1
|
Moussa Z, Ramanathan M, Alharmoozi SM, Alkaabi SAS, Al Aryani SHM, Ahmed SA, Al-Masri HT. Recent highlights in the synthesis and biological significance of pyrazole derivatives. Heliyon 2024; 10:e38894. [PMID: 39492900 PMCID: PMC11531639 DOI: 10.1016/j.heliyon.2024.e38894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 11/05/2024] Open
Abstract
Aza-heterocyclic scaffolds are privileged cores in the composition of their potential therapeutic profiles and versatile synthetic intermediates. Pyrazole is one of the frequently studied compounds of "azole" family and consists of nitrogen in a 1,2 linking sequence. These motifs possess a wide-spectrum of applications in the field of pharmaceuticals, agrochemicals, polymer chemistry, cosmetics, food industries and more. In addition, functionalized pyrazole derivatives are frequently used as ligands in coordination chemistry and metal-catalysed reactions. As exemplified by numerous recent reports, pyrazoles are highly promising pharmacophores with excellent therapeutic applications. Owing to their aromaticity, the ring structures have many reactive positions, where electrophilic, nucleophilic, alkylation and oxidative reactions might occur. The structural adroitness and diversity of pyrazole cores further emanated numerous fused bicyclic skeletons with various biological applications. In this review, we highlight the recent synthetic methods developed for the preparation of functionalized pyrazole derivatives (From 2017 to present). In addition, we have also covered the notable biological activities (anti-cancer, anti-inflammatory, anti-bacterial and anti-viral) of this ubiquitous core. Herein, we emphasised the synthesis of pyrazoles from variety of precursors such as, alkynes, α,β-unsaturated carbonyl compounds, diazo reagents, nitrile imines, diazonium salts, 1,3-dicarbonyl compounds and etc. Moreover, the recent synthetic methodologies focusing on the preparation of pyrazolines and pyrazolones and variously fused-pyrazoles are also included. Authors expect this review could significantly help the researchers in finding elegant novel tools to synthesize pyrazole skeletons and expand their biological evaluation.
Collapse
Affiliation(s)
- Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
| | - Mani Ramanathan
- Department of Chemistry, College of Science, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
| | - Shaikha Mohammad Alharmoozi
- Department of Chemistry, College of Science, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
| | - Shahad Ali Saeed Alkaabi
- Department of Chemistry, College of Science, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
| | | | - Saleh A. Ahmed
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Harbi Tomah Al-Masri
- Department of Chemistry, Faculty of Sciences, Al al-Bayt University, P. O. Box 130040, Mafraq, 25113, Jordan
| |
Collapse
|
2
|
Zhang Y, Chen L, Wang Z, Zhu Y, Jiang H, Xu J, Xiong F. Design of novel DABO derivatives as HIV-1 RT inhibitors using molecular docking, molecular dynamics simulations and ADMET properties. J Biomol Struct Dyn 2024; 42:4196-4213. [PMID: 37272892 DOI: 10.1080/07391102.2023.2219331] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/23/2023] [Indexed: 06/06/2023]
Abstract
HIV-1 reverse transcriptase is an important target for developing effective anti-HIV-1 inhibitors. Different types of small molecules have been designed based on this target, showing different levels of inhibitory activity against various types of HIV-1 strains. The relationship between structure and activity of DABO derivatives was investigated by means of 3D-QSAR molecular model, molecular docking, molecular dynamics and ADMET properties. The statistical results of molecular models show that the CoMFA and CoMSIA models have good internal stability (CoMFA: q2 = 0.623, r2 = 0.946; CoMSIA: q2 = 0.668, r2 = 0.983) and external prediction ability (CoMFA: rpred2 = 0.961; CoMSIA: rpred2 = 0.961). In addition, molecular docking has explored the mechanism of action between small molecules and receptor proteins, and the results show that hydrogen bonding between amino acid Lys101 and small