1
|
Khan SU, Nawaz T, Alam O, Khan D, Fahad S, Saud S, Lu K. Quinoline: A Novel Solution for Next-Generation Pesticides, Herbicides, and Fertilizers. Appl Biochem Biotechnol 2025:10.1007/s12010-024-05164-2. [PMID: 39754687 DOI: 10.1007/s12010-024-05164-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2024] [Indexed: 01/06/2025]
Abstract
Quinoline is a nitrogen-containing heterocycle compound widely used in the medical industry for its pharmacological properties, such as its antimalarial, antimicrobial, antiparasitic, anti-inflammatory, and anticancer activities. Beyond its medical significance, quinoline shows promising applications in agriculture as a safe and effective pesticide, herbicide, and fertilizer. This review explores the evolution of quinoline research, beginning with its history and synthesis and transitioning to its biological activities and their relevance in agriculture. It then highlights the potential applications of quinoline in modern agriculture, such as pesticides, herbicides, and fertilizers, for increasing crop yields and resilience while reducing crop waste. Moreover, it discusses formulation strategies that can enhance the efficacy of quinoline. Finally, the review addresses potential challenges, such as toxicity and environmental impact, underscoring the need for further research to harness quinoline's full potential in sustainable agriculture.
Collapse
Affiliation(s)
- Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, People's Republic of China
- Dubai Medical College for Girls (DMCG), Dubai, United Arab Emirates
| | - Taufiq Nawaz
- Department of Biology/Microbiology, South Dakota State University, Brookings, 57007, USA
| | - Osama Alam
- Department of Biotechnology, University of Science & Technology, Bannu, 28100, Khyber Pakhtunkhwa, Pakistan
| | - Dilfaraz Khan
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan, 29050, KPK, Pakistan
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan, 23200, Khyber Pakhtunkhwa, Pakistan.
| | - Shah Saud
- College of Life Science, Linyi University, Linyi City, 276000, Shandong, China
| | - Kun Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
2
|
Seraj F, Khan KM, Iqbal J, Imran A, Hussain Z, Salar U, Hameed S, Taha M. Evaluation of synthetic aminoquinoline derivatives as urease inhibitors: in vitro, in silico and kinetic studies. Future Med Chem 2023; 15:1703-1717. [PMID: 37814798 DOI: 10.4155/fmc-2023-0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023] Open
Abstract
Background: Quinoline and acyl thiourea scaffolds have major chemical significance in medicinal chemistry. Quinoline-based acyl thiourea derivatives may potentially target the urease enzyme. Materials & methods: Quinoline-based acyl thiourea derivatives 1-26 were synthesized and tested for urease inhibitory activity. Results: 19 derivatives (1-19) showed enhanced urease enzyme inhibitory potential (IC50 = 1.19-18.92 μM) compared with standard thiourea (IC50 = 19.53 ± 0.032 μM), whereas compounds 20-26 were inactive. Compounds with OCH3, OC2H5, Br and CH3 on the aryl ring showed significantly greater inhibitory potential than compounds with hydrocarbon chains of varying length. Molecular docking studies were conducted to investigate ligand interactions with the enzyme's active site. Conclusion: The identified hits can serve as potential leads against the drug target urease in advanced studies.
Collapse
Affiliation(s)
- Faiza Seraj
- HEJ Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Khalid Mohammed Khan
- HEJ Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
- Department of Clinical Pharmacy, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, PO Box 31441, Dammam, Saudi Arabia
| | - Jamshed Iqbal
- Center of Advanced Drug Research, COMSATS University Islamabad, Abbottabad, 22060, Pakistan
| | - Aqeel Imran
- Center of Advanced Drug Research, COMSATS University Islamabad, Abbottabad, 22060, Pakistan
- Department of Pharmacy, COMSATS University Islamabad, Lahore, 54000, Pakistan
| | - Zahid Hussain
- Center of Advanced Drug Research, COMSATS University Islamabad, Abbottabad, 22060, Pakistan
| | - Uzma Salar
- Dr Panjwani Center for Molecular Medicine & Drug Research, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Shehryar Hameed
- HEJ Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, PO Box 31441, Dammam, Saudi Arabia
| |
Collapse
|
3
|
Khan N, Sajid M, Obaidullah AJ, Rehman W, Faris Alotaibi H, Bibi S, Alanazi MM. Nematicidal Characterization of Newly Synthesized Thiazine Derivatives Using Caenorhabditis elegans as the Model Organism. ACS OMEGA 2023; 8:20767-20778. [PMID: 37332812 PMCID: PMC10269251 DOI: 10.1021/acsomega.3c01378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/25/2023] [Indexed: 06/20/2023]
Abstract
In humans, animals, and agriculture, parasitic nematode infection is a very serious issue. Many drugs are being used to control nematode infections. Owing to toxicity and nematodes' resistance to the available drugs, special attention is required to synthesize new drugs that are environmentally friendly with high-level efficacy. In the present study, various substituted thiazine derivatives (1 to 15) were synthesized, and the structures were confirmed by infrared, proton (1H), and 13C NMR spectroscopies. The nematicidal potential of the synthesized derivatives was characterized using Caenorhabditis elegans (C. elegans) as a model organism. Among all synthesized compounds, 13 (LD50 = 38.95 μg/mL) and 15 (LD50 = 38.21 μg/mL) were considered the most potent compounds. Most compounds showed excellent anti-egg-hatching activity. Fluorescence microscopy confirmed that compounds 4, 8, 9, 13, and 15 displayed a high apoptotic effect. The expressions of gst-4, hsp-4, hsp16.2, and gpdh-1 genes were high in affected (treated with thiazine derivatives) C. elegans in comparison with normal C. elegans. The present research revealed that modified compounds are highly effective as they showed the gene level changes in the selected nematode. Due to structural modification in thiazine analogues, the compounds showed various modes of action. The most effective thiazine derivatives could be excellent candidates for novel broad-scale nematicidal drugs.
