1
|
Gaur A, Singh YP, Sharma R, Bainsal N. Deoxyvasicinone hybrids in the management of Alzheimer's disease: Recent advances on manmade derivatives, pharmacological activities, and structure-activity relationship. Arch Pharm (Weinheim) 2025; 358:e2400742. [PMID: 39731272 DOI: 10.1002/ardp.202400742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/29/2024]
Abstract
Alzheimer's disease (AD) is a prevalent neurological illness that affects over 80% of aged adults globally in cases of dementia. Although the exact pathophysiological causes of AD remain unclear, its pathogenesis is primarily driven by several distinct biochemical alterations: (i) the accumulation of toxic Aβ plaques, (ii) the hyperphosphorylation of tau proteins, (iii) oxidative stress resulting in cell death, and (iv) an imbalance between the two main neurotransmitters, glutamate and acetylcholine (ACh). Currently, there are very few medications available and no treatment. Presently marketed medications include memantine, an N-methyl-d-aspartate receptor (NMDA) antagonist, and acetylcholinesterase (AChE) inhibitors: rivastigmine, donepezil, and galantamine. Unfortunately, these medications are only useful in the initial stages of AD. The mentioned medications only provide symptomatic relief and do not slow down the disease progression in the advanced stages. Therefore, there is an urgent need to develop potential candidates to treat AD, symptomatically and therapeutically. Many research groups focus on natural products due to their diverse therapeutic profiles and easy availability. One such natural product is deoxyvasicinone, isolated from Adhatoda vasica. Given its broad pharmacological profile, various researchers have developed semisynthetic hybrids of deoxyvasicinone to address multifaceted diseases like AD. In this review article, we tried to summarize the semisynthetic hybrids of deoxyvasicinone developed over the past decade (2014-2024) for managing AD. We focus on their design, pharmacological activity, and structure-activity relationship (SAR) analysis. We hope this review enhances the reader's understanding of future exploratory options for deoxyvasicinone hybrids in AD management.
Collapse
Affiliation(s)
- Ankur Gaur
- Department of Pharmaceutical Chemistry, University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Yash Pal Singh
- Department of Pharmaceutical Chemistry, University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Rajiv Sharma
- Department of Pharmaceutical Chemistry, University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Neeraj Bainsal
- Department of Pharmacognosy, University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| |
Collapse
|
2
|
Liu YL, Zhang Q, Li BQ, Zhang D, Chui RH, Zhang LL, Zhang Q, Ma LY. Progress in the study of anti-Alzheimer's disease activity of pyrimidine-containing bioactive molecules. Eur J Med Chem 2025; 285:117199. [PMID: 39799720 DOI: 10.1016/j.ejmech.2024.117199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/29/2024] [Accepted: 12/19/2024] [Indexed: 01/15/2025]
Abstract
Pyrimidines are aromatic, heterocyclic organic compounds characterized by a six-membered ring that contains four carbon atoms and two nitrogen atoms. They have been reported to exhibit a variety of biological activities such as antifungal, antiviral, and anti-Parkinsonian effects. Recently, there has been an increased focus on their potential anti-Alzheimer's properties. Several pyrimidine-based drugs and their analogs are currently undergoing various phases of clinical trials, indicating pyrimidine as a promising chemical structure for drug development. Notably, modifications to the pyrimidine structure significantly influence their activity against Alzheimer's disease. For instance, the introduction of heteroatoms into the pyrimidine ring or alternations in the length of the linkage region have been shown to enhance therapeutic efficacy. This review provides a comprehensive overview of pyrimidine derivatives as potential therapeutics for Alzheimer's disease, with a focus on structure-activity relationship (SAR) studies, design strategies, and binding mechanisms. These insights could pave the way for the development of more effective anti-Alzheimer's medications.
Collapse
Affiliation(s)
- Yu-Lin Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Qian Zhang
- Jining First People's Hospital, Jining, 272000, PR China
| | - Bing-Qian Li
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Di Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Rui-Hao Chui
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Lin-Lin Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Qi Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450002, PR China.
| | - Li-Ying Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; China Meheco Topfond Pharmaceutical Co., Key Laboratory of Cardio-cerebrovascular Drug, Zhumadian, 463000, PR China.