molecules can improve the affinity of ligands to receptor binding. A total of 12 novel molecules were designed and their activities were predicted based on the 3D-QSAR model and molecular docking results. The results showed that the designed molecules had higher predictive activity. Subsequently, 100 ns MD simulation and binding free energy verified the stability of molecular docking results. Finally, the pharmacokinetic properties of the novel designed molecule were verified by using ADMET to predict its properties. These results can provide reference for the design and development of novel and effective HIV-1 RT inhibitors, and provide new ideas for the design of subsequent drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yanjun Zhang
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Lu Chen
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Zhonghua Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, P. R. China
| | - Yiren Zhu
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Huifang Jiang
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Jie Xu
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Fei Xiong
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| |
Collapse
|
3
|
Sokhna S, Mérindol N, Presset M, Seck I, Girard MP, Ka S, Ndoye SF, Ba AL, Samb I, Berthoux L, Le Gall E, Desgagné-Penix I, Seck M. Potential of several triazene derivatives against DENGUE viruses. Bioorg Med Chem Lett 2024; 101:129646. [PMID: 38331225 DOI: 10.1016/j.bmcl.2024.129646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Dengue fever is an infectious disease caused by the dengue virus (DENV), an RNA Flavivirus transmitted by the mosquitoes Aedes aegypti and Aedes albopictus widespread in tropical, subtropical and also temperate regions. Symptoms range from a simple cold to a severe, life-threatening haemorrhagic fever. According to the WHO, it affects around 390 million people per year. No antiviral treatment for DENV is available, and the Dengvaxia vaccine is only intended for people over 9 years of age who have contracted dengue one time in the past, and shows serotype-specific effectiveness. There is therefore a crying need to discover new molecules with antiviral power against flaviviruses. The present study was carried out to evaluate the anti-DENV activities and cytotoxicity of triazenes obtained by diazocopulation. Some triazenes were highly cytotoxic (16, and 25) to hepatocarcinoma Huh7 cells, whereas others displayed strong anti-DENV potential. The antiviral activity ranged from EC50 = 7.82 µM to 48.12 µM in cellulo, with a selectivity index (CC50/EC50) greater than 9 for two of the compounds (10, and 20). In conclusion, these new triazenes could serve as a lead to develop and optimize drugs against DENV.
Collapse
Affiliation(s)
- Seynabou Sokhna
- Laboratoire de Chimie Organique et Thérapeutique, Faculté de Médecine, de Pharmacie et d'Odontologie de l'Université Cheikh Anta Diop de Dakar, BP 5005 Dakar-Fann, Sénégal; UMR 7182, ICMPE, Institut de Chimie et des Matériaux Paris Est, Thiais, France; Equipe de recherche chimie organique et thérapeutique (ECOT) de l'Université Alioune Diop de Bambey. BP 30 Région de Diourbel, Sénégal.
| | - Natacha Mérindol
- Département de chimie, biochimie et physique, UQTR, Trois-Rivières, QC, Canada.
| | - Marc Presset
- UMR 7182, ICMPE, Institut de Chimie et des Matériaux Paris Est, Thiais, France.
| | - Insa Seck
- Laboratoire de Chimie Organique et Thérapeutique, Faculté de Médecine, de Pharmacie et d'Odontologie de l'Université Cheikh Anta Diop de Dakar, BP 5005 Dakar-Fann, Sénégal; Laboratoire de Chimie de Coordination Organique (LCCO), Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, Dakar, Sénégal.
| | - Marie-Pierre Girard
- Département de chimie, biochimie et physique, UQTR, Trois-Rivières, QC, Canada; Département de biologie médicale, UQTR, Trois-Rivières, QC, Canada.
| | - Seydou Ka
- Laboratoire de Chimie Organique et Thérapeutique, Faculté de Médecine, de Pharmacie et d'Odontologie de l'Université Cheikh Anta Diop de Dakar, BP 5005 Dakar-Fann, Sénégal; Département de chimie, biochimie et physique, UQTR, Trois-Rivières, QC, Canada.
