1
|
Erdoğan M, Comert Onder F. Synthesis, anticancer activity and molecular modeling study of novel substituted triazole linked tetrafluoronaphthalene hybrid derivatives. J Biomol Struct Dyn 2024; 42:9767-9786. [PMID: 37676264 DOI: 10.1080/07391102.2023.2252914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023]
Abstract
To create some novel anticancer molecules, a library of novel series of various triazoles linked to the hydroxyl group of 5,6,7,8-tetrafluoronaphthalen-1-ol (3) was designed and synthesized via CuAAC reaction 'Click Chemistry' of tetrafluoronaphthalene based terminal alkyne with substituted organic azides. The structural characterizations of the targeted Click products 9-18 were confirmed by FTIR, 1H NMR, 19F NMR, 13C NMR and HRMS spectroscopy. Synthesized compounds were tested in two triple negative breast cancer (TNBC) cell lines to understand their anticancer potentials. According to our findings, compounds 14 and 13 showed high cytotoxicity in BT549 cells at 20 μM and 30 μM, respectively. Moreover, these compounds blocked the migration of BT549 cells. In the MDA-MB-231 cell line, compound 18 exhibited high cytotoxicity and can block cell migration for 24 h. Molecular docking study with synthesized novel compounds was performed by Glide/SP method against SphK1 drug target. Furthermore, molecular dynamics (MD) simulation was carried out for the compounds 12-14 and 18. The compounds 13 and 14 may be potential inhibitor candidates in place of a reference inhibitor. A pharmacophore model was generated with the most potent compound 14, and the approved drugs were screened using the modules of Discovery Studio to find similar drugs. Consequently, this comprehensive study encompassing design, synthesis, in vitro and in silico analyses were correlated with the structure-activity relationship between compounds. The findings have the potential to unveil promising drug candidates for future studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Musa Erdoğan
- Department of Food Engineering, Faculty of Engineering and Architecture, Kafkas University, Kars, Türkiye
| | - Ferah Comert Onder
- Department of Medical Biology, Faculty of Medicine, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| |
Collapse
|
2
|
Singh A, Singh K, Sharma A, Kaur U, Kaur K, Mohinder Singh Bedi P. Recent Developments in 1,2,3-Triazole Based α-Glucosidase Inhibitors: Design Strategies, Structure-Activity Relationship and Mechanistic Insights. Chem Biodivers 2024; 21:e202401109. [PMID: 38951966 DOI: 10.1002/cbdv.202401109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/03/2024]
Abstract
Diabetes mellitus is a chronic and most prevalent metabolic disorder affecting 422 million the people worldwide and causing life-threatening associated conditions including disorders of kidney, heart, and nervous system as well as leg amputation and retinopathy. Steadily rising cases from the last few decades suggest the failure of currently available drugs in containment of this disease. α-Glucosidase is a potential target for effectively tackling this disease and attracting significant interest from medicinal chemists around the globe. Besides having a set of side effects, currently available α-glucosidase inhibitors (carbohydrate mimics) offer better tolerability, safety, and synergistic pharmacological outcomes with other antidiabetic drugs therefore medicinal chemists have working extensively over last three decades for developing alternative α-glucosidase inhibitors. The 1,2,3-Triazole nucleus is energetically used by various research groups around the globe for the development of α-glucosidase inhibitors posing it as an optimum scaffold in the field of antidiabetic drug development. This review is a systematic analysis of α-glucosidase inhibitors developed by employing 1,2,3-triazole scaffold with special focus on design strategies, structure-activity relationships, and mechanism of inhibitory effect. This article will act as lantern for medicinal chemists in developing of potent, safer, and effective α-glucosidase inhibitors with desired properties and improved therapeutic efficacy.
