1
|
Zhang YK, Xue Z, Tong JB, Tan J, Yang M, Zeng YR, Tan CJ. Exploration and computational assessment of ochrocephalamine G from Oxytropis ochrocephala as an anti-HBV candidate. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025:1-14. [PMID: 39792155 DOI: 10.1080/10286020.2024.2441773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
Three compounds, including a novel quinolizidine alkaloid, ochrocephalamine G (1), were isolated from Oxytropis ochrocephala. Structural elucidation was achieved through spectroscopic analysis and electronic circular dichroism. Biological assays showed that ochrocephalamine G (100 μM) inhibited HBsAg and HBeAg by 8.28% and 16.17%, respectively. Computational studies, including molecular docking and dynamics simulations, revealed its binding mode with HBV core protein, providing a solid foundation for developing O. ochrocephala as an anti-HBV therapeutic agent.
Collapse
Affiliation(s)
- Ya-Kun Zhang
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang 550025, China
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhan Xue
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang 550025, China
- College of Chemical Engineering, Guizhou University of Engineering Science, Bijie 551700, China
| | - Jian-Bo Tong
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jing Tan
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang 550025, China
| | - Min Yang
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang 550025, China
| | - Yan-Rong Zeng
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang 550025, China
| | - Cheng-Jian Tan
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang 550025, China
| |
Collapse
|
2
|
Yan X, Feng B, Song H, Wang L, Wang Y, Sun Y, Cai X, Rong Y, Wang X, Wang Y. Identification and mechanistic study of piceatannol as a natural xanthine oxidase inhibitor. Int J Biol Macromol 2024; 293:139231. [PMID: 39732228 DOI: 10.1016/j.ijbiomac.2024.139231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Natural Xanthine oxidase (XOD) inhibitors represent promising therapeutic agents for hyperuricemia (HUA) treatment due to their potent efficacy and favorable safety profiles. This study involved the construction of a comprehensive database of 315 XOD inhibitors and development of 28 machine learning-based QSAR models. The ChemoPy light gradient boosting machine model exhibited the best performance (AUC = 0.9371 and MCC = 0.7423). This model identified three potential XOD inhibitors from the FooDB database: daphnetin, 7-hydroxycoumarin, and piceatannol. Molecular docking and dynamics simulations revealed favorable interactions, with piceatannol showing a remarkable stability through hydrogen bonding and hydrophobic interactions. ADME predictions suggested that all three compounds possess desirable drug-like properties and safety characteristics. Subsequent in vitro enzyme inhibition assays validated computational predictions, with piceatannol exhibiting the strongest inhibitory activity (IC50 = 8.80 ± 0.05 μM). Multispectroscopic analyses revealed that piceatannol-XOD binding was predominantly mediated by hydrogen bonding and van der Waals forces, which induced conformational changes characterized by decreased α-helical content and increased proportions of β-sheets, β-turns, and random coils. This study presents an efficient strategy for the identification of natural XOD inhibitors, elucidates the molecular mechanism of piceatannol-mediated XOD inhibition, and establishes a foundation for its therapeutic application in HUA treatment.
Collapse
Affiliation(s)
- Xinxu Yan
- College of Food Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, PR China
| | - Baolong Feng
- Center for Education Technology, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Hongjie Song
- College of Food Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Lili Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Yehui Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Yulin Sun
- College of Food Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Xiaoshuang Cai
- College of Food Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Yating Rong
- College of Food Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Xibo Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China.
| | - Yutang Wang
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, PR China.
| |
Collapse
|
3
|
Xu H, Yang C, Li L, Du J, Yin Q, Zhao P, Wang N, Huang W, Li Y. Design, synthesis, and evaluation of chalcone derivatives as xanthine oxidase inhibitors. Eur J Med Chem 2024; 279:116893. [PMID: 39348762 DOI: 10.1016/j.ejmech.2024.116893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 10/02/2024]
Abstract
Xanthine oxidase (XO) is an important enzyme that catalyzes the oxidation of hypoxanthine to xanthine and xanthine to uric acid in the catabolism of purines in humans. This makes XO a well-recognized target in alleviating hyperuricemia. The present study adapted a structure-based drug discovery approach to develop potent and low-toxicity XO inhibitors with the chalcone skeleton. We introduced a carboxyl group and a hydroxyl group to the B ring and modified the A ring. 35 chalcone derivatives were designed and synthesized. All the 35 derivatives exhibited higher XO inhibition activities (IC50 = 0.064-0.559 μM) compared with allopurinol (IC50 = 2.588 μM). Their high affinity was attributed to strong hydrogen bond interactions formed between the introduced carboxyl and hydroxyl groups with key amino acid residues in XO. SAR analysis disclosed that carboxyl, hydroxyl, ethyl (12c), methylamino (12h), dimethylamino (12i), indolin (13k), and indol (13l) groups played important roles in improving the whole molecules' inhibition potency against XO. ADME predictions and cytotoxicity assays suggested their pharmacokinetic characteristics and biocompatibility were desirable. Additionally, 12c exhibited a significant hypouricemic effect on potassium oxonate-induced hyperuricemia rats after orally administrated at a dose range of 10-40 mg/kg, representing a promising anti-hyperuricemia potential for further optimization and development.
Collapse
Affiliation(s)
- Haiqi Xu
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Can Yang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Lizi Li
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiana Du
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Qin Yin
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Puchen Zhao
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Na Wang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Wencai Huang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Yanfang Li
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
4
|
Ullah Z, Yue P, Mao G, Zhang M, Liu P, Wu X, Zhao T, Yang L. A comprehensive review on recent xanthine oxidase inhibitors of dietary based bioactive substances for the treatment of hyperuricemia and gout: Molecular mechanisms and perspective. Int J Biol Macromol 2024; 278:134832. [PMID: 39168219 DOI: 10.1016/j.ijbiomac.2024.134832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
Hyperuricemia (HUA) has attained a considerable global health concern, related to the development of other metabolic syndromes. Xanthine oxidase (XO), the main enzyme that catalyzes xanthine and hypoxanthine into uric acid (UA), is a key target for drug development against HUA and gout. Available XO inhibitors are effective, but they come with side effects. Recent, research has identified new XO inhibitors from dietary sources such as flavonoids, phenolic acids, stilbenes, alkaloids, polysaccharides, and polypeptides, effectively reducing UA levels. Structural activity studies revealed that -OH groups and their substitutions on the benzene ring of flavonoids, polyphenols, and stilbenes, cyclic rings in alkaloids, and the helical structure of polysaccharides are crucial for XO inhibition. Polypeptide molecular weight, amino acid sequence, hydrophobicity, and binding mode, also play a significant role in XO inhibition. Molecular docking studies show these bioactive components prevent UA formation by interacting with XO substrates via hydrophobic, hydrogen bonds, and π-π interactions. This review explores the potential bioactive substances from dietary resources with XO inhibitory, and UA lowering potentials detailing the molecular mechanisms involved. It also discusses strategies for designing XO inhibitors and assisting pharmaceutical companies in developing safe and effective treatments for HUA and gout.
