1
|
You J, Zhang Q, Qian L, Shi Z, Wang X, Jia L, Xia Y. Antibacterial periodontal ligament stem cells enhance periodontal regeneration and regulate the oral microbiome. Stem Cell Res Ther 2024; 15:334. [PMID: 39334342 PMCID: PMC11437971 DOI: 10.1186/s13287-024-03939-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The transplantation of periodontal ligament stem cells (PDLSCs) has been shown to enhance periodontal regeneration in animal models and clinical trials. However, it is not known whether PDLSCs are antibacterial and whether this affects oral microbiota and periodontal regeneration. METHODS We isolated human PDLSCs from periodontal ligament of extracted teeth. Rats' periodontal fenestration defects were prepared, and treated with PDLSC injections (Cell group), using saline injections (Saline group) as the control. The oral microbiota was explored by 16 S rDNA sequencing and compared with that before surgery (PRE group). The antibacterial property of PDLSCs and its underlying mechanism were tested in vitro. RESULTS Microbiome analyses reveal a decreased biodiversity, a changed community structure, and downregulated community functions of the oral microbiome in the Saline group. PDLSCs injections enhance periodontal regeneration, reverse the decrease in diversity, and increase the abundance of non-pathogenic bacterial Bifidobacterium sp. and Lactobacillus sp., making the oral microbiome similar to that of the PRE group. In vitro, PDLSCs inhibit the growth of Staphylococcus aureus, Escherichia coli, and Fusobacterium nucleatum. The main mechanism of action is postulated to involve production of the cationic antimicrobial peptide LL-37. CONCLUSIONS Our findings reveal that PDLSC injections enhance periodontal regeneration and regulate the oral microbiome to foster an oral cavity microenvironment conducive to symbiotic microbiota associated with health.
Collapse
Affiliation(s)
- Jiayi You
- The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Qian Zhang
- Suzhou Stomatological Hospital, Suzhou, 215000, Jiangsu, People's Republic of China
| | - Linjue Qian
- The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Zihan Shi
- The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Xinyue Wang
- The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Lu Jia
- Department of Emergency General Dentistry, Hebei Key Laboratory of Stomatology, Hebei Medical University, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Yang Xia
- The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China.
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China.
| |
Collapse
|
2
|
Wang P, Wang S, Wang D, Li Y, Yip RCS, Chen H. Postbiotics-peptidoglycan, lipoteichoic acid, exopolysaccharides, surface layer protein and pili proteins-Structure, activity in wounds and their delivery systems. Int J Biol Macromol 2024; 274:133195. [PMID: 38885869 DOI: 10.1016/j.ijbiomac.2024.133195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Chronic wound healing is a pressing global public health concern. Abuse and drug resistance of antibiotics are the key problems in the treatment of chronic wounds at present. Postbiotics are a novel promising strategy. Previous studies have reported that postbiotics have a wide range of biological activities including antimicrobial, immunomodulatory, antioxidant and anti-inflammatory abilities. However, several aspects related to these postbiotic activities remain unexplored or poorly known. Therefore, this work aims to outline general aspects and emerging trends in the use of postbiotics for wound healing, such as the production, characterization, biological activities and delivery strategies of postbiotics. In this review, a comprehensive overview of the physiological activities and structures of postbiotic biomolecules that contribute to wound healing is provided, such as peptidoglycan, lipoteichoic acid, bacteriocins, exopolysaccharides, surface layer proteins, pili proteins, and secretory proteins (p40 and p75 proteins). Considering the presence of readily degradable components in postbiotics, potential natural polymer delivery materials and delivery systems are emphasized, followed by the potential applications and commercialization prospects of postbiotics. These findings suggest that the treatment of chronic wounds with postbiotic ingredients will help provide new insights into wound healing and better guidance for the development of postbiotic products.
Collapse
Affiliation(s)
- Pu Wang
- Marine College, Shandong University, No. 180 Wen Hua West Road, Gao Strict, Weihai 264209, China.
| | - Shuxin Wang
- Marine College, Shandong University, No. 180 Wen Hua West Road, Gao Strict, Weihai 264209, China.
| | - Donghui Wang
- Marine College, Shandong University, No. 180 Wen Hua West Road, Gao Strict, Weihai 264209, China.
| | - Yuanyuan Li
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Stocking Hall, 411 Tower Road, Ithaca, NY 14853, USA.
| | - Ryan Chak Sang Yip
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord St, Toronto, ON M5S 3G5, Canada.
| | - Hao Chen
- Marine College, Shandong University, No. 180 Wen Hua West Road, Gao Strict, Weihai 264209, China.