| |
Collapse
|
3
|
Jaouen J, Bailly C. Alkaloids from Mackinlaya species and synthetic mackinazolinone derivatives: An overview. Bioorg Med Chem 2025; 117:118018. [PMID: 39591875 DOI: 10.1016/j.bmc.2024.118018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/06/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024]
Abstract
Mackinazolinone is the main alkaloid isolated from plants of the genus Mackinlaya, essentially distributed in tropical Asia and Australia. There are five Mackinlaya species all containing bioactive alkaloids with a tetrahydropyridoquinazolinone core such as mackinazoline (1) and mackinazolinone (2). The present review retraces the origin of mackinazolinone and compares the different chemical routes to synthesize the natural product, through different methods including classical batch synthesis, solid-phase supported synthesis, microwaved irradiation and photochemistry. A panel of about 70 mackinazolinone analogues and derivatives is presented to illustrate the diversity of chemical approaches and structures. The pharmacology of mackinazolinone has been little investigated but derivatives with antibacterial or anticancer properties have been identified. The molecular targets for these compounds are essentially unknown, but a few proteins of interest have been evoked occasionally, such as the EGFR kinase. The natural product mackinazolinone has largely inspired chemists to develop novel products and chemical processes. Hopefully, the review will now encourage pharmacologists to further explore the properties of these quinazolinones as potential anti-infectious, anticancer and/or neuroprotective agents.
Collapse
Affiliation(s)
- Julie Jaouen
- Institute of Pharmaceutical Chemistry Albert Lespagnol (ICPAL), Faculty of Pharmacy, University of Lille, Rue du Professeur Laguesse, BP-83, F-59006 Lille, France; University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; University of Lille, CHU Lille, ULR 7365 GRITA - Groupe de Recherche sur les Formes Injectables et Technologies Associées, F-59000 Lille, France
| | - Christian Bailly
- Institute of Pharmaceutical Chemistry Albert Lespagnol (ICPAL), Faculty of Pharmacy, University of Lille, Rue du Professeur Laguesse, BP-83, F-59006 Lille, France; University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; OncoWitan, Scientific Consulting Office, Wasquehal, F-59290 Lille, France.
| |
Collapse
|
4
|
Sighencea MG, Popescu RȘ, Trifu SC. From Fundamentals to Innovation in Alzheimer's Disease: Molecular Findings and Revolutionary Therapies. Int J Mol Sci 2024; 25:12311. [PMID: 39596378 PMCID: PMC11594972 DOI: 10.3390/ijms252212311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease (AD) is a global health concern and the leading cause of dementia in the elderly. The prevalence of this neurodegenerative condition is projected to increase concomitantly with increased life expectancy, resulting in a significant economic burden. With very few FDA-approved disease-modifying drugs available for AD, there is an urgent need to develop new compounds capable of impeding the progression of the disease. Given the unclear etiopathogenesis of AD, this review emphasizes the underlying mechanisms of this condition. It explores not only well-studied aspects, such as the accumulation of Aβ plaques and neurofibrillary tangles, but also novel areas, including glymphatic and lymphatic pathways, microbiota and the gut-brain axis, serotoninergic and autophagy alterations, vascular dysfunction, the metal hypothesis, the olfactory pathway, and oral health. Furthermore, the potential molecular targets arising from all these mechanisms have been reviewed, along with novel promising approaches such as nanoparticle-based therapy, neural stem cell transplantation, vaccines, and CRISPR-Cas9-mediated genome editing techniques. Taking into account the overlap of these various mechanisms, individual and combination therapies emerge as the future direction in the AD strategy.
Collapse
Affiliation(s)
| | - Ramona Ștefania Popescu
- Department of Infectious Diseases, “Carol Davila” University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania;
| | - Simona Corina Trifu
- Department of Psychiatry, “Carol Davila” University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania
| |
Collapse
|
5
|
Raji Reddy C, Neeliveettil A, Ajaykumar U, Punna N, Neuville L, Masson G. Access to N-Fused Quinazolinones by Radical-Promoted Cascade Annulations of Alkenyl N-Cyanamides with Aromatic Aldehydes. J Org Chem 2024; 89:7115-7124. [PMID: 38691342 DOI: 10.1021/acs.joc.4c00494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
A cascade radical cyclization of alkenyl N-cyanamides with aromatic aldehydes has been achieved for an expeditious synthesis of keto-methylated dihydropyrrolo-quinazolinones. Benzoyl radicals, generated from aryl aldehydes in the presence of di-tert-butyl peroxide (DTBP), promoted the domino annulations leading to distinctive functionalized quinazolinones in good yields. In addition, the robustness of the present protocol is validated by employing heterocyclic and natural product-based aldehydes.
