1
|
Pashev A, Petrov V, Pesheva A, Petrova L, Ilieva K, Stavreva G, Atanasova M, Cheshmedzhieva D, Altankov G, Aleksandrova T. Angular-Substituted [1,4]Thiazino[3,4-a]Isoquinolines: Biological Evaluation and In Silico Studies on DPP-IV Inhibition. Int J Mol Sci 2024; 25:11753. [PMID: 39519303 PMCID: PMC11545999 DOI: 10.3390/ijms252111753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Recent studies have discovered that aryl-substituted pyrido[2,1-a]isoquinolines have the potential to be highly active DPP IV inhibitors. In previous studies, we reported a novel synthetic approach for the construction of their sulfur-containing bioisosteric [1,4]thiazino[3,4-a]isoquinolines analogues, incorporating an additional aryl substituent. The present study aims to investigate the DPP IV inhibitory activity and cytotoxicity of the synthesized molecules by in vitro assay. The geometry optimization and molecular docking of the synthesized compounds were used to determine their binding modes to the active site of DPP IV. The docking analysis revealed that the energy-minimized poses of the studied compounds are close to the most important selectivity cliffs for DPP IV inhibition, forming hydrogen bonds and hydrophobic interactions with them. These results can be considered as a preliminary step towards further structural activity modifications.
Collapse
Affiliation(s)
- Aleksandar Pashev
- Faculty of Pharmacy, Medical University Pleven, 1. St. Kliment Ohridski Str., 5800 Pleven, Bulgaria; (V.P.); (A.P.); (G.S.); (T.A.)
| | - Valentin Petrov
- Faculty of Pharmacy, Medical University Pleven, 1. St. Kliment Ohridski Str., 5800 Pleven, Bulgaria; (V.P.); (A.P.); (G.S.); (T.A.)
| | - Aleksandrina Pesheva
- Faculty of Pharmacy, Medical University Pleven, 1. St. Kliment Ohridski Str., 5800 Pleven, Bulgaria; (V.P.); (A.P.); (G.S.); (T.A.)
| | - Lidiya Petrova
- Faculty of Medicine, Medical University Pleven, 1. St. Kliment Ohridski Str., 5800 Pleven, Bulgaria; (L.P.); (K.I.); (M.A.)
| | - Kalina Ilieva
- Faculty of Medicine, Medical University Pleven, 1. St. Kliment Ohridski Str., 5800 Pleven, Bulgaria; (L.P.); (K.I.); (M.A.)
| | - Galya Stavreva
- Faculty of Pharmacy, Medical University Pleven, 1. St. Kliment Ohridski Str., 5800 Pleven, Bulgaria; (V.P.); (A.P.); (G.S.); (T.A.)
| | - Milena Atanasova
- Faculty of Medicine, Medical University Pleven, 1. St. Kliment Ohridski Str., 5800 Pleven, Bulgaria; (L.P.); (K.I.); (M.A.)
| | - Diana Cheshmedzhieva
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1. James Bourchier Blvd., 1164 Sofia, Bulgaria;
| | - George Altankov
- Research Institute, Medical University Pleven, 5800 Pleven, Bulgaria;
| | - Teodora Aleksandrova
- Faculty of Pharmacy, Medical University Pleven, 1. St. Kliment Ohridski Str., 5800 Pleven, Bulgaria; (V.P.); (A.P.); (G.S.); (T.A.)
