1
|
Chen Q, Wang W, Xu Q, Dai Y, Zhu X, Chen Z, Sun N, Leung C, Gao F, Wu K. The enhancing effects of selenomethionine on harmine in attenuating pathological cardiac hypertrophy via glycolysis metabolism. J Cell Mol Med 2024; 28:e70124. [PMID: 39351650 PMCID: PMC11443162 DOI: 10.1111/jcmm.70124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
Pathological cardiac hypertrophy, a common feature in various cardiovascular diseases, can be more effectively managed through combination therapies using natural compounds. Harmine, a β-carboline alkaloid found in plants, possesses numerous pharmacological functions, including alleviating cardiac hypertrophy. Similarly, Selenomethionine (SE), a primary organic selenium source, has been shown to mitigate cardiac autophagy and alleviate injury. To explores the therapeutic potential of combining Harmine with SE to treat cardiac hypertrophy. The synergistic effects of SE and harmine against cardiac hypertrophy were assessed in vitro with angiotensin II (AngII)-induced hypertrophy and in vivo using a Myh6R404Q mouse model. Co-administration of SE and harmine significantly reduced hypertrophy-related markers, outperforming monotherapies. Transcriptomic and metabolic profiling revealed substantial alterations in key metabolic and signalling pathways, particularly those involved in energy metabolism. Notably, the combination therapy led to a marked reduction in the activity of key glycolytic enzymes. Importantly, the addition of the glycolysis inhibitor 2-deoxy-D-glucose (2-DG) did not further potentiate these effects, suggesting that the antihypertrophic action is predominantly mediated through glycolytic inhibition. These findings highlight the potential of SE and harmine as a promising combination therapy for the treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
- Qi Chen
- Wuxi School of MedicineJiangnan UniversityWuxiJiangsuP. R. China
| | - Wen‐Yan Wang
- Wuxi School of MedicineJiangnan UniversityWuxiJiangsuP. R. China
| | - Qing‐Yang Xu
- Wuxi School of MedicineJiangnan UniversityWuxiJiangsuP. R. China
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical NeurobiologySchool of Basic Medical Sciences, Fudan UniversityShanghaiP. R. China
| | - Yan‐Fa Dai
- Wuxi School of MedicineJiangnan UniversityWuxiJiangsuP. R. China
| | - Xing‐Yu Zhu
- Wuxi School of MedicineJiangnan UniversityWuxiJiangsuP. R. China
| | - Zhao‐Yang Chen
- Department of Cardiology, Heart Center of Fujian ProvinceFujian Medical University Union HospitalFuzhouFujianP. R. China
| | - Ning Sun
- Wuxi School of MedicineJiangnan UniversityWuxiJiangsuP. R. China
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical NeurobiologySchool of Basic Medical Sciences, Fudan UniversityShanghaiP. R. China
| | - Chung‐Hang Leung
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical Sciences, University of MacauMacaoP. R. China
| | - Fei Gao
- Department of cardiology, Beijing An Zhen HospitalCapital Medical UniversityChaoyangBeijingP. R. China
| | - Ke‐Jia Wu
- Wuxi School of MedicineJiangnan UniversityWuxiJiangsuP. R. China
| |
Collapse
|
2
|
Gonzalez MM, Vizoso-Pinto MG, Erra-Balsells R, Gensch T, Cabrerizo FM. In Vitro Effect of 9,9'-Norharmane Dimer against Herpes Simplex Viruses. Int J Mol Sci 2024; 25:4966. [PMID: 38732185 PMCID: PMC11084892 DOI: 10.3390/ijms25094966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Herpes simplex virus (HSV) infections are highly widespread among humans, producing symptoms ranging from ulcerative lesions to severe diseases such as blindness and life-threatening encephalitis. At present, there are no vaccines available, and some existing antiviral treatments can be ineffective or lead to adverse effects. As a result, there is a need for new anti-HSV drugs. In this report, the in vitro anti-HSV effect of 9,9'-norharmane dimer (nHo-dimer), which belongs to the β-carboline (βC) alkaloid family, was evaluated. The dimer exhibited no virucidal properties and did not impede either the attachment or penetration steps of viral particles. The antiviral effect was only exerted under the constant presence of the dimer in the incubation media, and the mechanism of action was found to involve later events of virus infection. Analysis of fluorescence lifetime imaging data showed that the nHo-dimer internalized well into the cells when present in the extracellular incubation medium, with a preferential accumulation into perinuclear organelles including mitochondria. After washing the host cells with fresh medium free of nHo-dimer, the signal decreased, suggesting the partial release of the compound from the cells. This agrees with the observation that the antiviral effect is solely manifested when the alkaloid is consistently present in the incubation media.