Collapse
Affiliation(s)
- Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anootha Neeliveettil
- Department of Organic Synthesis & Process Chemistry CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Uprety Ajaykumar
- Department of Organic Synthesis & Process Chemistry CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nagender Punna
- Department of Organic Synthesis & Process Chemistry CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Luc Neuville
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Geraldine Masson
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| |
Collapse
|
6
|
Bayrak C, Taslimi P, Kilinc N, Gulcin I, Menzek A. Synthesis and Biological Activity of Some Bromophenols and Their Derivatives Including Natural Products. Chem Biodivers 2023; 20:e202300469. [PMID: 37432096 DOI: 10.1002/cbdv.202300469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023]
Abstract
In addition to the first synthesis of the natural bromophenol butyl 2-(3,5-dibromo-4-hydroxyphenyl)acetate (1), indene derivatives 34 and 35 were synthesized from 3-phenylpropenal derivatives in BBr3 medium. Five known natural bromophenols and some derivatives were synthesized by known methods. Cholinesterase (ChEs) inhibitors reduce the breakdown of acetylcholine and are used in the treatment of Alzheimer's disease (AD) and dementia symptoms. The inhibition effects of all obtained compounds were examined towards acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and α-glycosidase enzymes. All synthesized compounds demonstrated the strong inhibition effects against both cholinergic enzymes. For determination of Ki values of novel bromophenols Lineweaver-Burk graphs were obtained. Ki values were found in the ranging of 0.13-14.74 nM for AChE, 5.11-23.95 nM for BChE, and 63.96-206.78 nM for α-glycosidase, respectively. All bromophenols and their derivatives exhibit effective inhibition profile when compared to positive controls.
Collapse
Affiliation(s)
- Cetin Bayrak
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Turkiye
- Dogubayazit Ahmed-i Hani Vocational School, Agri Ibrahim Cecen University, 04400, Agri, Turkiye
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, 74100, Bartin, Turkiye
| | - Namik Kilinc
- Department of Medical Services and Techniques, Vocational School of Health Service, Igdir University, 76000, Igdir, Turkiye
| | - Ilhami Gulcin
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Turkiye
| | - Abdullah Menzek
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Turkiye
- Department of Emergency Aid and Disaster Management, Faculty of Health Sciences, Ardahan University, 75002, Ardahan, Turkiye
| |
Collapse
|
7
|
Madhav H, Abdel-Rahman SA, Hashmi MA, Rahman MA, Rehan M, Pal K, Nayeem SM, Gabr MT, Hoda N. Multicomponent Petasis reaction for the identification of pyrazine based multi-target directed anti-Alzheimer's agents: In-silico design, synthesis, and characterization. Eur J Med Chem 2023; 254:115354. [PMID: 37043996 DOI: 10.1016/j.ejmech.2023.115354] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/14/2023]
Abstract
Multi-target directed ligands (MTDLs) have recently attracted significant interest due to their exceptional effectiveness against multi-factorial Alzheimer's disease. The present work described the development of pyrazine-based MTDLs using multicomponent Petasis reaction for the dual inhibition of tau-aggregation and human acetylcholinesterase (hAChE). The molecular structure of synthesized ligands was validated by 1H & 13C NMR and mass spectrometry. The screened compounds were shown to have a strong inhibitory effect at 10 μM concentration against tau-oligomerization and hAChE, but only moderate inhibitory activity against Aβ42. Among all the compounds, the half-maximal inhibitory concentration (IC50) for 21 and 24 against hAChE were 0.71 μM and 1.09 μM, respectively, while they displayed half-maximal effective concentrations (EC50) values of 2.21 μM and 2.71 μM for cellular tau-oligomerization, respectively. Additionally, an MTT experiment using tau-expressing SH-SY5Y neuroblastoma cells revealed that 21 was more neuroprotective than the FDA-approved medication donepezil. Furthermore, an MD simulation study was performed to investigate the dynamics and stability of AChE-21 and AChE-24 complexes in an aqueous environment. The MM-PBSA calculations were performed to evaluate the binding of 21 and 24 with AChE, and the relative binding energy was calculated as -870.578 and -875.697 kJ mol-1, respectively. As a result, the study offered insight into the design of new MTDLs and highlighted 21 as a potential roadblock to the development of anti-AD medications.