Collapse
Affiliation(s)
- Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Karanvir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Aman Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Uttam Kaur
- University School of Business Management, Chandigarh University, Gharuan, 140413, India
| | - Kamaljit Kaur
- Hershey Dental Group, Hershey, Pennsylvania, 17033, USA
| | - Preet Mohinder Singh Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
- Drug and Pollution testing Laboratory, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| |
Collapse
|
3
|
Luo S, Yang W, Huang Y, Peng Z, Wang G. Design, synthesis, biological evaluation, and docking study of new triazole-phenylacetamide derivatives as α-glucosidase inhibitors. Bioorg Chem 2023; 141:106844. [PMID: 37703743 DOI: 10.1016/j.bioorg.2023.106844] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/26/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
To discover potent α-glucosidase inhibitors, a class of novel triazole-phenylacetamide derivatives (5a-5p) were designed, prepared, and tested for their α-glucosidase inhibitory effects. All tested compounds (5a-5p) displayed a strong α-glucosidase inhibitory activity (IC50 = 6.69 ± 0.18-113.65 ± 2.94 μM) in comparison with the positive control acarbose (IC50 = 723.06 ± 11.26 μM). Thereinto, 5g (IC50 = 6.69 ± 0.18 μM) showed the best anti-α-glucosidase activity and behaved as a mixed-type inhibitor with the value of Ki and Kis to be 1.65 μM and 4.54 μM, respectively. Besides, fluorescence quenching experiment, three-dimensional fluorescence spectra assay, circular dichroism analysis, and molecular docking studies indicated that 5g may inhibit α-glucosidase activity by binding with its active site as well as changing the secondary structure of α-glucosidase. Combined with the inhibition effect on the rise of postprandial blood glucose level and low cytotoxicity of 5g, it could be concluded that these title compounds may play a role as lead compounds to develop novel α-glucosidase inhibitors.
Collapse
Affiliation(s)
- Shuang Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China; School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Wei Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China; School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Yong Huang
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China
| | - Zhiyun Peng
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| | - Guangcheng Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
4
|
Feng Q, Yang W, Peng Z, Wang G. Utilizing bio-affinity ultrafiltration combined with UHPLC Q-Exactive Plus Orbitrap HRMS to detect potential α-glucosidase inhibitors in Oxalis corniculate L. Int J Biol Macromol 2023; 252:126490. [PMID: 37625761 DOI: 10.1016/j.ijbiomac.2023.126490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Oxalis corniculate L. (O. corniculate) was used to treat diabetes in Chinese folk as a popular tea drink. In this work, 31 compounds from O. corniculate were screened and identified as potential α-Glucosidase inhibitors (α-GIs). Among them, 6 compounds displayed stronger inhibitory activity than acarbose (IC50 = 212.9 ± 5.98 μg/mL). Especially, the most effective compounds quercetin (Qu, IC50 = 4.70 ± 0.40 μg/mL) and luteolin (Lu, IC50 = 15.72 ± 0.75 μg/mL) inhibited α-Glu in competitive and mixed manners, respectively. Moreover, fluorescence quenching, circular dichroism (CD), and molecular docking study revealed that they can arouse the changes in the secondary structure and hydrophobic micro-environment of the enzyme mainly through a hydrophobic binding. Furthermore, it was observed that oral administration of Qu (20 mg/kg) can significantly reduce postprandial blood glucose (PBG) levels in mice vs. the control group. To sum up, the above research confirmed that O. corniculate could prevent and treat postprandial hyperglycemia as a good tea drink, and the plant was an excellent source to obtain natural α-GIs.
