laboratory of Semi-Arid Bioprospecting (LABSEMA), Department of Biological Chemistry, URCA, Crato, CE Brazil
| | - Isydorio Alves Donato
- Laboratory of Semi-Arid Bioprospecting (LABSEMA), Department of Biological Chemistry, URCA, Crato, CE Brazil
| | | | - Jackelyne Roberta Scherf
- Graduate Program in Pharmaceutical Sciences, Federal University of Pernambuco, UFPE, Recife, PE Brazil
| | - Hélcio Silva dos Santos
- Laboratory of Chemistry of Natural and Synthetic Product, State university of Ceará, UECE, Fortaleza, CE Brazil
| | - Edna Mori
- CECAPE, College of Dentistry, Juazeiro do Norte, CE 63024-015 Brazil
| | | | | |
Collapse
|
8
|
Synthesis, Antibacterial, and Antioxidant Activities of Thiazolyl-Pyrazoline Schiff Base Hybrids: A Combined Experimental and Computational Study. J CHEM-NY 2022. [DOI: 10.1155/2022/3717826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Thiazole-pyrazoline Schiff base hybrids have a broad range of pharmacological potential with an ability to control the activity of numerous metabolic enzymes. In this work, a greener and more efficient approach has been developed to synthesize a novel series of thiazole-pyrazoline Schiff base hybrids using ZnO nanoparticle-assisted protocol in good to excellent yields (78.3–96.9%) and examined their antibacterial activity against Gram-positive and Gram-negative bacteria, as well as their antioxidant activity. Compound 24 (IZD = 18.67 ± 0.58) displayed better activity against P. aeruginosa compared with amoxicillin (IZD = 14.33 ± 2.52) at 250 μg/mL, whereas compounds 22 and 24 (IZD = 13.33 ± 0.58 mm and 17.00 ± 1.00 mm, respectively) showed better activity against E. coli compared with amoxicillin (IZD = 14.67 ± 0.58 mm) at 500 μg/mL. The remaining compounds showed moderate to weak activity against the tested bacterial strains. Compound 21 displayed significant inhibition of DPPH (IC50 = 4.63 μg/mL) compared with ascorbic acid (IC50 = 3.21 μg/mL). Compound 21 displayed 80.01 ± 0.07% inhibition of peroxide formation, suggesting its potential in preventing the formation of lipid peroxides. The results of the ADMET study showed that all synthesized compounds obeyed Lipinski's rule of five. In silico pharmacokinetic study demonstrated that compound 24 had superior intestinal absorption compared with amoxicillin. In silico molecular docking analysis revealed a binding affinity of −9.9 Kcal/mol for compound 24 against PqsA compared with amoxicillin (−7.3 Kcal/mol), whereas compounds 22 and 24 displayed higher binding affinity (−8.5 and −7.9 Kcal/mol, respectively) with DNA gyrase B compared with amoxicillin (-7.1 Kcal/mol), in good agreement with in vitro antibacterial activity against P. aeruginosa and E. coli. In silico toxicity study showed that all synthesized compounds had LD50 (mg/kg) values ranging from 800 to 1,000 putting them in ProTox-II class 4. The in vitro antibacterial activity and molecular docking analysis showed that compound 24 is a promising antibacterial therapeutic agent against P. aeruginosa and E. coli and compound 22 is a promising antibacterial agent against E. coli, whereas compound 21 is found to be a potential natural antioxidant agent. Moreover, the green synthesis approach using ZnO nanoparticle as catalyst was found to be a very efficient method to synthesize biologically active thiazole-pyrazoline Schiff base hybrids compared with the conventional method.
Collapse
|
9
|
Yang X, Syed R, Fang B, Zhou C. A new discovery towards novel skeleton of benzimidazole‐conjugated pyrimidinones as unique effective antibacterial agents. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xi Yang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| | - Rasheed Syed
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| | - Bo Fang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine Chongqing University of Arts and Sciences Chongqing 402160 China
| | - Cheng‐He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| |
Collapse
|
10
|
Gervasoni S, Malloci G, Bosin A, Vargiu AV, Zgurskaya HI, Ruggerone P. AB-DB: Force-Field parameters, MD trajectories, QM-based data, and Descriptors of Antimicrobials. Sci Data 2022; 9:148. [PMID: 35365662 PMCID: PMC8976083 DOI: 10.1038/s41597-022-01261-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/11/2022] [Indexed: 12/13/2022] Open
Abstract
Antibiotic resistance is a major threat to public health. The development of chemo-informatic tools to guide medicinal chemistry campaigns in the efficint design of antibacterial libraries is urgently needed. We present AB-DB, an open database of all-atom force-field parameters, molecular dynamics trajectories, quantum-mechanical properties, and curated physico-chemical descriptors of antimicrobial compounds. We considered more than 300 molecules belonging to 25 families that include the most relevant antibiotic classes in clinical use, such as β-lactams and (fluoro)quinolones, as well as inhibitors of key bacterial proteins. We provide traditional descriptors together with properties obtained with Density Functional Theory calculations. Noteworthy, AB-DB contains less conventional descriptors extracted from μs-long molecular dynamics simulations in explicit solvent. In addition, for each compound we make available force-field parameters for the major micro-species at physiological pH. With the rise of multi-drug-resistant pathogens and the consequent need for novel antibiotics, inhibitors, and drug re-purposing strategies, curated databases containing reliable and not straightforward properties facilitate the integration of data mining and statistics into the discovery of new antimicrobials.