Collapse
Affiliation(s)
- Hari Madhav
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Somaya A Abdel-Rahman
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY, 10065, USA; Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Md Amiruddin Hashmi
- Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Md Ataur Rahman
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Mohammad Rehan
- Max-Planck-Institute für Molekulare Physiologie, Abteilung Chemische Biologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Kavita Pal
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Shahid M Nayeem
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Moustafa T Gabr
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - Nasimul Hoda
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
8
|
Theerasri A, Janpaijit S, Tencomnao T, Prasansuklab A. Beyond the classical amyloid hypothesis in Alzheimer's disease: Molecular insights into current concepts of pathogenesis, therapeutic targets, and study models. WIREs Mech Dis 2023; 15:e1591. [PMID: 36494193 DOI: 10.1002/wsbm.1591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is one of the progressive neurodegenerative disorders and the most common cause of dementia in the elderly worldwide causing difficulties in the daily life of the patient. AD is characterized by the aberrant accumulation of β-amyloid plaques and tau protein-containing neurofibrillary tangles (NFTs) in the brain giving rise to neuroinflammation, oxidative stress, synaptic failure, and eventual neuronal cell death. The total cost of care in AD treatment and related health care activities is enormous and pharmaceutical drugs approved by Food and Drug Administration have not manifested sufficient efficacy in protection and therapy. In recent years, there are growing studies that contribute a fundamental understanding to AD pathogenesis, AD-associated risk factors, and pharmacological intervention. However, greater molecular process-oriented research in company with suitable experimental models is still of the essence to enhance the prospects for AD therapy and cell lines as a disease model are still the major part of this milestone. In this review, we provide an insight into molecular mechanisms, particularly the recent concept in gut-brain axis, vascular dysfunction and autophagy, and current models used in the study of AD. Here, we emphasized the importance of therapeutic strategy targeting multiple mechanisms together with utilizing appropriate models for the discovery of novel effective AD therapy. This article is categorized under: Neurological Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Atsadang Theerasri
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand.,Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Sakawrat Janpaijit
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand.,Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, Thailand.,Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Anchalee Prasansuklab
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, Thailand.,College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
9
|
Manzoor S, Almarghalani DA, James AW, Raza MK, Kausar T, Nayeem SM, Hoda N, Shah ZA. Synthesis and Pharmacological Evaluation of Novel Triazole-Pyrimidine Hybrids as Potential Neuroprotective and Anti-neuroinflammatory Agents. Pharm Res 2023; 40:167-185. [PMID: 36376607 PMCID: PMC10964282 DOI: 10.1007/s11095-022-03429-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/29/2022] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Neuroprotection is a precise target for the treatment of neurodegenerative diseases, ischemic stroke, and traumatic brain injury. Pyrimidine and its derivatives have been proven to use antiviral, anticancer, antioxidant, and antimicrobial activity prompting us to study the neuroprotection and anti-inflammatory activity of the triazole-pyrimidine hybrid on human microglia and neuronal cell model. METHODS A series of novel triazole-pyrimidine-based compounds were designed, synthesized and characterized by mass spectra, 1HNMR, 13CNMR, and a single X-Ray diffraction analysis. Further, the neuroprotective, anti-neuroinflammatory activity was evaluated by cell viability assay (MTT), Elisa, qRT-PCR, western blotting, and molecular docking. RESULTS The molecular results revealed that triazole-pyrimidine hybrid compounds have promising neuroprotective and anti-inflammatory properties. Among the 14 synthesized compounds, ZA3-ZA5, ZB2-ZB6, and intermediate S5 showed significant anti-neuroinflammatory properties through inhibition of nitric oxide (NO) and tumor necrosis factor-α (TNF-α) production in LPS-stimulated human microglia cells. From 14 compounds, six (ZA2 to ZA6 and intermediate S5) exhibited promising neuroprotective activity by reduced expression of the endoplasmic reticulum (ER) chaperone, BIP, and apoptosis marker cleaved caspase-3 in human neuronal cells. Also, a molecular docking study showed that lead compounds have favorable interaction with active residues of ATF4 and NF-kB proteins. CONCLUSION The possible mechanism of action was observed through the inhibition of ER stress, apoptosis, and the NF-kB inflammatory pathway. Thus, our study strongly indicates that the novel scaffolds of triazole-pyrimidine-based compounds can potentially be developed as neuroprotective and anti-neuroinflammatory agents.
Collapse
Affiliation(s)
- Shoaib Manzoor
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia Central University, New Delhi, India, 110025
| | - Daniyah A Almarghalani
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43614, USA
| | - Antonisamy William James
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43614, USA
| | - Md Kausar Raza
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Tasneem Kausar
- Department of Chemistry, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Shahid M Nayeem
- Department of Chemistry, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Nasimul Hoda
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia Central University, New Delhi, India, 110025.