| |
Collapse
|
2
|
Ajmal M, Mahato AK, Khan M, Rawat S, Husain A, Almalki EB, Alzahrani MA, Haque A, Hakme MJM, Albalawi AS, Rashid M. Significance of Triazole in Medicinal Chemistry: Advancement in Drug Design, Reward and Biological Activity. Chem Biodivers 2024; 21:e202400637. [PMID: 38740555 DOI: 10.1002/cbdv.202400637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
One of the triazole tautomers, 1,2,4-triazole derivatives, has a wide range of biological activities that suggest its potential therapeutic utility in medicinal chemistry. These actions include anti-inflammatory, anti-cancer, anti-bacterial, anti-tuberculosis, and anti-diabetic effects. Using computational simulations and models, we investigate the structure-activity relationships of 1,2,4-triazoles, showing how various modifications to the triazole core yield a variety of clinical therapeutic benefits. The review highlights the anti-inflammatory effect of 1,2,4-triazoles in relation to their ability to disrupt significant inflammatory mediators and pathways. We present in-silico data that illuminate the triazoles' capacity to inhibit cell division, encourage apoptosis, and stop metastasis in a range of cancer models. This review looks at the bactericidal and bacteriostatic properties of 1,2,4-triazole derivatives, with a focus on their potential efficacy against multi-drug resistant bacterial infections and their usage in tuberculosis therapy. In order to better understand these substances' potential anti-diabetic benefits, this review also looks at how they affect glucose metabolism regulation and insulin responsiveness. Coordinated efforts are required to translate the efficacy of 1,2,4-triazole compounds in preclinical models into practical therapeutic benefits. Based on the information provided, it can be concluded that 1,2,4-triazole derivatives are a promising class of diverse therapeutic agents with potential utility in a range of disorders. Their development and improvement might herald a new era of medical care that will be immensely advantageous to both patients and the medical community as a whole. This comprehensive research, which is further reinforced by in-silico investigations, highlights the great medicinal potential of 1,2,4-triazoles. Additionally, this study encourages more research into these substances and their enhancement for use in pharmaceutical development.
Collapse
Affiliation(s)
- Mohammad Ajmal
- School of Pharmaceutical Sciences & Technology, Sardar Bhagwan Singh University, Dehradun, 248001, Uttarakhand, India
| | - Arun Kumar Mahato
- School of Pharmaceutical Sciences & Technology, Sardar Bhagwan Singh University, Dehradun, 248001, Uttarakhand, India
| | - Mausin Khan
- School of Pharmaceutical Sciences & Technology, Sardar Bhagwan Singh University, Dehradun, 248001, Uttarakhand, India
| | - Shivani Rawat
- School of Pharmaceutical Sciences & Technology, Sardar Bhagwan Singh University, Dehradun, 248001, Uttarakhand, India
| | - Asif Husain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110064, India
| | | | | | - Anzarul Haque
- Central Laboratories Unit, Qatar University, Doha, 2713, Qatar
| | | | - Ahmed Suleman Albalawi
- Tabuk Health Cluster, Erada Mental Health Complex, Tabuk, 47717, Kingdom of Saudi Arabia
| | - Mohammad Rashid
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Dentistry and Pharmacy, Buraydah Private Colleges, Buraydah, 51418, Saudi Arabia
| |
Collapse
|
3
|
Li SM, Zeng WZ, Chung CY, Uramaru N, Huang GJ, Wong FF. Synthesis, physicochemical characterization, and investigation of anti-inflammatory activity of water-soluble PEGylated 1,2,4-Triazoles. Bioorg Chem 2024; 147:107312. [PMID: 38599053 DOI: 10.1016/j.bioorg.2024.107312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
A series of water-soluble PEGylated 1,2,4-triazoles 5-8 were successfully synthesized from methyl 5-(chloromethyl)-1-aryl-1H-1,2,4-triazole-3-carboxylates 1. All of the water-soluble PEGylated 1,2,4-triazoles were characterized by FT-IR and 1H NMR spectroscopy. The solubility, in vitro plasma stability, and anti-inflammatory activity were also determined and compared to original methyl 5-(halomethyl)-1-aryl-1H-1,2,4-triazole-3-carboxylates. For SAR study, all PEGylated 1,2,4-triazoles 5-8 performed potential anti-inflammatory activity on LPS-induced RAW 264.7 cells (IC50 = 3.42-7.81 μM). Moreover, the western blot result showed PEGylated 1,2,4-triazole 7d performed 5.43 and 2.37 folds inhibitory activity over iNOS and COX-2 expressions. On the other hand, the cell viability study revealed PEGylated 1,2,4-triazoles 7 and 8 with PEG molecular weight more than 600 presented better cell safety (cell viability > 95 %). Through the solubility and in vitro plasma stability studies, PEGylated 1,2,4-triazoles 7a-d exhibited higher hydrophilicity and prolonged 2.01 folds of half-life in compound 7d. Furthermore, the in vivo anti-inflammatory and gastric safety results indicated PEGylated 1,2,4-triazole 7d more effectively decreased the inflammatory response in edema and COX-2 expression and exhibited higher gastric safety than Indomethacin. Following the in vitro and in vivo study results, PEGylated 1,2,4-triazole 7d possessed favorable solubility, plasma stability features, safety, and significant anti-inflammatory activity to become the potential water-soluble anti-inflammatory candidate.