| | - Samba Fama Ndoye
- Laboratoire de Chimie Organique et Thérapeutique, Faculté de Médecine, de Pharmacie et d'Odontologie de l'Université Cheikh Anta Diop de Dakar, BP 5005 Dakar-Fann, Sénégal; Laboratoire de Chimie de Coordination Organique (LCCO), Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, Dakar, Sénégal.
| | - Aïcha Lalla Ba
- Laboratoire de Chimie Organique et Thérapeutique, Faculté de Médecine, de Pharmacie et d'Odontologie de l'Université Cheikh Anta Diop de Dakar, BP 5005 Dakar-Fann, Sénégal; Université Amadou Mahtar MBOW, BP 45927 Dakar Nafa VDN, Sénégal, Dakar-Fann, Sénégal.
| | - Issa Samb
- Equipe de recherche chimie organique et thérapeutique (ECOT) de l'Université Alioune Diop de Bambey. BP 30 Région de Diourbel, Sénégal.
| | - Lionel Berthoux
- Département de biologie médicale, UQTR, Trois-Rivières, QC, Canada.
| | - Erwan Le Gall
- UMR 7182, ICMPE, Institut de Chimie et des Matériaux Paris Est, Thiais, France.
| | | | - Matar Seck
- Laboratoire de Chimie Organique et Thérapeutique, Faculté de Médecine, de Pharmacie et d'Odontologie de l'Université Cheikh Anta Diop de Dakar, BP 5005 Dakar-Fann, Sénégal.
| |
Collapse
|
4
|
Lu Z, Wong TY, Gan Y, Chen G, Paymode DJ, Chen CY. One-pot synthesis of 4-pyrimidone-2-thioether through base/acid-mediated condensation of S-alkylisothiourea and β-ketoester. RSC Adv 2024; 14:5435-5439. [PMID: 38352681 PMCID: PMC10862098 DOI: 10.1039/d4ra00039k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024] Open
Abstract
4-Pyrimidone-2-thioethers can be useful synthetic precursors to densely functionalized pyrimidines, commonly encountered in bioactive molecules. A convenient one-pot access to 4-pyrimidone-2-thioethers is reported herein, which utilizes a sequential base- and acid-mediated condensation of alkylisothioureas with β-ketoesters. Owing to mild reaction conditions, good to excellent functional group tolerance and yields are achieved. The utility of this approach is demonstrated by the synthesis of the crucial adagrasib intermediate on a 200 gram scale.
Collapse
Affiliation(s)
- Zhichao Lu
- Mirati Therapeutics San Diego California 92121 USA
| | | | - Yonghong Gan
- Mirati Therapeutics San Diego California 92121 USA
| | - Guihui Chen
- PharmaBlock (USA), Inc. 777 Schwab Road, Unit D Hatfield Pennsylvania 19440 USA
| | | | | |
Collapse
|
5
|
Jiang H, Li Y, Wang Z, Li S, Wu T, Xiong F. 3D-QSAR, molecular docking, and molecular dynamics analysis of novel biphenyl-substituted pyridone derivatives as potent HIV-1 NNRTIs. J Biomol Struct Dyn 2023; 42:13603-13618. [PMID: 37909494 DOI: 10.1080/07391102.2023.2276885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/14/2023] [Indexed: 11/03/2023]
Abstract
When designing new medications targeting HIV-1, drug designers concentrate on reverse transcriptase (RT), the central enzyme of their concern. This is due to its vital role in converting single-stranded RNA into double-stranded DNA throughout the life cycle of HIV-1. In recent reports, a series of newly discovered pyridone derivatives with biphenyl substitutions have emerged as highly potent HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs), displaying impressive antiviral activity. To analyse the three-dimensional quantitative structure-activity relationship (3D-QSAR) of pyridone inhibitors with biphenyl substitutions, we employed CoMFA and CoMSIA methods in this