| |
Collapse
|
3
|
Enayati S, Halabian R, Saffarian P, Aghamollaei H, Saeedi P. Nisin-preconditioned mesenchymal stem cells combatting nosocomial Pseudomonas infections. Regen Ther 2024; 26:161-169. [PMID: 38911027 PMCID: PMC11192785 DOI: 10.1016/j.reth.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/19/2024] [Accepted: 05/26/2024] [Indexed: 06/25/2024] Open
Abstract
Background Nosocomial infections caused by multidrug-resistant Pseudomonas aeruginosa are a considerable public health threat, requiring innovative therapeutic approaches. Objectives This study explored preconditioning mesenchymal stem cells (MSCs) with the antimicrobial peptide Nisin to enhance their antibacterial properties while maintaining regenerative capacity. Methods Human MSCs were preconditioned with varying concentrations of Nisin (0.1-1000 IU/mL) to determine an optimal dose. MSCs preconditioned with Nisin were characterized using microscopy, flow cytometry, gene expression analysis, and functional assays. The effects of preconditioning on the viability, phenotype, differentiation capacity, antimicrobial peptide expression, and antibacterial activity of MSCs against Pseudomonas aeruginosa were tested in vitro. The therapeutic efficacy was evaluated by topically applying conditioned media from Nisin-preconditioned versus control MSCs to infected wounds in a rat model, assessing bacterial burden, healing, host response, and survival. Results An optimal Nisin dose of 500 IU/mL was identified, which increased MSC antibacterial gene expression and secretome activity without compromising viability or stemness. Nisin-preconditioned MSCs showed upregulated expression of LL37 and hepcidin. Conditioned media from Nisin-preconditioned MSCs exhibited about 4-fold more inhibition of P. aeruginosa growth compared to non-preconditioned MSCs. In the wound infection model, the secretome of Nisin-preconditioned MSCs suppressed bacterial load, accelerated wound closure, modulated inflammation, and improved survival compared to standard MSC treatments. Conclusion This study explores the effect of preconditioning MSCs with the antimicrobial peptide Nisin on enhancing their antibacterial properties while maintaining regenerative capacity. Secreted factors from Nisin-preconditioned MSCs have the potential to attenuate infections and promote healing in vivo. The approach holds translational promise for managing antibiotic-resistant infections and warrants further development. Preconditioned MSCs with Nisin may offer innovative, multifaceted therapies for combating nosocomial pathogens and promoting tissue regeneration.
Collapse
Affiliation(s)
- Sara Enayati
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences Tehran, Iran
| | - Parvaneh Saffarian
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hossein Aghamollaei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Pardis Saeedi
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences Tehran, Iran
| |
Collapse
|
4
|
Azam M, Ghufran H, Tasneem S, Mehmood A, Malik K, Yousaf MA, Tarar MN, Akram SJ, Riazuddin S. Priming of adipose-derived stem cells with curcumin prior to cryopreservation preserves their functional potency: Towards an 'Off-the-shelf' therapy for burns. Cryobiology 2023; 110:69-78. [PMID: 36470459 DOI: 10.1016/j.cryobiol.2022.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/18/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Stem cells-based treatment for burn wounds require frozen cells as an off-the-shelf therapy; however, cryopreservation-induced oxidative stress resulted in post-thaw cell death or loss of cell functions, thus arrested their clinical practicality. Although antioxidant priming to stem cells increase their resistant to oxidative stress, but this strategy is still unexplored on cryopreserved cells. Herein, we investigated whether curcumin priming before cryopreservation could preserve the therapeutic potency of thawed stem cells. For this, unprimed and curcumin-primed adipose-derived stem cells (ASCs) were cryopreserved for one month. Post-thawing, cells were assessed for viability by trypan blue assay; metabolic activity by MTT assay; senescence by senescence-associated (SA)-β-galactosidase activity staining assay; migration by scratch healing assay and; mRNA expression by real-time PCR. Subsequently, the healing potential was examined by injecting cells around the wound periphery of acidic burn in rats. Post-healing, skin architecture was histologically examined. Results demonstrated that, curcumin-primed frozen cells (Cryo/Cur-ASCs) showed better post-thaw viability, metabolic activity, migration ability and lower percent of senescence comparative to unprimed frozen cells (Cryo/ASCs). Curcumin priming alleviated the oxidative damage by activating the ROS-reducing cellular antioxidant system as shown by the evident increase in GSH levels and upregulated mRNA expression of glutathione peroxidase (GPx), superoxide dismutases (SOD1, SOD2), and catalase (CAT). Further, invivo findings revealed that Cryo/Cur-ASCs-treated wounds exhibited earlier wound closure with an improved architecture comparative to Cryo/ASCs and depicted healing capacity almost similar to Fresh/ASCs. Our findings suggested that curcumin priming could be effective to alleviate the cryo-induced oxidative stress in post-thawed cells.