Collapse
Affiliation(s)
- María Micaela Gonzalez
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km 8.2, CC 164 (B7130IWA), Chascomús 7130, Argentina;
- Escuela de Bio y Nanotecnologías (UNSAM), San Martín 1650, Argentina
| | - Maria Guadalupe Vizoso-Pinto
- Max von Pettenkofer Institute, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU, D-80336 Munich, Germany;
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, San Miguel de Tucumán 4000, Argentina
- Laboratorio Central de Cs. Básicas, Facultad de Medicina, Universidad Nacional de Tucumán, Tucumán 4000, Argentina
| | - Rosa Erra-Balsells
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, 3er P., Ciudad Universitaria, Buenos Aires 1428, Argentina;
- Centro de Investigación en Hidratos de Carbono (CIHIDECAR), CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Naturales Pabellón II, 3er P. Ciudad Universitaria, Buenos Aires 1428, Argentina
| | - Thomas Gensch
- Institute of Biological Information Processing 1 (IBI-1; Molecular and Cellular Physiology), Forschungszentrum Jülich, Wilhelm-Jonen-Straße, 52428 Jülich, Germany
| | - Franco M. Cabrerizo
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km 8.2, CC 164 (B7130IWA), Chascomús 7130, Argentina;
- Escuela de Bio y Nanotecnologías (UNSAM), San Martín 1650, Argentina
| |
Collapse
|
3
|
Hu Y, Yu X, Yang L, Xue G, Wei Q, Han Z, Chen H. Research progress on the antitumor effects of harmine. Front Oncol 2024; 14:1382142. [PMID: 38590646 PMCID: PMC10999596 DOI: 10.3389/fonc.2024.1382142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
Harmine is a naturally occurring β-carboline alkaloid originally isolated from Peganum harmala. As a major active component, harmine exhibits a broad spectrum of pharmacological properties, particularly remarkable antitumor effects. Recent mechanistic studies have shown that harmine can inhibit cancer cell proliferation and metastasis through epithelial-to-mesenchymal transition, cell cycle regulation, angiogenesis, and the induction of tumor cell apoptosis. Furthermore, harmine reduces drug resistance when used in combination with chemotherapeutic drugs. Despite its remarkable antitumor activity, the application of harmine is limited by its poor solubility and toxic side effects, particularly neurotoxicity. Novel harmine derivatives have demonstrated strong clinical application prospects, but further validation based on drug activity, acute toxicity, and other aspects is necessary. Here, we present a review of recent research on the action mechanism of harmine in cancer treatment and the development of its derivatives, providing new insights into its potential clinical applications and strategies for mitigating its toxicity while enhancing its efficacy.
Collapse
Affiliation(s)
- Yonghua Hu
- Key Laboratory of the Digestive System Tumors of Gansu Province, Department of Tumor Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiaoli Yu
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Lei Yang
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Gaimei Xue
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Qinglin Wei
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhijian Han
- Key Laboratory of the Digestive System Tumors of Gansu Province, Department of Tumor Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Hao Chen
- Key Laboratory of the Digestive System Tumors of Gansu Province, Department of Tumor Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Mirjat D, Kashif M, Roberts CM. Shake It Up Baby Now: The Changing Focus on TWIST1 and Epithelial to Mesenchymal Transition in Cancer and Other Diseases. Int J Mol Sci 2023; 24:17539. [PMID: 38139368 PMCID: PMC10743446 DOI: 10.3390/ijms242417539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
TWIST1 is a transcription factor that is necessary for healthy neural crest migration, mesoderm development, and gastrulation. It functions as a key regulator of epithelial-to-mesenchymal transition (EMT), a process by which cells lose their polarity and gain the ability to migrate. EMT is often reactivated in cancers, where it is strongly associated with tumor cell invasion and metastasis. Early work on TWIST1 in adult tissues focused on its transcriptional targets and how EMT gave rise to metastatic cells. In recent years, the roles of TWIST1 and other EMT factors in cancer have expanded greatly as our understanding of tumor progression has advanced. TWIST1 and related factors are frequently tied to cancer cell stemness and changes in therapeutic responses and thus are now being viewed as attractive therapeutic targets. In this review, we highlight non-metastatic roles for TWIST1 and related EMT factors in cancer and other disorders, discuss recent findings in the areas of therapeutic resistance and stemness in cancer, and comment on the potential to target EMT for therapy. Further research into EMT will inform novel treatment combinations and strategies for advanced cancers and other diseases.