Collapse
Affiliation(s)
- Sin-Min Li
- Institute of Translation Medicine and New Drug Development, China Medical University, Taichung 40402, Taiwan
| | - Wei-Zheng Zeng
- Department of Nutrition, China Medical University, Taichung 406040, Taiwan
| | - Cheng-Yen Chung
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan
| | - Naoto Uramaru
- Department of Environmental Science, Nihon Pharmaceutical University, Komuro Inamachi Kita-adachi-gun, Saitama-ken 10281, Japan
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan; Department of Food Nutrition and Healthy Biotechnology, Asia University, Taichung 413, Taiwan.
| | - Fung Fuh Wong
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
4
|
Singhal S, Manikrao Patil V, Verma S, Masand N. Recent advances and structure-activity relationship studies of DPP-4 inhibitors as anti-diabetic agents. Bioorg Chem 2024; 146:107277. [PMID: 38493634 DOI: 10.1016/j.bioorg.2024.107277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/02/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Diabetes mellitus (DM) is one of the largest public health problems worldwide and in the last decades various therapeutic targets have been investigated. For the treatment of type-2 DM (T2DM), dipeptidyl peptidase-4 (DPP-4) is one of the well reported target and has established safety in terms of cardiovascular complexicity. Preclinical and clinical studies using DPP-4 inhibitors have demonstrated its safety and effectiveness and have lesser risk of associated hypoglycaemic effect making it suitable for elderly patients. FDA has approved a number of structurally diverse DPP-4 inhibitors for clinical use. The present manuscript aims to focus on the well reported hybrid and non-hybrid analogues and their structural activity relationship (SAR) studies. It aims to provide structural insights for this class of compounds pertaining to favourable applicability of selective DPP-4 inhibitors in the treatment of T2DM.
Collapse
Affiliation(s)
- Shipra Singhal
- Department of Pharmaceutical Chemistry, KIET School of Pharmacy, KIET Group of Institutions, Delhi NCR, Ghaziabad, Uttar Pradesh, India
| | - Vaishali Manikrao Patil
- Charak School of Pharmacy, Chaudhary Charan Singh (CCS) University, Meerut, Uttar Pradesh, India; Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia.
| | - Saroj Verma
- Department of Pharmacy, School of Medical and Allied Sciences, K. R. Mangalam University, Gurugram, India
| | - Neeraj Masand
- Department of Pharmacy, Lala Lajpat Rai Memorial Medical College, Meerut, Uttar Pradesh, India
| |
Collapse
|
5
|
Chung CY, Tseng CC, Li SM, Zeng WZ, Lin YC, Hu YP, Jiang WP, Huang GJ, Tsai HJ, Wong FF. Synthesis of β-Amino Carbonyl 6-(Aminomethyl)- and 6-(Hydroxymethyl)pyrazolopyrimidines for DPP-4 Inhibition Study. Curr Med Chem 2024; 31:3380-3396. [PMID: 35702778 DOI: 10.2174/0929867329666220614094305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/19/2022] [Accepted: 04/01/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Type-2 diabetes is a chronic progressive metabolic disease resulting in severe vascular complications and mortality risk. Recently, DPP-4 inhibitors had been conceived as a favorable class of agents for the treatment of type 2 diabetes due to the minimal side effects. METHODS Sitagliptin is the first medicine approved for the DPP-4 inhibitor. Its structure involved three fragments: 2,4,5-triflorophenyl fragment pharmacophore, enantiomerically β-amino carbonyl linker, and tetrahydrotriazolopyridine. Herein, we are drawn to the possibility of substituting tetrahydrotriazolopyridine motif present in Sitagliptin with a series of new fused pyrazolopyrimidine bicyclic fragment to investigate potency and safety. RESULTS Two series of fused 6-(aminomethyl)pyrazolopyrimidine and 6-(hydroxymethyl) pyrazolopyrimidine derivatives containing β-amino ester or amide as linkers were successfully designed for the new DPP-4 inhibitors. Most fused 