Collapse
Affiliation(s)
- Zain Ullah
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China
| | - Panpan Yue
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China
| | - Guanghua Mao
- School of the Environment and Safety Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Min Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China
| | - Peng Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China
| | - Xiangyang Wu
- School of the Environment and Safety Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China.
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China.
| |
Collapse
|
5
|
Singh K, Singh VK, Mishra R, Sharma A, Pandey A, Srivastava SK, Chaurasia H. Design, Synthesis, DFT, docking Studies, and antimicrobial evaluation of novel benzimidazole containing sulphonamide derivatives. Bioorg Chem 2024; 149:107473. [PMID: 38820940 DOI: 10.1016/j.bioorg.2024.107473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/05/2024] [Accepted: 05/16/2024] [Indexed: 06/02/2024]
Abstract
In silico approaches have been employed to design a new series of benzimidazole-containing sulphonamide derivatives and qualified compounds have been synthesized to analyze their potential as antimicrobial agents. Antibacterial screening of all synthesized compounds was done using the broth microdilution method against several human pathogenic bacteria, viz. Gram-positive bacteria [B. cerus (NCIN-2156), B. subtilis (ATCC-6051), S. aureus (NCIM-2079)] and Gram-negative bacteria [P. aeruginosa (NCIM-2036), E. coli (NCIM-2065), and a drug-resistant strain of E. coli (U-621)], and the compounds presented admirable MIC values, ranging between 100-1.56 µg/mL. The combinatorial analysis showed the magnificent inhibitory efficiency of the tested compounds, acquired equipotent to ten-fold more potency compared to original MIC values. An immense synergistic effect was exhibited by the compounds during combination studies with reference drugs chloramphenicol and sulfamethoxazole was presented as fractional inhibitory concentration (∑FIC). Enzyme inhibition studies of all synthesized compounds were done by using peptidyl transferase and dihydropteroate synthase enzymes isolated from E. coli and S. aureus and each of the compound presented the admirable IC50 values, where the lead compound 3 bound to peptidyl transferase (of S. aureus with IC50 363.51 ± 2.54 µM and E. coli IC50 1.04 ± 0.08 µM) & dihydropteroate synthase (of S. aureus IC50 3.51 ± 0.82 µM and E. coli IC50 2.77 ± 0.65 µM), might account for the antimicrobial effect, exhibited excellent inhibition potential. Antifungal screening was also performed employing food poisoning methods against several pathogenic fungal species, viz A. flavus, F. oxysporum, A. niger, and A. brassicae. The obtained result indicated that few compounds can prove to be a potent drug regimen against dreaded MDR strains of microbes. Structural activity relationship (SAR) analysis and docking studies reveal that the presence of electron-withdrawing, polar, and more lipophilic substituents positively favor the antibacterial activity, whereas, electron-withdrawing, more polar, and hydrophilic substituents favor the antifungal activities. A robust coherence has been found in in-silico and in-vitro biological screening results of the compounds.
Collapse
Affiliation(s)
- Kajal Singh
- Photophysical and Therapeutic Laboratory, Department of Chemistry, C.M.P. Degree College (A constituent P.G. College of University of Allahabad), Prayagraj 211002, India
| | - Vishal K Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Richa Mishra
- Bio-organic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj 211002, India
| | - Ashwani Sharma
- Photophysical and Therapeutic Laboratory, Department of Chemistry, C.M.P. Degree College (A constituent P.G. College of University of Allahabad), Prayagraj 211002, India
| | - Archana Pandey
- Photophysical and Therapeutic Laboratory, Department of Chemistry, C.M.P. Degree College (A constituent P.G. College of University of Allahabad), Prayagraj 211002, India
| | - Santosh K Srivastava
- Photophysical and Therapeutic Laboratory, Department of Chemistry, C.M.P. Degree College (A constituent P.G. College of University of Allahabad), Prayagraj 211002, India
| | - Himani Chaurasia
- Photophysical and Therapeutic Laboratory, Department of Chemistry, C.M.P. Degree College (A constituent P.G. College of University of Allahabad), Prayagraj 211002, India.
| |
Collapse
|
6
|
Singh A, Debnath R, Chawla V, Chawla PA. Heterocyclic compounds as xanthine oxidase inhibitors for the management of hyperuricemia: synthetic strategies, structure-activity relationship and molecular docking studies (2018-2024). RSC Med Chem 2024; 15:1849-1876. [PMID: 38911168 PMCID: PMC11187568 DOI: 10.1039/d4md00072b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/25/2024] [Indexed: 06/25/2024] Open
Abstract
Hyperuricemia is characterized by higher-than-normal levels of uric acid in the bloodstream. This condition can increase the likelihood of developing gout, a form of arthritis triggered by the deposition of urate crystals in the joints, leading to inflammation and pain. An essential part of purine metabolism is played by the enzyme xanthine oxidase (XO), which transforms xanthine and hypoxanthine into uric acid. Despite its vital role, diseases such as gout have been associated with elevated uric acid levels, which are linked to increased XO activity. To manage hyperuricemia, this study focuses on potential nitrogen based heterocyclic compounds that may serve as XO inhibitors which may lower uric acid levels and prevent hyperuricemia. Xanthine oxidase inhibitors are a class of medications used to treat conditions like gout by reducing the production of uric acid. The present study demonstrates numerous compounds, particularly nitrogen containing heterocyclic compounds including their synthesis, structure-activity relationship, and molecular docking studies. This paper also contains drugs undergoing clinical studies and the xanthine oxidase inhibitors that have been approved by the FDA.