study. The dataset comprises a total of 51 compounds. The findings of this research demonstrate that both the CoMFA (q2=0.688, r2=0.976, rpred2=0.831) and CoMSIA/SHE (q2=0.758, r2=0.968, rpred2=0.828) models exhibit excellent predictive capability and reliable estimation stability. According to the findings of the model, we designed a collection of eleven molecules that exhibit the potential for significantly improved predictive activity. We proceeded to investigate the binding patterns of these compounds to receptor proteins utilizing the molecular docking technique. To ensure the reliability of the docking results, we went on to validate them by conducting molecular dynamics simulations and performing accurate calculations of the binding free energy. Moreover, based on initial ADMET predictions, the results consistently indicate that the newly created molecule possesses favourable pharmacokinetic properties. This study will help to facilitate the development of efficient novel inhibitors that specifically target HIV-1's non-nucleoside reverse transcriptase (NNRTIs).Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Huifang Jiang
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai, P.R. China
| | - Yeji Li
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai, P.R. China
| | - Zhonghua Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, P.R. China
| | - Shaotong Li
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai, P.R. China
| | - Tianle Wu
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai, P.R. China
| | - Fei Xiong
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai, P.R. China
| |
Collapse
|
6
|
Masaret GS. Synthesis of new Spiropyrazole derivatives under microwaves irradiation and docking study for inhibition the microbes and COVID-19. J Mol Struct 2022; 1269:133581. [PMID: 35782313 PMCID: PMC9232256 DOI: 10.1016/j.molstruc.2022.133581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/12/2022] [Accepted: 06/22/2022] [Indexed: 02/08/2023]
Abstract
Synthesis of a new series of spiropyrazole derivatives using microwaves irradiation with high yield in minutes was achieved through a cycloaddition reaction of nitrile imines and arylidenes of 5-bromo-indan-1-one. The structure of the new spiropyrazoles was assured based on their available spectral analyses and the comparison of the extracted data with the literature reports. Molecular docking simulations of all new synthesized spiropyrazole derivatives into leucyl-tRNA synthetase editing domain of Candida albicans (Pdb: 2WFC) indicated that about seven spiropyrazole derivatives can fit deeply in the active site via the formation of stable complexes. In addition, the docking study was utilized to tested the ability of these spiropyrazoles to inhibit COVID-19 through the interaction with COVID-19 main protease (Pdb: 6LU7). The results were surprising which revealed high docking score ranging from -7.764 to -5.9464 kcal/mol. Moreover, the nitrogen atom of pyrazole, Br atom and the C=O group of indanone are essential parts in the binding mode of almost the active derivatives. The results of the docking study are a glimmer of hope to complete the study on these compounds and examine them in the laboratory to ensure their effectiveness as antimicrobials and antiviral, especially Covid-19. Moreover, pharmacokinetics and physicochemical properties were studied.