Collapse
Affiliation(s)
- Qianqian Feng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China; School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Wei Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China; School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Zhiyun Peng
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| | - Guangcheng Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
5
|
Kumar H, Dhameja M, Kurella S, Uma A, Gupta P. Synthesis of 1,2,3-triazole-1,3,4-thiadiazole hybrids as novel α-glucosidase inhibitors by in situ azidation/click assembly. Arch Pharm (Weinheim) 2023:e2300145. [PMID: 37236165 DOI: 10.1002/ardp.202300145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023]
Abstract
α-Glucosidase inhibition is widely used in the oral management of diabetes mellitus (DM), a disease characterized by high blood sugar levels (hyperglycemia) and abnormal carbohydrate metabolism. In this respect, a series of 1,2,3-triazole-1,3,4-thiadiazole hybrids 7a-j were synthesized, inspired by a copper-catalyzed one-pot azidation/click assembly approach. All the synthesized hybrids were screened for inhibition of the α-glucosidase enzyme, displaying IC50 values ranging from 63.35 ± 0.72 to 613.57 ± 1.98 μM, as compared to acarbose (reference) with IC50 of 844.81 ± 0.53 μM. The hybrids 7h and 7e with 3-nitro and 4-methoxy substituents at the phenyl ring of the thiadiazole moiety were the best active hybrids of this series with IC50 values of 63.35 ± 0.72 μM, and 67.61 ± 0.64 μM, respectively. Enzyme kinetics analysis of these compounds revealed a mixed mode of inhibition. Moreover, molecular docking studies were also performed to gain insights into the structure-activity-relationships of the potent compounds and their corresponding analogs.
Collapse
Affiliation(s)
- Hariom Kumar
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Manoj Dhameja
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Sirisha Kurella
- Institute of Science and Technology, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad, Telangana, India
| | - Adepally Uma
- Institute of Science and Technology, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad, Telangana, India
| | - Preeti Gupta
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
6
|
Dhameja M, Kumar H, Kurella S, Singh R, Uma A, Gupta P. Inhibition of α-glucosidase enzyme by 'click'-inspired pharmacophore framework 1,3,4-thiadiazole-1,2,3-triazole hybrids. Future Med Chem 2023; 15:345-363. [PMID: 36942781 DOI: 10.4155/fmc-2022-0289] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Aim: α-Glucosidase inhibitors are important oral antidiabetic drugs that are used alone or in combination therapy. Materials & methods: In this regard, 1,3,4-thiadiazoles-1,2,3-triazoles were designed, synthesized and evaluated for α-glucosidase enzyme inhibition. Results: The applied synthesis protocol involved a 'click' reaction between a novel alkyne derived from a 1,3,4-thiadiazole derivative and phenylacetamide azides. The hybrid (9n) bearing 2-methyl and 4-nitro substituents was the best inhibitor with an IC50 value of 31.91 μM (acarbose IC50 = 844.81 μM). The blind molecular docking study of the best derivative (9n) showed that it interacted with the allosteric site's amino acid residues of α-glucosidase. Conclusion: 'Click'-inspired potential α-glucosidase inhibitors (1,3,4-thiadiazole-1,2,3-triazole hybrids) were identified and structure-activity relationship and kinetic and molecular docking studies accomplished.
Collapse
Affiliation(s)
- Manoj Dhameja
- Department of Chemistry, School of Physical & Decision Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, 226025, India
| | - Hariom Kumar
- Department of Chemistry, School of Physical & Decision Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, 226025, India
| | - Sirisha Kurella
- Institute of Science & Technology, Jawaharlal Nehru Technical University, Kukatpally, Hyderabad, Telangana, 500085, India
| | - Ravindra Singh
- Department of Chemistry, Maharani Shri Jaya Government Post-Graduate College, Bharatpur, Rajasthan, 321001, India
| | - Adepally Uma
- Institute of Science & Technology, Jawaharlal Nehru Technical University, Kukatpally, Hyderabad, Telangana, 500085, India
| | - Preeti Gupta
- Department of Chemistry, School of Physical & Decision Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, 226025, India
| |
Collapse
|
7
|
Mushtaq A, Azam U, Mehreen S, Naseer MM. Synthetic α-glucosidase inhibitors as promising anti-diabetic agents: Recent developments and future challenges. Eur J Med Chem 2023; 249:115119. [PMID: 36680985 DOI: 10.1016/j.ejmech.2023.115119] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Diabetes mellitus is one of the biggest challenges for the scientific community in the 21st century. It is a well-recognized multifactorial health problem contributes significantly to high mortality rates by causing serious health complications mainly related to cardiovascular diseases, kidney damage and neuropathy. The inhibition of α-glucosidase (enzyme that catalyses starch hydrolysis in the intestine) is an effective therapeutic approach for controlling hyperglycemia associated with type-2 diabetes. However, the presently approved drugs/inhibitors such as acarbose, miglitol and voglibose have several undesirable gastrointestinal side effects impeding their applications. Therefore, search for novel and more effective inhibitors with reduced side effects and less cost remains a fascinating area of research. In this context, a large variety of α-glucosidase inhibitors have been identified in recent years that demands attention from drug development community. This review is therefore an effort to summarize and highlight the promising α-glucosidase inhibitors especially those which are primarily based on aromatic heterocyclic scaffolds such as coumarin, imidazole, isatin, pyrimidine, quinazoline, triazine, thiazole etc, having improved safety and pharmacological profiles.