Collapse
Affiliation(s)
- Silvia Gervasoni
- University of Cagliari, Department of Physics, I-09042, Monserrato (Cagliari), Italy
| | - Giuliano Malloci
- University of Cagliari, Department of Physics, I-09042, Monserrato (Cagliari), Italy.
| | - Andrea Bosin
- University of Cagliari, Department of Physics, I-09042, Monserrato (Cagliari), Italy
| | - Attilio V Vargiu
- University of Cagliari, Department of Physics, I-09042, Monserrato (Cagliari), Italy
| | - Helen I Zgurskaya
- University of Oklahoma, Department of Chemistry and Biochemistry, Norman, OK, 73072, United States
| | - Paolo Ruggerone
- University of Cagliari, Department of Physics, I-09042, Monserrato (Cagliari), Italy
| |
Collapse
|
11
|
Synthesis, Antimicrobial, Anti-virulence and Anticancer Evaluation of New 5(4H)-Oxazolone-Based Sulfonamides. Molecules 2022; 27:molecules27030671. [PMID: 35163939 PMCID: PMC8838850 DOI: 10.3390/molecules27030671] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 11/30/2022] Open
Abstract
Since the synthesis of prontosil the first prodrug shares their chemical moiety, sulfonamides exhibit diverse modes of actions to serve as antimicrobials, diuretics, antidiabetics, and other clinical applications. This inspiring chemical nucleus has promoted several research groups to investigate the synthesis of new members exploring new clinical applications. In this study, a novel series of 5(4H)-oxazolone-based-sulfonamides (OBS) 9a–k were synthesized, and their antibacterial and antifungal activities were evaluated against a wide range of Gram-positive and -negative bacteria and fungi. Most of the tested compounds exhibited promising antibacterial activity against both Gram-positive and -negative bacteria particularly OBS 9b and 9f. Meanwhile, compound 9h showed the most potent antifungal activity. Moreover, the OBS 9a, 9b, and 9f that inhibited the bacterial growth at the lowest concentrations were subjected to further evaluation for their anti-virulence activities against Pseudomonas aeruginosa and Staphylococcus aureus. Interestingly, the three tested compounds reduced the biofilm formation and diminished the production of virulence factors in both P. aeruginosa and S. aureus. Bacteria use a signaling system, quorum sensing (QS), to regulate their virulence. In this context, in silico study has been conducted to assess the ability of OBS to compete with the QS receptors. The tested OBS showed marked ability to bind and hinder QS receptors, indicating that anti-virulence activities of OBS could be due to blocking QS, the system that controls the bacterial virulence. Furthermore, anticancer activity has been further performed for such derivatives. The OBS compounds showed variable anti-tumor activities, specifically 9a, 9b, 9f and 9k, against different cancer lines. Conclusively, the OBS compounds can serve as antimicrobials, anti-virulence and anti-tumor agents.
Collapse
|
12
|
Application of nitriles on the synthesis of 1,3-oxazoles, 2-oxazolines, and oxadiazoles: An update from 2014 to 2021. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
13
|
Mazzotta S, Berastegui-Cabrera J, Vega-Holm M, García-Lozano MDR, Carretero-Ledesma M, Aiello F, Vega-Pérez JM, Pachón J, Iglesias-Guerra F, Sánchez-Céspedes J. Design, synthesis and in vitro biological evaluation of a novel class of anti-adenovirus agents based on 3-amino-1,2-propanediol. Bioorg Chem 2021; 114:105095. [PMID: 34175724 DOI: 10.1016/j.bioorg.2021.105095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/09/2021] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
Nowadays there is not an effective drug for the treatment of infections caused by human adenovirus (HAdV) which supposes a clinical challenge, especially for paediatric and immunosuppressed patients. Here, we describe the design, synthesis and biological evaluation as anti-adenovirus agents of a new library (57 compounds) of diester, monoester and triazole derivatives based on 3-amino-1,2-propanediol skeleton. Seven compounds (17, 20, 26, 34, 44, 60 and 66) were selected based on their high anti-HAdV activity at low micromolar concentration (IC50 from 2.47 to 5.75 µM) and low cytotoxicity (CC50 from 28.70 to >200 µM). In addition, our mechanistic assays revealed that compounds 20 and 44 might be targeting specifically the HAdV DNA replication process, and compound 66 would be targeting HAdV E1A mRNA transcription. For compounds 17, 20, 34 and 60, the mechanism of action seems to be associated with later steps after HAdV DNA replication.
Collapse
Affiliation(s)
- Sarah Mazzotta
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, E-41071 Seville, Spain; Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Judith Berastegui-Cabrera
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, E41013 Seville, Spain
| | - Margarita Vega-Holm
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, E-41071 Seville, Spain.
| | - María Del Rosario García-Lozano
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, E-41071 Seville, Spain; Institute of Biomedicine of Seville (IBiS), SeLiver Group, University Hospital Virgen del Rocío/CSIC/University of Seville, E41013 Seville, Spain
| | - Marta Carretero-Ledesma
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, E41013 Seville, Spain
| | - Francesca Aiello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy
| | - José Manuel Vega-Pérez
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, E-41071 Seville, Spain
| | - Jerónimo Pachón
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, E41013 Seville, Spain; Department of Medicine, University of Seville, E-41009 Seville, Spain
| | - Fernando Iglesias-Guerra
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, E-41071 Seville, Spain.
| | - Javier Sánchez-Céspedes
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, E41013 Seville, Spain.
| |
Collapse
|
14
|
Uchil A, Murali TS, Nayak R. Escaping ESKAPE: A chalcone perspective. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|