Collapse
Affiliation(s)
- Dureali Mirjat
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Muhammad Kashif
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Cai M. Roberts
- Department of Pharmacology, Midwestern University, Downers Grove, IL 60515, USA
| |
Collapse
|
5
|
Pan Y, Hou H, Zhou B, Gao J, Gao F. Hydroxamic acid hybrids: Histone deacetylase inhibitors with anticancer therapeutic potency. Eur J Med Chem 2023; 262:115879. [PMID: 37875056 DOI: 10.1016/j.ejmech.2023.115879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 10/26/2023]
Abstract
Histone deacetylases (HDACs), a class of enzymes responsible for the removal of acetyl functional groups from the lysine residues in the amino-terminal tails of core histones, play a critical role in the modulation of chromatin architecture and the regulation of gene expression. Dysregulation of HDAC expression has been closely associated with the development of various cancers. Histone deacetylase inhibitors (HDACis) could regulate diverse cellular pathways, cause cell cycle arrest, and promote programmed cell death, making them promising avenues for cancer therapy with potent efficacy and favorable toxicity profiles. Hybrid molecules incorporating two or more pharmacophores in one single molecule, have the potential to simultaneously inhibit two distinct cancer targets, potentially overcome drug resistance and minimize drug-drug interactions. Notably, hydroxamic acid hybrids, exemplified by fimepinostat and tinostamustine as potential HDACis, could exert the anticancer effects through induction of apoptosis, differentiation, and growth arrest in cancer cells, representing useful scaffolds for the discovery of novel HDACis. The purpose of this review is to summarize the current scenario of hydroxamic acid hybrids as HDACis with anticancer therapeutic potential developed since 2020 to facilitate further rational exploitation of more effective candidates.
Collapse
Affiliation(s)
- Yuan Pan
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Haodong Hou
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Bo Zhou
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jingyue Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Feng Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
6
|
Tang X, Kurban M, Hafiz I, Shen Q, Wang M. Preparation of hyaluronic acid-loaded Harmine polymeric micelles and in vitro effect anti-breast cancer. Eur J Pharm Sci 2023; 183:106388. [PMID: 36758771 DOI: 10.1016/j.ejps.2023.106388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/09/2023] [Accepted: 01/14/2023] [Indexed: 02/10/2023]
Abstract
AIMS To prepare hyaluronic acid-loaded Harmine polymeric micelles with CD44 targeting properties and to investigate their anti-breast cancer effects in vitro. METHODS The carboxyl group on hyaluronic acid is coupled to the amino group on 3,5-bis(trifluoromethyl)benzylamine by an amidation reaction. And the polymeric micelles self-assemble to encapsulate the Harmine in a hydrophobic core, characterized the polymer micelles by IR, 19F-NMR, Malvern particle sizing, release, hemolysis, and other experiments. Used CD44-positive MDA-MB-231 cells and CD44-negative MCF-7 cells as tumor models. The effect of polymer micelles on breast cancer cells in vitro by cytotoxicity assay, confocal, and flow cytometry. RESULTS The prepared polymer micelles had a uniform particle size of about 200 nm, good dispersion, PDI < 0.3, encapsulation rate up to 87%, drug loading of 4.12±0.03%, and negative charge. Hyaluronidase has a good enzymatic effect on polymeric micelles, with a hemolysis rate of less than 1%. It showed some dose-dependent toxicity to both MDA-MB-231 and MCF-7, with increased uptake of polymer micelles by CD44-positive MDA-MB-231 compared to CD44-negative MCF-7 cells and significant effects of polymer micelles on apoptosis and cycling in both cell types. These results suggest that the hyaluronic acid-loaded Harmine polymer micelles designed in this study are effective in killing breast cancer cells while at the same time reducing the toxicity of Harmine and improving its slow-release targeting.