Collapse
Affiliation(s)
- Naqeeb
Ullah Khan
- Department
of Biochemistry, Hazara University, Mansehra, Khyber Pakhtunkhwa 21300, Pakistan
| | - Muhammad Sajid
- Department
of Biochemistry, Hazara University, Mansehra, Khyber Pakhtunkhwa 21300, Pakistan
| | - Ahmad J. Obaidullah
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Wajid Rehman
- Department
of Chemistry, Hazara University, Mansehra, Khyber Pakhtunkhwa 21300, Pakistan
| | - Hadil Faris Alotaibi
- Department
of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Saira Bibi
- Department
of Chemistry, Hazara University, Mansehra, Khyber Pakhtunkhwa 21300, Pakistan
| | - Mohammed M. Alanazi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
4
|
de Resende PE, Nisler J, Voller J, Kadlecová A, Gibbons S. Antimicrobial and anthelmintic activities of aryl urea agents. J Glob Antimicrob Resist 2023; 33:114-119. [PMID: 36906171 DOI: 10.1016/j.jgar.2023.02.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 01/03/2023] [Accepted: 02/23/2023] [Indexed: 03/12/2023] Open
Abstract
OBJECTIVES This study aimed to characterise compounds with activity against carbapenemase-expressing Gram-negative bacteria and nematodes and evaluate their cytotoxicity to non-cancerous human cells. METHODS The antimicrobial activity and toxicity of a series of phenyl-substituted urea derivatives were evaluated using broth microdilution, chitinase, and resazurin reduction assays. RESULTS The effects of different substitutions present on the nitrogen atoms of the urea backbone were investigated. Several compounds were active against Staphylococcus aureus and Escherichia coli control strains. Specifically, derivatives 7b, 11b, and 67d exhibited antimicrobial activity against Klebsiella pneumoniae 16, a carbapenemase-producing Enterobacteriaceae species, with minimum inhibitory concentration (MIC) values of 100, 50, and 72 µM (32, 64, and 32 mg/L), respectively. In addition, the MICs obtained against a multidrug-resistant E. coli strain were 100, 50, and 36 µM (32, 16, and 16 mg/L) for the same compounds, respectively. Furthermore, the urea derivatives 18b, 29b, 50c, 51c, 52c, 55c-59c, and 62c were very active towards the nematode Caenorhabditis elegans. CONCLUSIONS Testing on non-cancerous human cell lines suggested that some of the compounds have the potential to affect bacteria, especially helminths, with limited cytotoxicity to humans. Given the simplicity of synthesis for this class of compounds and their potency against Gram-negative, carbapenemase-expressing K. pneumoniae, aryl ureas possessing the 3,5-dichloro-phenyl group certainly warrant further investigation to exploit their selectivity.
Collapse
Affiliation(s)
- Pedro Ernesto de Resende
- School of Pharmacy, Faculty of Science, University of East Anglia, Norwich Research Park, Norwich, United Kingdom.
| | - Jaroslav Nisler
- Isotope Laboratory, Institute of Experimental Botany, The Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Voller
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Alena Kadlecová
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Simon Gibbons
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
5
|
Ajani OO, Iyaye KT, Ademosun OT. Recent advances in chemistry and therapeutic potential of functionalized quinoline motifs – a review. RSC Adv 2022; 12:18594-18614. [PMID: 35873320 PMCID: PMC9231466 DOI: 10.1039/d2ra02896d] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/08/2022] [Indexed: 12/30/2022] Open
Abstract
Quinoline, which consists of benzene fused with N-heterocyclic pyridine, has received considerable attention as a core template in drug design because of its broad spectrum of bioactivity. This review aims to present the recent advances in chemistry, medicinal potential and pharmacological applications of quinoline motifs to unveil their substantial efficacies for future drug development. Essential information in all the current and available literature used was accessed and retrieved using different search engines and databases, including Scopus, ISI Web of Knowledge, Google and PUBMED. Numerous derivatives of the bioactive quinolines have been harnessed via expeditious synthetic approaches, as highlighted herein. This review reveals that quinoline is an indisputable pharmacophore due to its tremendous benefits in medicinal chemistry research and other valuable areas of human endeavour. The recent in vivo and in vitro screening reported by scientists is highlighted herein, which may pave the way for novel drug development. Owing to the array of information available and highlighted herein on the medicinal potential of quinoline and its functionalized derivatives, a new window of opportunity may be opened to medicinal chemists to access more biomolecular quinolines for future drug development. Quinoline, which consists of benzene fused with N-heterocyclic pyridine, has received considerable attention as a core template in drug design because of its broad spectrum of bioactivity.![]()
Collapse
Affiliation(s)
- Olayinka O. Ajani
- Department of Chemistry, Covenant University, Km 10, Idiroko Road, PMB 1023, Ota, Ogun State, Nigeria
| | - King T. Iyaye
- Department of Chemistry, Covenant University, Km 10, Idiroko Road, PMB 1023, Ota, Ogun State, Nigeria
| | - Olabisi T. Ademosun
- Department of Chemistry, Covenant University, Km 10, Idiroko Road, PMB 1023, Ota, Ogun State, Nigeria
| |
Collapse
|