Collapse
Affiliation(s)
- Arshdeep Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy Ghal Kalan, G.T Road Moga Punjab 142001 India
| | - Rabin Debnath
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy Ghal Kalan, G.T Road Moga Punjab 142001 India
| | - Viney Chawla
- University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences Faridkot 151203 Punjab India
| | - Pooja A Chawla
- University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences Faridkot 151203 Punjab India
| |
Collapse
|
7
|
Bellahcene F, Benarous K, Mermer A, Boulebd H, Serseg T, Linani A, Kaouka A, Yousfi M, Syed A, Elgorban AM, Ozeki Y, Kawsar SM. Unveiling potent Schiff base derivatives with selective xanthine oxidase inhibition: In silico and in vitro approach. Saudi Pharm J 2024; 32:102062. [PMID: 38601975 PMCID: PMC11004395 DOI: 10.1016/j.jsps.2024.102062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
This research describes the synthesis by an environmentally-friendly method, microwave irradiation, development and analysis of three novel and one previously identified Schiff base derivative as a potential inhibitor of bovine xanthine oxidase (BXO), a key enzyme implicated in the progression of gout. Meticulous experimentation revealed that these compounds (10, 9, 4, and 7) have noteworthy inhibitory effects on BXO, with IC50 values ranging from 149.56 µM to 263.60 µM, indicating their good efficacy compared to that of the standard control. The validation of these results was further enhanced through comprehensive in silico studies, which revealed the pivotal interactions between the inhibitors and the catalytic sites of BXO, with a particular emphasis on the imine group (-C = N-) functionalities. Intriguingly, the compounds exhibiting the highest inhibition rates also showcase advantageous ADMET profiles, alongside encouraging initial assessments via PASS, hinting at their broad-spectrum potential. The implications of these findings are profound, suggesting that these Schiff base derivatives not only offer a new vantage point for the inhibition of BXO but also hold considerable promise as innovative therapeutic agents in the management and treatment of gout, marking a significant leap forward in the quest for more effective gout interventions.
Collapse
Affiliation(s)
- Fatna Bellahcene
- Laboratory of Fundamental Sciences, Faculty of Sciences, University of Amar Telidji, Laghouat, Algeria
| | - Khedidja Benarous
- Laboratory of Fundamental Sciences, Faculty of Sciences, University of Amar Telidji, Laghouat, Algeria
| | - Arif Mermer
- Department of Biotechnology, University of Health Sciences, İstanbul, Turkey
- Experimental Medicine Application and Research Center, Validebag Research Park, University of Health Sciences, İstanbul, Turkey
- Department of Pharmacy, University of Health Sciences, İstanbul, Turkey
| | - Houssem Boulebd
- Department of Chemistry, Faculty of Exact Sciences, University of Constantine 1, Constantine, Algeria
| | - Talia Serseg
- Laboratory of Fundamental Sciences, Faculty of Sciences, University of Amar Telidji, Laghouat, Algeria
- Laboratoire des Sciences Appliquées et Didactiques, Ecole Normale Supérieure de Laghouat, Algeria
| | - Abderahmane Linani
- Laboratory of Fundamental Sciences, Faculty of Sciences, University of Amar Telidji, Laghouat, Algeria
| | - Alaeddine Kaouka
- Laboratoire des Sciences Appliquées et Didactiques, Ecole Normale Supérieure de Laghouat, Algeria
| | - Mohamed Yousfi
- Laboratory of Fundamental Sciences, Faculty of Sciences, University of Amar Telidji, Laghouat, Algeria
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Abdallah M. Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Yasuhiro Ozeki
- Graduate School of NanoBio Sciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Sarkar M.A. Kawsar
- Laboratory of Carbohydrate and Nucleoside Chemistry, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh
| |
Collapse
|
8
|
Benarous K, Serseg T, Mermer A, Tahmasebifar A, Boulebd H, Linani A. Exploring the Anti-Cancer Potential of Hispidin: A Comprehensive in Silico and in Vitro Study on Human Osteosarcoma Saos2 Cells. Chem Biodivers 2024; 21:e202301833. [PMID: 38456582 DOI: 10.1002/cbdv.202301833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/09/2024]
Abstract
Hispidin was initially discovered in basidiomycete Inonotus hispidus (Bull.) P. Karst and this extraordinary compound possesses immense potency and can be extracted from the wild mushroom through specialized bioreactor cultivation techniques. In our study, we isolated it from Inonotus hispidus (Bull.) P. Karst., with a yield of 3.6 %. We identified and characterized hispidin through the implementation of spectroscopic techniques such as FTIR, NMR, and MS. Additionally, we utilized Thermogravimetric Analysis for thermal characterization of the compound. Computational studies based on DFT were performed to investigate the molecular structure, electronic properties, and chemical reactivity of hispidin. PASS analysis for hispidin demonstrated that 19 of them are anti-neoplastic activities. The Pharmacology prediction of hispidin confirm that it is not toxic, non-carcinogenesis with a good human intestinal absorption. The effect of hispidin on the viability of bone cancer cells was evaluated by MTT assay. The results showed that hispidin significantly reduced SaoS2 cell viability in a dose-dependent manner. Molecular docking was carried out using five targets related to bone cancer to determine the interactions between hispidin and the studied proteins. The results demonstrate that hispidin is a good inhibitor for the five targets. Dynamic simulation shows a good stability of the complex hispidin-protein.