Collapse
Affiliation(s)
- Xiaohui Tang
- Central Laboratory of Xinjiang Medical University, Urumqi 830017, China
| | - Munire Kurban
- Department of Pharmacy, Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, China
| | - Ipargul Hafiz
- School of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Qi Shen
- School of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Mei Wang
- School of Pharmacy, Xinjiang Medical University, Urumqi 830011, China.
| |
Collapse
|
7
|
Lindberg MF, Deau E, Arfwedson J, George N, George P, Alfonso P, Corrionero A, Meijer L. Comparative Efficacy and Selectivity of Pharmacological Inhibitors of DYRK and CLK Protein Kinases. J Med Chem 2023; 66:4106-4130. [PMID: 36876904 DOI: 10.1021/acs.jmedchem.2c02068] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Dual-specificity, tyrosine phosphorylation-regulated kinases (DYRKs) and cdc2-like kinases (CLKs) play a large variety of cellular functions and are involved in several diseases (cognitive disorders, diabetes, cancers, etc.). There is, thus, growing interest in pharmacological inhibitors as chemical probes and potential drug candidates. This study presents an unbiased evaluation of the kinase inhibitory activity of a library of 56 reported DYRK/CLK inhibitors on the basis of comparative, side-by-side, catalytic activity assays on a panel of 12 recombinant human kinases, enzyme kinetics (residence time and Kd), in-cell inhibition of Thr-212-Tau phosphorylation, and cytotoxicity. The 26 most active inhibitors were modeled in the crystal structure of DYRK1A. The results show a rather large diversity of potencies and selectivities among the reported inhibitors and emphasize the difficulties to avoid "off-targets" in this area of the kinome. The use of a panel of DYRKs/CLKs inhibitors is suggested to analyze the functions of these kinases in cellular processes.
Collapse
Affiliation(s)
| | - Emmanuel Deau
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France
| | - Jonas Arfwedson
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France
| | - Nicolas George
- Oncodesign, 25-27 avenue du Québec, 91140 Villebon-sur-Yvette, France
| | - Pascal George
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France
| | - Patricia Alfonso
- Enzymlogic, Qube Technology Park, C/Santiago Grisolía, 2, 28760 Madrid, Spain
| | - Ana Corrionero
- Enzymlogic, Qube Technology Park, C/Santiago Grisolía, 2, 28760 Madrid, Spain
| | - Laurent Meijer
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France
| |
Collapse
|
8
|
Discovery of 2,5-diphenyl-1,3,4-thiadiazole derivatives as HDAC inhibitors with DNA binding affinity. Eur J Med Chem 2022; 241:114634. [DOI: 10.1016/j.ejmech.2022.114634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 11/15/2022]
|
9
|
Antagonistic Pharmacological Interaction between Sirtuin Inhibitor Cambinol and Paclitaxel in Triple-Negative Breast Cancer Cell Lines: An Isobolographic Analysis. Int J Mol Sci 2022; 23:ijms23126458. [PMID: 35742901 PMCID: PMC9223454 DOI: 10.3390/ijms23126458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022] Open
Abstract
Breast cancer (BC) is a heterogeneous disease with different intrinsic subtypes. The most aggressive subtype of BC–triple-negative breast cancer (TNBC) is characterized by high heterogeneity and metastasis rate, poor prognosis and lack of therapeutic targets due to the absence of estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2. Targeted therapies have been approved for many other cancers and even other subtypes of BC, but treatment options for TNBC are still mainly limited to chemotherapy. Therefore, new, more effective treatment regimens are needed. Combined chemotherapy with two or more active agents is considered a promising anti-neoplasm tool in order to achieve better therapeutic response and reduce therapy-related adverse effects. The study demonstrated an antagonistic effect commonly used in TNBC therapy cytostatic drug-paclitaxel (PAX) and sirtuin inhibitor: cambinol (CAM) in BT-549, MDA-MB-468 and HCC1937 TNBC cell lines. The type of pharmacological interaction was determined by a precise and rigorous pharmacodynamic method-isobolographic analysis. The cytotoxic and anti-proliferative effects of CAM used alone or combined with PAX were determined utilizing 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and 5-bromo-2′-deoxyuridine (BrdU) assays, respectively. Induction of apoptosis in TNBC cell lines after PAX and CAM treatment applied individually or in combination was determined by flow cytometry (FACS) as a number of cells with active caspase-3. It has been observed that both agents used separately inhibit cell proliferation and induce apoptosis; however, applying them in combination ameliorated antiproliferative and pro-apoptotic effects in all analyzed TNBC cell lines. Our results demonstrate that CAM and PAX used in combination act antagonistically, limiting anti-cancer efficacy and showing the importance of preclinical testing.
Collapse
|