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43614, USA.
| |
Collapse
|
10
|
Song B, Nie L, Bozorov K, Kuryazov R, Aisa HA, Zhao J. Parallel synthesis of condensed pyrimidine-thiones and their antitumor activities. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04912-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Manzoor S, Prajapati SK, Majumdar S, Khurana S, Krishnamurthy S, Hoda N. Pharmacological Investigations of Selected Multitarget‐Direct Ligands for the Treatment of Alzheimer's Disease. ChemistrySelect 2022. [DOI: 10.1002/slct.202200975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Shoaib Manzoor
- Drug Design and Synthesis Laboratory Department of Chemistry, Jamia Millia Islamia New Delhi India- 110025
| | - Santosh Kumar Prajapati
- Neurotherapeutics Laboratory Department of Pharmaceutical Engineering and Technology Indian Institute of Technology (Banaras Hindu University) Varanasi, U.P India- 221005
| | - Shreyasi Majumdar
- Neurotherapeutics Laboratory Department of Pharmaceutical Engineering and Technology Indian Institute of Technology (Banaras Hindu University) Varanasi, U.P India- 221005
| | - Shilpi Khurana
- Department of Chemistry Deshbandhu College Kalkaji Main Rd, Block H, Kalkaji New Delhi India- 110019
| | - Sairam Krishnamurthy
- Neurotherapeutics Laboratory Department of Pharmaceutical Engineering and Technology Indian Institute of Technology (Banaras Hindu University) Varanasi, U.P India- 221005
| | - Nasimul Hoda
- Drug Design and Synthesis Laboratory Department of Chemistry, Jamia Millia Islamia New Delhi India- 110025
| |
Collapse
|
12
|
Gulcin İ, Petrova OV, Taslimi P, Malysheva SF, Schmidt EY, Sobenina LN, Gusarova NK, Trofimov BA, Tuzun B, Farzaliyev VM, Alwasel S, Sujayev AR. Synthesis, Characterization, Molecular Docking, Acetylcholinesterase and α‐Glycosidase Inhibition Profiles of Nitrogen‐Based Novel Heterocyclic Compounds. ChemistrySelect 2022. [DOI: 10.1002/slct.202200370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- İlhami Gulcin
- Department of Chemistry Faculty of Science Ataturk University TR 25240 Erzurum Turkey
| | - Olga V. Petrova
- Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences Moskva 664033-Irkutsk Russia
| | - Parham Taslimi
- Department of Biotechnology Faculty of Science Bartin University 74100- Bartin Turkey
| | - Svetlana F. Malysheva
- Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences Moskva 664033-Irkutsk Russia
| | - Elena Yu. Schmidt
- Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences Moskva 664033-Irkutsk Russia
| | - Lyubov N. Sobenina
- Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences Moskva 664033-Irkutsk Russia
| | - Nina K. Gusarova
- Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences Moskva 664033-Irkutsk Russia
| | - Boris A. Trofimov
- Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences Moskva 664033-Irkutsk Russia
| | - Burak Tuzun
- Plant and Animal Production Department Technical Sciences Vocational School of Sivas Sivas Cumhuriyet University 58140 Sivas Turkey
| | - Vagif M. Farzaliyev
- Institute of Chemistry of Additives Azerbaijan National Academy of Sciences Bakı 1029-Baku Azerbaijan
| | - Saleh Alwasel
- Department of Zoology College of Science King Saud University Riyadh Saudi Arabia
| | - Afsun R. Sujayev
- Institute of Chemistry of Additives Azerbaijan National Academy of Sciences Bakı 1029-Baku Azerbaijan
| |
Collapse
|
13
|
Unsal Tan O, Zengin M. Insights into the chemistry and therapeutic potential of acrylonitrile derivatives. Arch Pharm (Weinheim) 2021; 355:e2100383. [PMID: 34763365 DOI: 10.1002/ardp.202100383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/20/2022]
Abstract
Acrylonitrile is a fascinating scaffold widely found in many natural products, drugs, and drug candidates with various biological activities. Several drug molecules such as entacapone, rilpivirine, teriflunomide, and so forth, bearing an acrylonitrile moiety have been marketed. In this review, diverse synthetic strategies for constructing desired acrylonitriles are discussed, and the different biological activities and medicinal significance of various acrylonitrile derivatives are critically evaluated. The information gathered is expected to provide rational guidance for the development of clinically useful agents from acrylonitriles.
Collapse
Affiliation(s)
- Oya Unsal Tan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Merve Zengin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|