Collapse
Affiliation(s)
- Khedidja Benarous
- Fundamental sciences laboratory, Amar Telidji University, Laghouat, Algeria
| | - Talia Serseg
- Fundamental sciences laboratory, Amar Telidji University, Laghouat, Algeria
- Laboratoire de sciences appliquées et didactiques, Ecole Normale Supérieure de, Laghouat, Algeria
| | - Arif Mermer
- Department of Biotechnology, University of Health Sciences, İstanbul, Türkiye
- Experimental Medicine Application and Research Center, Validebag Research Park, University of Health Sciences, İstanbul, Türkiye
| | - Aydin Tahmasebifar
- Department of Biomaterials, University of Health Sciences, İstanbul, Türkiye
- Experimental Medicine Application and Research Center, Validebag Research Park, University of Health Sciences, İstanbul, Türkiye
| | - Houssem Boulebd
- Chemistry Department, Faculty of Exact Science, University of Constantine 1, Constantine, 25000, Algeria
| | - Abderahmane Linani
- Fundamental sciences laboratory, Amar Telidji University, Laghouat, Algeria
| |
Collapse
|
9
|
Kumar N, Kaur K, Kaur N, Singh E, Bedi PMS. Pathology, target discovery, and the evolution of XO inhibitors from the first discovery to recent advances (2020-2023). Bioorg Chem 2024; 143:107042. [PMID: 38118298 DOI: 10.1016/j.bioorg.2023.107042] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/11/2023] [Accepted: 12/15/2023] [Indexed: 12/22/2023]
Abstract
Hyperuricemia, a disease characterized by elevation of serum uric acid level beyond 6 mg/dL. This elevation led to appearance of symptoms from joint pain to gout and from gout to difficulty in mobility of the patient. So, in this review, we have summarized the pathology of hyperuricemia, discovery of target and discovery of first XO inhibitor. At last, this review provides in-sights about the recently discovered as natural XO inhibitors, followed by design, structure activity relationship and biological activity of synthetic compounds as XO inhibitors discovered between 2020 and 2023 years. At last, the pharmacophores generated in this study will guide new researchers to design and modify the structure of novel XO inhibitors.
Collapse
Affiliation(s)
- Nitish Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India.
| | - Komalpreet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India.
| | - Navjot Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India.
| | - Ekampreet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India.
| | | |
Collapse
|
10
|
Liu W, Ren J, Qin X, Zhang X, Wu H, Han LJ. Structural identification and combination mechanism of iron (II)-chelating Atlantic salmon ( Salmo salar L.) skin active peptides. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:340-352. [PMID: 38196720 PMCID: PMC10772038 DOI: 10.1007/s13197-023-05845-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/21/2023] [Accepted: 09/11/2023] [Indexed: 01/11/2024]
Abstract
In order to utilize salmon skin for high value, and investigate the structural identification and combination mechanism of iron (II)-chelating peptides systemically, Atlantic salmon (Salmo salar L.) skin, a by-product of Atlantic salmon processing, was treated by two-step enzymatic hydrolysis to obtain salmon skin active peptides (SSAP). Then they reacted with iron (II) to obtain iron (II)-chelating salmon skin active peptides (SSAP-Fe) with a high iron (II) chelating ability of 98.84%. The results of Fourier transform infrared spectroscopy (FTIR), circular dichroism (CD) spectroscopy, 8-anilino-1-naphthalenesulfonic acid ammonium salt hydrate (ANS) combined fluorescence measurement, isothermal titration calorimetry (ITC) and full wavelength ultraviolet (UV) scanning showed that the structural characteristics of SSAP changed before and after chelating iron (II). Reverse phase high performance liquid chromatography (RP-HPLC) and mass spectrometry were used to identify and quantify the peptides in SSAP-Fe. Four peptide sequences (STEGGG, GIIKYGDDFMH, PGQPGIGYDGPAGPPGPPGPPGAP and QNQRESWTTCRSQSSLPDG) were identified. The content of PGQPGIGYDGPAGPPGPPGPPGAP was the highest, at 25.17 μg/mg. The pharmacokinetic and pharmacodynamic properties of these four peptides were also investigated, and the results indicated that they have satisfactory predicted ADMET properties. Molecular docking technology was used to analyze the binding sites between iron (II) and SSAP, and it was found that PGQPGIGYDGPAGPPGPPGPPGAP had the lowest predicted binding energy with iron (II) and the most stable predicted binding energy with iron (II). This results showed that the stability of SSAP-Fe were closely related to the number of covalent bonds and the types of amino acids. This study revealed the structure and combination mechanism of SSAP-Fe, and indicated that SSAP-Fe prepared by chelation may be used as a Fe supplement that can be applied in functional foods or ingredients.
Collapse
Affiliation(s)
- Wen–Ying Liu
- Engineering Laboratory for Agro Biomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing, 100083 People’s Republic of China
| | - Jie Ren
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015 People’s Republic of China
| | - Xiu–Yuan Qin
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015 People’s Republic of China
| | - Xin–Xue Zhang
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015 People’s Republic of China
| | - Han–Shuo Wu
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015 People’s Republic of China
| | - Lu-Jia Han
- Engineering Laboratory for Agro Biomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing, 100083 People’s Republic of China
| |
Collapse
|
11
|
Fan SH, Wang WQ, Zhou YW, Gao XJ, Zhang Q, Zhang MH. Research on the Interaction Mechanism and Structural Changes in Human Serum Albumin with Hispidin Using Spectroscopy and Molecular Docking. Molecules 2024; 29:655. [PMID: 38338399 PMCID: PMC10856618 DOI: 10.3390/molecules29030655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
The interaction between human serum albumin (HSA) and hispidin, a polyketide abundantly present in both edible and therapeutic mushrooms, was explored through multispectral methods, hydrophobic probe assays, location competition trials, and molecular docking simulations. The results of fluorescence quenching analysis showed that hispidin quenched the fluorescence of HSA by binding to it via a static mechanism. The binding of hispidin and HSA was validated further by synchronous fluorescence, three-dimensional fluorescence, and UV/vis spectroscopy analysis. The apparent binding constant (Ka) at different temperatures, the binding site number (n), the quenching constants (Ksv), the dimolecular quenching rate constants (Kq), and the thermodynamic parameters (∆G, ∆H, and ∆S) were calculated. Among these parameters, ∆H and ∆S were determined to be 98.75 kJ/mol and 426.29 J/(mol·K), respectively, both exhibiting positive values. This observation suggested a predominant contribution of hydrophobic forces in the interaction between hispidin and HSA. By employing detergents (SDS and urea) and hydrophobic probes (ANS), it became feasible to quantify alterations in Ka and surface hydrophobicity, respectively. These measurements confirmed the pivotal role of hydrophobic forces in steering the interaction between hispidin and HSA. Site competition experiments showed that there was an interaction between hispidin and HSA molecules at site I, which situates the IIA domains of HSA, which was further confirmed by the molecular docking simulation.