Collapse
Affiliation(s)
- Maryam Azam
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan
| | - Hafiz Ghufran
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan
| | - Saba Tasneem
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan
| | - Azra Mehmood
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan.
| | - Kausar Malik
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan
| | | | - Moazzam N Tarar
- Jinnah Burn and Reconstructive Surgery Centre, Lahore, Pakistan
| | | | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan; Jinnah Burn and Reconstructive Surgery Centre, Lahore, Pakistan
| |
Collapse
|
5
|
Huang B, An L, Su W, Yan T, Zhang H, Yu DJ. Exploring the alterations and function of skin microbiome mediated by ionizing radiation injury. Front Cell Infect Microbiol 2022; 12:1029592. [DOI: 10.3389/fcimb.2022.1029592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/19/2022] [Indexed: 11/15/2022] Open
Abstract
BackgroundRadiation-induced skin injury (RISI) is still the most common and severe side effect of radiotherapy. The role of the skin’s microbial barrier in the pathogenesis and progression of RISI needs to be fully investigated.MethodsThis study aimed to explore the alterations in and functions of the skin microbiota in RISI. We applied the unculturable approach to characterize the cutaneous microbiomes of a radiation-induced animal model by sequencing the V1–V3 regions of the 16S ribosomal RNA (rRNA) gene. Combined with the downloaded clinical data of patients, a comprehensive analysis was performed to identify potential radioprotective species and metabolic pathways.ResultsThere were no significant differences in the alpha diversity indices (Sobs, Shannon, Simpson, Ace, and Chao) between the acute radiation injury and control groups. Phylum-level analysis of the RISI microbiomes exhibited significant predominance of Firmicutes (mean abundance = 67%, corrected p = 0.0035). The high abundance of Firmicutes was significantly associated with rapid healing of RISI (average relative abundance = 52%; Kruskal–Wallis: p = 5.7E−4). Among its members, Streptococcus, Staphylococcus, Acetivibrio ethanolgignens group, Peptostreptococcus, Anaerofilum, and UCG-002 [linear discriminant analysis (LDA) > 3, p < 0.05] were identified as the core genera of Firmicutes. In addition, Lachnosiraceae and Lactobacillus occupied an important position in the interaction network (r > 0.6, p < 0.05). The differential metabolic pathways of RISI were mainly associated with carbohydrate metabolism (butanoate and propanoate metabolism), amino acid metabolism (tryptophan and histidine metabolism), energy metabolism, and lipid metabolism (fatty acid degradation and biosynthesis).ConclusionThis study provides new insights into the potential mechanism and skin microbial changes in the progression of RISI. The overwhelming predominance of members of Firmicutes, including Streptococcaceae, Staphylococcaceae, Lachnospiraceae, and Lactobacillus, is potentially related to rapid healing of RISI. The microbiota–metabolite axis plays a critical role in RISI and provides promising therapeutic targets for the treatment of adverse side effects.
Collapse
|
6
|
Tarapatzi G, Filidou E, Kandilogiannakis L, Spathakis M, Gaitanidou M, Arvanitidis K, Drygiannakis I, Valatas V, Kotzampassi K, Manolopoulos VG, Kolios G, Vradelis S. The Probiotic Strains Bifidοbacterium lactis, Lactobacillus acidophilus, Lactiplantibacillus plantarum and Saccharomyces boulardii Regulate Wound Healing and Chemokine Responses in Human Intestinal Subepithelial Myofibroblasts. Pharmaceuticals (Basel) 2022; 15:1293. [PMID: 36297405 PMCID: PMC9611312 DOI: 10.3390/ph15101293] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/07/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
Bifidobacterium lactis, Lactobacillus acidophilus, Lactiplantibacillus plantarum and Saccharomyces boulardii are common probiotic supplements. Colonic subepithelial myofibroblasts (cSEMFs) are actively involved in mucosal wound healing and inflammation. cSEMFs, isolated from healthy individuals, were stimulated with 102 or 104 cfu/mL of these probiotic strains alone and in combination, and their effect on chemokine and wound healing factor expression was assessed by qRT-PCR, ELISA and Sircol Assay, and on cSEMFs migration, by Wound Healing Assay. These strains remained viable and altered cSEMFs’ inflammatory and wound healing behavior, depending on the strain and concentration. cSEMFs treated with a combination of the four probiotics had a moderate, but statistically significant, increase in the mRNA and/or protein expression of chemokines CXCL1, CXCL2, CXCL4, CXCL8, CXCL10, CCL2 and CCL5, and healing factors, collagen type I and III, fibronectin and tissue factor. In contrast, when each strain was administered alone, different effects were observed, with greater increase or decrease in chemokine and healing factor expression, which was balanced by the mixture. Overall, this study highlights that the use of multiple probiotic strains can potentially alert the gut mucosal immune system and promote wound healing, having a better effect on mucosal immunity than the use of single probiotics.
Collapse
Affiliation(s)
- Gesthimani Tarapatzi
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Eirini Filidou
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Leonidas Kandilogiannakis
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Michail Spathakis
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Maria Gaitanidou
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Konstantinos Arvanitidis
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Ioannis Drygiannakis
- Gastroenterology and Hepatology Research Laboratory, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Vassilis Valatas
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Gastroenterology and Hepatology Research Laboratory, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Katerina Kotzampassi
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Vangelis G. Manolopoulos
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - George Kolios
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Stergios Vradelis
- Second Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|