6-methylpyrazolopyrimidines were evaluated against DPP-4 inhibition and selectivity capacity. Based on research study, β-amino carbonyl fused 6-(hydroxymethyl)pyrazolopyrimidine possesses the significant DPP-4 inhibition (IC50 ≤ 59.8 nM) and presents similar with Sitagliptin (IC50 = 28 nM). Particularly, they had satisfactory selectivity over DPP-8 and DPP-9, except for QPP. CONCLUSION β-Amino esters and amides fused 6-(hydroxymethyl)pyrazolopyrimidine were developed as the new DPP-4 inhibitors. Those compounds with a methyl group or hydrogen in N-1 position and methyl substituted group in C-3 of pyrazolopyrimidine moiety showed better potent DPP-4 inhibition (IC50 = 21.4-59.8 nM). Furthermore, they had satisfactory selectivity over DPP-8 and DPP-9 Finally, the docking results revealed that compound 9n was stabilized at DPP-4 active site and would be a potential lead drug.
Collapse
Affiliation(s)
- Cheng-Yen Chung
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, No. 91, Hsueh-Shih Rd., Taichung, 40402, Taiwan
| | - Ching-Chun Tseng
- Phd Program for Biotech Pharmaceutical Industry, China Medical University, No. 91, Hsueh-Shih Rd., Taichung, 40402, Taiwan
- School of Pharmacy, China Medical University, No. 91, Hsueh-Shih Rd., Taichung, 40402, Taiwan
| | - Sin-Min Li
- Institute of New Drug Development, China Medical University, No. 91 Hsueh-Shih Rd., Taichung 40402, Taiwan
| | - Wei-Zheng Zeng
- Master Program for Pharmaceutical Manufacture, China Medical University, No. 91, Hsueh-Shih Rd., Taichung, 40402, Taiwan
| | - Yu-Ching Lin
- Department of Biological Science and Technology, China Medical University, Taichung Taiwan
| | - Yu-Pei Hu
- Department of Biological Science and Technology, China Medical University, Taichung Taiwan
| | - Wen-Ping Jiang
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, No. 91, Hsueh-Shih Rd., Taichung, 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 413, Taiwan
| | - Henry J Tsai
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 413, Taiwan
| | - Fung Fuh Wong
- Phd Program for Biotech Pharmaceutical Industry, China Medical University, No. 91, Hsueh-Shih Rd., Taichung, 40402, Taiwan
- School of Pharmacy, China Medical University, No. 91, Hsueh-Shih Rd., Taichung, 40402, Taiwan
| |
Collapse
|
6
|
Mathur V, Alam O, Siddiqui N, Jha M, Manaithiya A, Bawa S, Sharma N, Alshehri S, Alam P, Shakeel F. Insight into Structure Activity Relationship of DPP-4 Inhibitors for Development of Antidiabetic Agents. Molecules 2023; 28:5860. [PMID: 37570832 PMCID: PMC10420935 DOI: 10.3390/molecules28155860] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 08/13/2023] Open
Abstract
This article sheds light on the various scaffolds that can be used in the designing and development of novel synthetic compounds to create DPP-4 inhibitors for the treatment of type 2 diabetes mellitus (T2DM). This review highlights a variety of scaffolds with high DPP-4 inhibition activity, such as pyrazolopyrimidine, tetrahydro pyridopyrimidine, uracil-based benzoic acid and esters, triazole-based, fluorophenyl-based, glycinamide, glycolamide, β-carbonyl 1,2,4-triazole, and quinazoline motifs. The article further explains that the potential of the compounds can be increased by substituting atoms such as fluorine, chlorine, and bromine. Docking of existing drugs like sitagliptin, saxagliptin, and vildagliptin was done using Maestro 12.5, and the interaction with specific residues was studied to gain a better understanding of the active sites of DPP-4. The structural activities of the various scaffolds against DPP-4 were further illustrated by their inhibitory concentration (IC50) values. Additionally, various synthesis schemes were developed to make several commercially available DPP4 inhibitors such as vildagliptin, sitagliptin and omarigliptin. In conclusion, the use of halogenated scaffolds for the development of DPP-4 inhibitors is likely to be an area of increasing interest in the future.