Collapse
Affiliation(s)
- Si-Hua Fan
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, No. 1, Kechuang Road, Maonan District, Maoming 525000, China; (S.-H.F.); (W.-Q.W.)
- College of Animal Science and Technology, Yangtze University, 88 Jingmi Road, Jingzhou District, Jingzhou 434025, China; (Y.-W.Z.); (X.-J.G.)
| | - Wen-Qiang Wang
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, No. 1, Kechuang Road, Maonan District, Maoming 525000, China; (S.-H.F.); (W.-Q.W.)
- College of Animal Science and Technology, Yangtze University, 88 Jingmi Road, Jingzhou District, Jingzhou 434025, China; (Y.-W.Z.); (X.-J.G.)
| | - Yu-Wen Zhou
- College of Animal Science and Technology, Yangtze University, 88 Jingmi Road, Jingzhou District, Jingzhou 434025, China; (Y.-W.Z.); (X.-J.G.)
| | - Xue-Jun Gao
- College of Animal Science and Technology, Yangtze University, 88 Jingmi Road, Jingzhou District, Jingzhou 434025, China; (Y.-W.Z.); (X.-J.G.)
| | - Qiang Zhang
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, No. 1, Kechuang Road, Maonan District, Maoming 525000, China; (S.-H.F.); (W.-Q.W.)
| | - Ming-Hui Zhang
- College of Animal Science and Technology, Yangtze University, 88 Jingmi Road, Jingzhou District, Jingzhou 434025, China; (Y.-W.Z.); (X.-J.G.)
| |
Collapse
|
12
|
Sun ZG, Wu KX, Ullah I, Zhu HL. Recent Advances in Xanthine Oxidase Inhibitors. Mini Rev Med Chem 2024; 24:1177-1186. [PMID: 37711003 DOI: 10.2174/1389557523666230913091558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 09/16/2023]
Abstract
Uric acid is a product of purine nucleotide metabolism, and high concentrations of uric acid can lead to hyperuricemia, gout and other related diseases. Xanthine oxidase, the only enzyme that catalyzes xanthine and hypoxanthine into uric acid, has become a target for drug development against hyperuricemia and gout. Inhibition of xanthine oxidase can reduce the production of uric acid, so xanthine oxidase inhibitors are used to treat hyperuricemia and related diseases, including gout. In recent years, researchers have obtained new xanthine oxidase inhibitors through drug design, synthesis, or separation of natural products. This paper summarizes the research on xanthine oxidase inhibitors since 2015, mainly including natural products, pyrimidine derivatives, triazole derivatives, isonicotinamide derivatives, chalcone derivatives, furan derivatives, coumarin derivatives, pyrazole derivatives, and imidazole derivatives, hoping to provide valuable information for the research and development of novel xanthine oxidase inhibitors.
Collapse
Affiliation(s)
- Zhi-Gang Sun
- Central Laboratory, Linyi Central Hospital, No. 17 Jiankang Road, Linyi, 276400, China
| | - Kai-Xiang Wu
- School of Clinical Medicine, Jining Medical University, No. 133 Hehua Road, Jining, 272067, China
| | - Inam Ullah
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No. 163 Xianlin Road, Nanjing, 210023, China
| | - Hai-Liang Zhu
- Central Laboratory, Linyi Central Hospital, No. 17 Jiankang Road, Linyi, 276400, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No. 163 Xianlin Road, Nanjing, 210023, China
| |
Collapse
|
13
|
Agrawal N, Arya M, Kushwah P. Therapeutic voyage of synthetic and natural xanthine oxidase inhibitors. Chem Biol Drug Des 2023; 102:1293-1307. [PMID: 37550063 DOI: 10.1111/cbdd.14319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/09/2023]
Abstract
Xanthine oxidase (XO) inhibitors are commonly used to treat gout, nephropathy, and renal stone diseases related to hyperuricemia. However, recent research has shown that these inhibitors may also have potential benefits in preventing vascular diseases, including those affecting the cerebrovasculature. This is due to emerging evidence suggesting that serum uric acid is involved in the growth of cardiovascular disease, and XO inhibition can reduce oxidative stress in the vasculature. There is a great interest in the development of new XO inhibitors for the treatment of hyperuricemia and gout. The present review discusses the many synthetic and natural XO inhibitors that have been developed which are found to have greater potency.
Collapse
Affiliation(s)
- Neetu Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Medha Arya
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Priya Kushwah
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| |
Collapse
|
14
|
Li WL, Tong SG, Yang ZY, Xiao YQ, Lv XC, Weng Q, Yu K, Liu GR, Luo XQ, Wei T, Han JZ, Ai LZ, Ni L. The dynamics of microbial community and flavor metabolites during the acetic acid fermentation of Hongqu aromatic vinegar. Curr Res Food Sci 2022; 5:1720-1731. [PMID: 36238813 PMCID: PMC9550536 DOI: 10.1016/j.crfs.2022.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/02/2022] [Accepted: 10/02/2022] [Indexed: 11/05/2022] Open
Abstract
In this study, we investigated the dynamics of microbial community and flavor metabolites during the traditional fermentation of Hongqu aromatic vinegar (HAV) and subsequently explored the potential relationship between microbiota and flavor metabolites. The microbiome analysis based on high-throughput sequencing (HTS) of amplicons demonstrated that Lactobacillus, Acetobacter and Clostridium were the dominant bacterial genera, while Alternaria, Candida, Aspergillus and Issatchenkia were the dominant fungal genera during the acetic acid fermentation (AAF) of HAV. A total of 101 volatile flavor compounds were identified through gas chromatography-mass spectrometry (GC-MS) during HAV fermentation, including esters (35), alcohols (17), aldehydes (11), acids (11), ketones (7), phenols (10), and others (10). Redundancy analysis (RDA) was used to reveal the correlation between microbiota and volatile flavor compounds. Lactobacillus and Acetobacter were the two bacterial genera that have the great influence on the production of volatile flavor components in HAV. Among them, Lactobacillus was positively correlated with a variety of ethyl esters, while Acetobacter positively contributed to the formation of several organic acids. Furthermore, the non-volatile metabolites were detected by ultra-high-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS). A total of 41 dipeptides were identified during HAV fermentation, and most of them may have sensory characteristics and biological activities. RDA showed that Aspergillus, Epicoccum, Issatchenkia, Candida and Malassezia were the most influential fungal genera on non-volatile metabolites. In particular, Epicoccum was first reported in Hongqu vinegar and showed a positive correlation with the production of various organic acids. In conclusion, this study provides a scientific basis for understanding the flavor generation mechanism of HAV, and may be valuable for developing effective techniques to select suitable strains to improve the flavor quality of HAV.