Collapse
|
7
|
Zhou GF, Xie CQ, Xue JX, Wang JB, Yang YZ, Zheng CB, Luo RH, Yang RH, Chen W, Yang LM, Wang YP, Zhang HB, He YP, Zheng YT. Identification of 6ω-cyclohexyl-2-(phenylamino carbonylmethylthio)pyrimidin-4(3H)-ones targeting the ZIKV NS5 RNA dependent RNA polymerase. Front Chem 2022; 10:1010547. [PMID: 36311427 PMCID: PMC9605737 DOI: 10.3389/fchem.2022.1010547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Zika virus (ZIKV), a mosquito-borne flavivirus, is a global health concern because of its association with severe neurological disorders such as neonatal microcephaly and adult Guillain-Barre syndrome. Although many efforts have been made to combat ZIKV infection, there is currently no approved vaccines or antiviral drugs available and there is an urgent need to develop effective anti-ZIKV agents. In this study, 26 acetylarylamine-S-DACOs derivatives were prepared, and eight of them were found to have inhibitory activity against Zika virus. Among these substances, 2-[(4-cyclohexyl-5-ethyl-6-oxo-1,6-dihydropyrimidin-2-yl)thio]-N-(3,5-difluorophenyl)acetamide (4w) with the best anti-ZIKV activity was selected for in-depth study of antiviral activity and mechanism of action. Here, we discovered 4w targeted on the ZIKV NS5 RNA -dependent RNA polymerase (RdRp), which exhibited good in vitro antiviral activity without cell species specificity, both at the protein level and at the RNA level can significantly inhibit ZIKV replication. Preliminary molecular docking studies showed that 4w preferentially binds to the palm region of NS5A RdRp through hydrogen bonding with residues such as LYS468, PHE466, GLU465, and GLY467. ZIKV NS5 RdRp enzyme activity experiment showed that 4w could directly inhibit ZIKV RdRp activity with EC50 = 11.38 ± 0.51 μM. In antiviral activity studies, 4w was found to inhibit ZIKV RNA replication with EC50 = 6.87 ± 1.21 μM. ZIKV-induced plaque formation was inhibited with EC50 = 7.65 ± 0.31 μM. In conclusion, our study disclosed that acetylarylamine-S-DACOs is a new active scaffolds against ZIKV, among which compound 4w was proved to be a potent novel anti-ZIKV compound target ZIKV RdRp protein. These promising results provide a future prospective for the development of ZIKV RdRp inhibitors.
Collapse
Affiliation(s)
- Guang-Feng Zhou
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- College of Pharmacy, Soochow University, Suzhou, China
| | - Cong-Qiang Xie
- Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan Provincial Center for Research and Development of Natural Products, Ministry of Education, School of Pharmacy, Yunnan University, Kunming, China
| | - Jian-Xia Xue
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Medical College, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jing-Bo Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan Provincial Center for Research and Development of Natural Products, Ministry of Education, School of Pharmacy, Yunnan University, Kunming, China
| | - Yu-Zhuo Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan Provincial Center for Research and Development of Natural Products, Ministry of Education, School of Pharmacy, Yunnan University, Kunming, China
| | - Chang-Bo Zheng
- Yunnan Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Science, Kunming Medical University, Kunming, China
| | - Rong-Hua Luo
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ren-Hua Yang
- Yunnan Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Science, Kunming Medical University, Kunming, China
| | - Wen Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan Provincial Center for Research and Development of Natural Products, Ministry of Education, School of Pharmacy, Yunnan University, Kunming, China
| | - Liu-Meng Yang
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yue-Ping Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan Provincial Center for Research and Development of Natural Products, Ministry of Education, School of Pharmacy, Yunnan University, Kunming, China
| | - Hong-Bin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan Provincial Center for Research and Development of Natural Products, Ministry of Education, School of Pharmacy, Yunnan University, Kunming, China
- *Correspondence: Hong-Bin Zhang, ; Yan-Ping He, ; Yong-Tang Zheng,
| | - Yan-Ping He
- Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan Provincial Center for Research and Development of Natural Products, Ministry of Education, School of Pharmacy, Yunnan University, Kunming, China
- *Correspondence: Hong-Bin Zhang, ; Yan-Ping He, ; Yong-Tang Zheng,
| | - Yong-Tang Zheng
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- *Correspondence: Hong-Bin Zhang, ; Yan-Ping He, ; Yong-Tang Zheng,
| |
Collapse
|
8
|
Desai NC, Jadeja DJ, Khedkar VM. Design, synthesis, antimicrobial activity and in silico molecular docking studies of some sulfur containing pyrazole-pyridine hybrids. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2085271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Nisheeth C. Desai
- Division of Medicinal Chemistry, Department of Chemistry, Mahatma Gandhi Campus, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, India
| | - Dharmpalsinh J. Jadeja
- Division of Medicinal Chemistry, Department of Chemistry, Mahatma Gandhi Campus, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, India
| | | |
Collapse
|