Collapse
Affiliation(s)
- Vishal Mathur
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (V.M.); (N.S.); (M.J.); (A.M.); (S.B.)
| | - Ozair Alam
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (V.M.); (N.S.); (M.J.); (A.M.); (S.B.)
| | - Nadeem Siddiqui
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (V.M.); (N.S.); (M.J.); (A.M.); (S.B.)
| | - Mukund Jha
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (V.M.); (N.S.); (M.J.); (A.M.); (S.B.)
| | - Ajay Manaithiya
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (V.M.); (N.S.); (M.J.); (A.M.); (S.B.)
| | - Sandhya Bawa
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (V.M.); (N.S.); (M.J.); (A.M.); (S.B.)
| | - Naveen Sharma
- Division of Bioinformatics, Indian Council of Medical Research, New Delhi 110029, India;
| | - Sultan Alshehri
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
7
|
Jia W, Wang J, Wei C, Bian M, Bao S, Yu L. Synthesis and hypoglycemic activity of quinoxaline derivatives. Front Chem 2023; 11:1197124. [PMID: 37483267 PMCID: PMC10358274 DOI: 10.3389/fchem.2023.1197124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
In this study, a new series of quinoxalinone derivatives (5a-5p, 6a-6n) was designed and its hypoglycemic activity was evaluated. The results showed that compounds 5i and 6b exhibited stronger hypoglycemic effects than the lead compounds and were comparable to the positive control Pioglitazone. 5i and 6b may exert hypoglycemic effects by alleviating cellular OS and modulating the interactions among GLUT4, SGLT2, and GLUT1 proteins. The alleviating cellular OS of compound 6b was better than that of 5i, and 6b was found to bind better than 5i for most of the screening targets. In summary, compound 6b is a potential lead compound with hypoglycaemic activity.3.
Collapse
Affiliation(s)
| | | | | | - Ming Bian
- *Correspondence: Ming Bian, ; Shuyin Bao, ; Lijun Yu,
| | - Shuyin Bao
- *Correspondence: Ming Bian, ; Shuyin Bao, ; Lijun Yu,
| | - Lijun Yu
- *Correspondence: Ming Bian, ; Shuyin Bao, ; Lijun Yu,
| |
Collapse
|
8
|
Song M, Chen Y. Local anaesthetic procaine derivatives protect rat against diabetic nephropathy via inhibition of DPP-4, inflammation and oxidative stress. Chem Biol Drug Des 2023; 102:26-37. [PMID: 37076428 DOI: 10.1111/cbdd.14252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/16/2023] [Accepted: 04/04/2023] [Indexed: 04/21/2023]
Abstract
Diabetic nephropathy (DN) is a serious devastating disease. However, the current clinical options to treat DN are not adequate. Thus, in the present study, we intend to develop novel series of procaine-embedded thiazole-pyrazoles as protective agent against DN. The compounds were tested for inhibition of dipeptidyl peptidase (DPP)-4, -8, and - 9 enzyme subtypes, where they selectively and potently inhibit DPP-4 as compared to other subtypes. The top three ranked DPP-4 inhibitors (8i, 8e and 8k) were further screened for inhibitory activity against NF-ĸB transcription. Among these three, compound 8i was identified as the most potent NF-ĸB inhibitor. The pharmacological benefit of compound 8i was further established in streptozotocin-induced diabetic nephropathy in rats. Compound 8i showed marked improvements in blood glucose, ALP, ALT, total protein, serum lipid profile such as total cholesterol, triglyceride, HDL levels and renal functions such as urine volume, urinary protein excretion, serum creatinine, blood urea nitrogen and creatinine clearance as compared to nontreated diabetic control group. It also reduces oxidative stress (MDA, SOD and GPx) and inflammation (TNF-α, IL-1β and IL-6) in the rats as compared to disease control group rats. This study demonstrated the discovery of procaine-embedded thiazole-pyrazole compounds as a novel class of agent against diabetic nephropathy.