Collapse
Affiliation(s)
- Wen-Long Li
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Shan-Gong Tong
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Zi-Yi Yang
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Yan-Qin Xiao
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Xu-Cong Lv
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Qi Weng
- Fujian Salt Industry Group Co., Ltd., Fuzhou, Fujian, 350001, PR China
| | - Kui Yu
- Fujian Salt Industry Group Co., Ltd., Fuzhou, Fujian, 350001, PR China
| | - Gui-Rong Liu
- Fujian Minyan Food Technology Co., Ltd., Sanming, Fujian, 365500, PR China
| | - Xiao-Qing Luo
- Fujian Salt Industry Group Co., Ltd., Fuzhou, Fujian, 350001, PR China
| | - Tao Wei
- Fujian Salt Industry Group Co., Ltd., Fuzhou, Fujian, 350001, PR China
| | - Jin-Zhi Han
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Lian-Zhong Ai
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Li Ni
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| |
Collapse
|
15
|
Garcia AR, Silva-Luiz YPG, Alviano CS, Alviano DS, Vermelho AB, Rodrigues IA. The Natural Alkaloid Tryptanthrin Induces Apoptosis-like Death in Leishmania spp. Trop Med Infect Dis 2022; 7:tropicalmed7060112. [PMID: 35736990 PMCID: PMC9231190 DOI: 10.3390/tropicalmed7060112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/12/2022] [Accepted: 06/17/2022] [Indexed: 11/28/2022] Open
Abstract
Leishmaniasis is a vector-borne disease against which there are no approved vaccines, and the treatment is based on highly toxic drugs. The alkaloids consist of a chemical class of natural nitrogen-containing substances with a long history of antileishmanial activity. The present study aimed at determining the antileishmanial activity and in silico pharmacokinetic and toxicological potentials of tryptanthrin alkaloid. The anti-Leishmania amazonensis and anti-L. infantum assays were performed against both promastigotes and intracellular amastigotes. Cellular viability was determined by parasites’ ability to grow (promastigotes) or differentiate (amastigotes) after incubation with tryptanthrin. The mechanisms of action were explored by mitochondrion dysfunction and apoptosis-like death evaluation. For the computational pharmacokinetics and toxicological analysis (ADMET), tryptanthrin was submitted to the PreADMET webserver. The alkaloid displayed anti-promastigote activity against L. amazonensis and L. infantum (IC50 = 11 and 8.0 μM, respectively). Tryptanthrin was active against intracellular amastigotes with IC50 values of 75 and 115 μM, respectively. Mitochondrial membrane depolarization was observed in tryptanthrin-treated promastigotes. In addition, parasites undergoing apoptosis-like death were detected after 18 h of exposure. In silico ADMET predictions revealed that tryptanthrin has pharmacokinetic and toxicological properties similar to miltefosine. The results presented herein demonstrate that tryptanthrin is an interesting drug candidate against leishmaniasis.
Collapse
Affiliation(s)
- Andreza R. Garcia
- Graduate Program in Pharmaceutical Sciences, School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Yasmin P. G. Silva-Luiz
- Graduate Program in Science (Microbiology), Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Celuta S. Alviano
- Department of General Microbiology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (C.S.A.); dani (D.S.A.); (A.B.V.)
| | - Daniela S. Alviano
- Department of General Microbiology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (C.S.A.); dani (D.S.A.); (A.B.V.)
| | - Alane B. Vermelho
- Department of General Microbiology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (C.S.A.); dani (D.S.A.); (A.B.V.)
| | - Igor A. Rodrigues
- Department of Natural Products and Food, School of Pharmacy, CCS, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Correspondence:
| |
Collapse
|
16
|
Linani A, Benarous K, Bou-Salah L, Yousfi M. The inhibitory kinetics of vitamins B9, C, E, and D3 on bovine xanthine oxidase: Gout treatment. Chem Biol Interact 2022; 359:109922. [PMID: 35395231 DOI: 10.1016/j.cbi.2022.109922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/16/2022] [Accepted: 03/31/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Over-consumption of foods high in purines like seafood, red meat, and alcoholic beverages leads to hyperuricemia causing gout attacks. Xanthine oxidase was reported responsible for the overproduction of uric acid. MATERIAL AND METHODS We intend to test in silico and in vitro, the inhibition effect of four vitamins against bovine milk xanthine oxidase (BXO). We performed Molecular docking with GOLD v4.0, and the biological activity prediction with the PASS server. The best-selected vitamins were chosen based on their best PLPchem score. The BXO constant Km and Vmax were determined in vitro, and then the vitamins were tested for their inhibition effect to BXO. Furthermore, the inhibition constant Ki of each inhibitor were determined using Dixon method, the vitamins chosen were vitamin E, vitamin B9, vitamin D3, and vitamin C. RESULTS The in silico results show that the tested vitamins were the best inhibitors model with PLPchem scores up to 70 comparing to the control. The in vitro results show that BXO have a Km value of 163.55 μM with Vmax of 37 U, vitamins B9, E, C, and D3 were potent inhibitors to BXO with an IC50 of 34.10 ± 0.21, 36.68 ± 1.50, 39.01 ± 0.02, and 100.28 ± 0.33 μM, respectively comparing to the control (32.03 ± 0.73 μM). The kinetic study shows that all tested vitamins were Non-competitive inhibitors, the Ki values were 15 ± 1.76 μM, 29 ± 1.06 μM, 12 ± 1.41 μM, and 20 ± 0.71 μM, for respectively vitamins B9, E, C, and D3. CONCLUSION The obtained results promise an excellent strategy using vitamins to enhance immunity, treat hyperuricemia, and minimize the usual drug side effects.
Collapse
Affiliation(s)
- Abderahmane Linani
- Fundamental Sciences Laboratory, Amar Telidji University, Ghardaïa Road BP37G (03000), Laghouat, Algeria.
| | - Khedidja Benarous
- Fundamental Sciences Laboratory, Amar Telidji University, Ghardaïa Road BP37G (03000), Laghouat, Algeria; Biology Department, Amar Telidji University, Laghouat, Algeria
| | - Leila Bou-Salah
- Fundamental Sciences Laboratory, Amar Telidji University, Ghardaïa Road BP37G (03000), Laghouat, Algeria
| | - Mohamed Yousfi
- Fundamental Sciences Laboratory, Amar Telidji University, Ghardaïa Road BP37G (03000), Laghouat, Algeria
| |
Collapse
|
17
|
Li H, Zhang X, Gu L, Li Q, Ju Y, Zhou X, Hu M, Li Q. Anti-Gout Effects of the Medicinal Fungus Phellinus igniarius in Hyperuricaemia and Acute Gouty Arthritis Rat Models. Front Pharmacol 2022; 12:801910. [PMID: 35087407 PMCID: PMC8787200 DOI: 10.3389/fphar.2021.801910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/16/2021] [Indexed: 12/23/2022] Open
Abstract
Background:Phellinus igniarius (P. igniarius) is an important medicinal and edible fungus in China and other Southeast Asian countries and has diverse biological activities. This study was performed to comparatively investigate the therapeutic effects of wild and cultivated P. igniarius on hyperuricaemia and gouty arthritis in rat models. Methods: UPLC-ESI-qTOF-MS was used to identify the chemical constituents of polyphenols from wild P. igniarius (WPP) and cultivated P. igniarius (CPP). Furthermore, WPP and CPP were evaluated in an improved hyperuricaemia rat model induced by yeast extract, adenine and potassium oxonate, which was used to examine xanthine oxidase (XO) activity inhibition and anti-hyperuricemia activity. WPP and CPP therapies for acute gouty arthritis were also investigated in a monosodium urate (MSU)-induced ankle swelling model. UHPLC-QE-MS was used to explore the underlying metabolic mechanisms of P. igniarius in the treatment of gout. Results: The main active components of WPP and CPP included protocatechuic aldehyde, hispidin, davallialactone, phelligridimer A, hypholomine B and inoscavin A as identified by UPLC-ESI-qTOF-MS. Wild P. igniarius and cultivated P. igniarius showed similar activities in reducing uric acid levels through inhibiting XO activity and down-regulating the levels of UA, Cr and UN, and they had anti-inflammatory activities through down-regulating the secretions of ICAM-1, IL-1β and IL-6 in the hyperuricaemia rat model. The pathological progression of kidney damage was also reversed. The polyphenols from wild and cultivated P. igniarius also showed significant anti-inflammatory activity by suppressing the expression of ICAM-1, IL-1β and IL-6 and by reducing the ankle joint swelling degree in an MSU-induced acute gouty arthritis rat model. The results of metabolic pathway enrichment indicated that the anti-hyperuricemia effect of WPP was mainly related to the metabolic pathways of valine, leucine and isoleucine biosynthesis and histidine metabolism. Additionally, the anti-hyperuricemia effect of CPP was mainly related to nicotinate and nicotinamide metabolism and beta-alanine metabolism. Conclusions: Wild P. igniarius and cultivated P. igniarius both significantly affected the treatment of hyperuricaemia and acute gouty arthritis models in vivo and therefore may be used as potential active agents for the treatment of hyperuricaemia and acute gouty arthritis.
Collapse
Affiliation(s)
- Hongxing Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China.,Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Xinyue Zhang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China.,Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Lili Gu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China.,Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Qín Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China.,Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Yue Ju
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China.,Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Xuebin Zhou
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China.,Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Min Hu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China.,Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Qīn Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China.,Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
18
|
Linani A, Benarous K, Bou-Salah L, Yousfi M, Goumri-Said S. Exploring Structural Mechanism of COVID-19 Treatment with Glutathione as a Potential Peptide Inhibitor to the Main Protease: Molecular Dynamics Simulation and MM/PBSA Free Energy Calculations Study. Int J Pept Res Ther 2022; 28:55. [PMID: 35079241 PMCID: PMC8777181 DOI: 10.1007/s10989-022-10365-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2022] [Indexed: 01/08/2023]
Abstract
The 2019-novel coronavirus has unfolded everywhere in the world and obliged a billion human beings in open confinement, whereas many treatments, and vaccines have been proposed towards this pandemic. The main protease (Mpro) is an attractive drug target due to the fact that it is the essential protein for virus invasion. This research tests in silico the effect of five vitamins towards Mpro, by employing molecular docking (MD), molecular dynamics simulation (MDS) with molecular mechanics–Poisson–Boltzmann surface area (MM–PBSA) studies. To achieve this work, we have applied some software’s as Autodock Vina, Discovery Studio Visualizer, APBS, and GROMACS. The inhibitors used were decided entirely on the basis of their importance in the production of red blood cells that prevent anemia, in lymphocyte immune system responses, in the regulation of reactive oxygen species production, such as tocopherol (vitamin E), thiamine (vitamin B1), pantothenic acid (vitamin B5), pyridoxine (vitamin B6), biotin (vitamin B7), and glutathione (GSH). The best inhibitor pose established at the highest repetition ratio (RR) and the minimal affinity energy value (MEV), then the best selected inhibitor was considered to MDS. The results indicate that GSH is the leading inhibitor model among the other tested vitamins in the active site of Mpro with a RR value of 94% and MEV of − 5.5 kcal/mol, its RMSD, RMSF, Rg, and hydrogen bonds show stability with Mpro. Furthermore, thiamine, biotin, and tocopherol are viewed as satisfying inhibitors to Mpro, but pyridoxine was observed as the weakest inhibitor. Based on our result, we could recommend the usage of glutathione and vitamin B family as a supportive strategy for feasible remedy of COVID-19 virus.