Collapse
Affiliation(s)
- Miaomiao Song
- Department of Anesthesiology, Fengxian District Central Hospital, Shanghai, China
| | - Yaping Chen
- Department of Anesthesiology, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Kuranov SO, Pon Kina DA, Meshkova YV, Marenina MK, Khvostov MV, Luzina OA, Tolstikova TG, Salakhutdinov NF. Synthesis and Evaluation of Hypoglycemic Activity of Structural Isomers of ((Benzyloxy)phenyl)propanoic Acid Bearing an Aminobornyl Moiety. Int J Mol Sci 2023; 24:ijms24098022. [PMID: 37175725 PMCID: PMC10178661 DOI: 10.3390/ijms24098022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Free fatty acid receptor-1 (FFAR1) agonists are promising candidates for therapy of type 2 diabetes because of their ability to normalize blood sugar levels during hyperglycemia without the risk of hypoglycemia. Previously, we synthesized compound QS-528, a FFA1 receptor agonist with a hypoglycemic effect in C57BL/6NCrl mice. In the present work, structural analogs of QS-528 based on (hydroxyphenyl)propanoic acid bearing a bornyl fragment in its structure were synthesized. The seven novel compounds synthesized were structural isomers of compound QS-528, varying the positions of the substituents in the aromatic fragments as well as the configuration of the asymmetric center in the bornyl moiety. The studied compounds were shown to have the ability to activate FFAR1 at a concentration of 10 μM. The cytotoxicity of the compounds as well as their effect on glucose uptake in HepG2 cells were studied. The synthesized compounds were found to increase glucose uptake by cells and have no cytotoxic effect. Two compounds, based on the meta-substituted phenylpropanoic acid, 3-(3-(4-(((1R,2R,4R)-1,7,7-trimethylbicyclo-[2.2.1]heptan-2-ylamino)methyl)benzyloxy)phenyl)propanoic acid and 3-(3-(3-(((1R,2R,4R)-1,7,7-trimethylbicyclo [2.2.1]heptan-2-ylamino)methyl)benzyloxy)phenyl)propanoic acid, were shown to have a pronounced hypoglycemic effect in the oral glucose tolerance test with CD-1 mice.
Collapse
Affiliation(s)
- Sergey O Kuranov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Darya A Pon Kina
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Yulia V Meshkova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Mariya K Marenina
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Mikhail V Khvostov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Olga A Luzina
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Tatiana G Tolstikova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Nariman F Salakhutdinov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia
| |
Collapse
|
10
|
Chawla G, Pradhan T, Gupta O, Manaithiya A, Jha DK. An updated review on diverse range of biological activities of 1,2,4-triazole derivatives: Insight into structure activity relationship. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Nidhar M, Khanam S, Sonker P, Gupta P, Mahapatra A, Patil S, Yadav BK, Singh RK, Kumar Tewari A. Click inspired novel pyrazole-triazole-persulfonimide & pyrazole-triazole-aryl derivatives; Design, synthesis, DPP-4 inhibitor with potential anti-diabetic agents. Bioorg Chem 2022; 120:105586. [DOI: 10.1016/j.bioorg.2021.105586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 01/06/2023]
|
12
|
Nasehi N, Mirza B, Soleimani‐Amiri S. Fe
3
O
4
@C@
prNHSO
3
H
: A novel magnetically recoverable heterogeneous catalyst in green synthesis of diverse triazoles. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Niloufar Nasehi
- Department of Chemistry, Karaj Branch Islamic Azad University Karaj Iran
| | - Behrooz Mirza
- Department of Chemistry, Karaj Branch Islamic Azad University Karaj Iran
| | | |
Collapse
|