Collapse
Affiliation(s)
- Abderahmane Linani
- Fundamental Sciences Laboratory, Amar Telidji University, Laghouat, Algeria
| | - Khedidja Benarous
- Fundamental Sciences Laboratory, Amar Telidji University, Laghouat, Algeria
| | - Leila Bou-Salah
- Fundamental Sciences Laboratory, Amar Telidji University, Laghouat, Algeria
| | - Mohamed Yousfi
- Fundamental Sciences Laboratory, Amar Telidji University, Laghouat, Algeria
| | - Souraya Goumri-Said
- Physics Department, College of Science, Alfaisal University, P.O. Box 50927, Riyadh, 11533 Saudi Arabia
| |
Collapse
|
19
|
Li IC, Chang FC, Kuo CC, Chu HT, Li TJ, Chen CC. Pilot Study: Nutritional and Preclinical Safety Investigation of Fermented Hispidin-Enriched Sanghuangporus sanghuang Mycelia: A Promising Functional Food Material to Improve Sleep. Front Nutr 2022; 8:788965. [PMID: 35111796 PMCID: PMC8801445 DOI: 10.3389/fnut.2021.788965] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/27/2021] [Indexed: 12/16/2022] Open
Abstract
Sleep disturbances have been the hallmark of the recent coronavirus disease 2019 pandemic. Studies have shown that once sleep is disrupted, it can lead to psychological and physical health issues which can, in turn, disrupt circadian rhythm and induce further sleep disruption. As consumers are trying to establish healthy routines, nutritional and preclinical safety investigation of fermented hispidin-enriched Sanghuangporus sanghuang mycelia (GKSS) as a novel food material for spontaneous sleep in Sprague-Dawley rats is conducted for the first time. Results showed that the nutritional analysis of GKSS including moisture, ash, crude lipid, crude protein, carbohydrate, and energy were found to be 2.4 ± 0.3%, 8.0 ± 2.5%, 1.7 ± 0.3%, 22.9 ± 1.2%, 65.1 ± 3.1%, and 367.1 ± 10.2 kcal/100 g respectively. In the 28-day repeated-dose oral toxicity study, only Sprague-Dawley male rats receiving 5 g/kg showed a slight decrease in feed consumption at week 3, but no associated clinical signs of toxicity or significant weight loss were observed. Although a significant reduction of the platelet count was found in mid- and high-dose GKSS treated male groups, such changes were noted to be within the normal range and were not correlated with relative spleen weight changes. Hence, the no observed adverse effect level (NOAEL) of GKSS was identified to be higher than 5 g/kg in rats. After the safety of GKSS is confirmed, the sleep-promoting effect of GKSS ethanolic extract enriched with hispidin was further assessed. Despite 75 mg/kg of GKSS ethanolic extract does not affect wakefulness, rapid eye movement (REM) sleep and non-REM (NREM) sleep, GKSS ethanolic extract at 150 mg/kg significantly decreased wakefulness and enhanced NREM and REM sleep. Interestingly, such effects seem to be mediated through anti-inflammatory activities via NF-E2-related factor-2 (Nrf2) signaling pathway. Taken together, these findings provide the preliminary evidence to studies support the claims suggesting that GKSS contained useful phytochemical hispidin could be considered as and is safe to use as a functional food agent or nutraceutical for relieving sleep problems mediated by Nrf2 pathway, which the results are useful for future clinical pilot study.
Collapse
Affiliation(s)
- I-Chen Li
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan, Taiwan
| | - Fang-Chia Chang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ching-Chuan Kuo
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Hsin-Tung Chu
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan, Taiwan
| | - Tsung-Ju Li
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan, Taiwan
- *Correspondence: Tsung-Ju Li
| | - Chin-Chu Chen
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan, Taiwan
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, Taiwan
- Department of Food Science, Nutrition and Nutraceutical Biotechnology, Shih Chien University, Taipei, Taiwan
- Chin-Chu Chen
| |
Collapse
|
20
|
Todorov L, Saso L, Benarous K, Traykova M, Linani A, Kostova I. Synthesis, Structure and Impact of 5-Aminoorotic Acid and Its Complexes with Lanthanum(III) and Gallium(III) on the Activity of Xanthine Oxidase. Molecules 2021; 26:4503. [PMID: 34361656 PMCID: PMC8348579 DOI: 10.3390/molecules26154503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 11/17/2022] Open
Abstract
The superoxide radical ion is involved in numerous physiological processes, associated with both health and pathology. Its participation in cancer onset and progression is well documented. Lanthanum(III) and gallium(III) are cations that are known to possess anticancer properties. Their coordination complexes are being investigated by the scientific community in the search for novel oncological disease remedies. Their complexes with 5-aminoorotic acid suppress superoxide, derived enzymatically from xanthine/xanthine oxidase (X/XO). It seems that they, to differing extents, impact the enzyme, or the substrate, or both. The present study closely examines their chemical structure by way of modern methods-IR, Raman, and 1H NMR spectroscopy. Their superoxide-scavenging behavior in the presence of a non-enzymatic source (potassium superoxide) is compared to that in the presence of an enzymatic source (X/XO). Enzymatic activity of XO, defined in terms of the production of uric acid, seems to be impacted by both complexes and the pure ligand in a concentration-dependent manner. In order to better relate the compounds' chemical characteristics to XO inhibition, they were docked in silico to XO. A molecular docking assay provided further proof that 5-aminoorotic acid and its complexes with lanthanum(III) and gallium(III) very probably suppress superoxide production via XO inhibition.
Collapse
Affiliation(s)
- Lozan Todorov
- Department of Chemistry, Faculty of Pharmacy, Medical University, 1000 Sofia, Bulgaria;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine, Sapienza University, 00185 Rome, Italy;
| | - Khedidja Benarous
- Laboratoire des Sciences Fondamentales, Université Amar Telidji, Laghouat 03000, Algeria; (K.B.); (A.L.)
| | - Maria Traykova
- Department of Physics and Biophysics, Faculty of Medicine, Medical University, 1431 Sofia, Bulgaria;
| | - Abderahmane Linani
- Laboratoire des Sciences Fondamentales, Université Amar Telidji, Laghouat 03000, Algeria; (K.B.); (A.L.)
| | - Irena Kostova
- Department of Chemistry, Faculty of Pharmacy, Medical University, 1000 Sofia, Bulgaria;
| |
Collapse
|