Collapse
Affiliation(s)
- Alia Mushtaq
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Uzma Azam
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Saba Mehreen
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | | |
Collapse
|
8
|
Design, synthesis, biological evaluation, and docking study of chromone-based phenylhydrazone and benzoylhydrazone derivatives as antidiabetic agents targeting α-glucosidase. Bioorg Chem 2023; 132:106384. [PMID: 36696731 DOI: 10.1016/j.bioorg.2023.106384] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
To develop novel α-glucosidase inhibitors, a series of chromone-based phenylhydrazone and benzoylhydrazone derivatives were designed, synthesized, and evaluated their inhibitory effects on α-glucosidase. The target compounds were characterized using 1H NMR, 13C NMR, and high-resolution mass spectra. Some of the compounds showed a varying degree of α-glucosidase inhibitory activity with IC50 values ranging from 6.59 ± 0.09 to 158.55 ± 0.87 μM. Among them, compound 5c (IC50 = 6.59 ± 0.09 μM) was the most potent inhibitor by comparison with positive control acarbose (IC50 = 685.11 ± 7.46 μM). Enzyme kinetic, fluorescence analysis, circular dichroism spectra, and molecular docking techniques were employed to explain the underlying molecular mechanisms of 5c inhibition on α-glucosidase. In vivo sucrose-loading test showed that 5c could suppress the rise of blood glucose levels after loading sucrose in normal Kunming mice. The cytotoxicity assay indicated that 5c exhibited low cytotoxicity.
Collapse
|
9
|
Cai JH, Zhu XZ, Guo PY, Rose P, Liu XT, Liu X, Zhu YZ. Recent updates in click and computational chemistry for drug discovery and development. Front Chem 2023; 11:1114970. [PMID: 36825226 PMCID: PMC9941707 DOI: 10.3389/fchem.2023.1114970] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/27/2023] [Indexed: 02/09/2023] Open
Abstract
Drug discovery is a costly and time-consuming process with a very high failure rate. Recently, click chemistry and computer-aided drug design (CADD) represent popular areas for new drug development. Herein, we summarized the recent updates in click and computational chemistry for drug discovery and development including clicking to effectively synthesize druggable candidates, synthesis and modification of natural products, targeted delivery systems, and computer-aided drug discovery for target identification, seeking out and optimizing lead compounds, ADMET prediction as well as compounds synthesis, hopefully, inspires new ideas for novel drug development in the future.
Collapse
Affiliation(s)
- Jiang Hong Cai
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Taipa, Macau, China
| | - Xuan Zhe Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Taipa, Macau, China
| | - Peng Yue Guo
- Department of Clinical Pharmacy, School of Pharmacy, Second Military University, Shanghai, China
| | - Peter Rose
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Xiao Tong Liu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Taipa, Macau, China
| | - Xia Liu
- Department of Clinical Pharmacy, School of Pharmacy, Second Military University, Shanghai, China
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Taipa, Macau, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Kumar H, Dhameja M, Kurella S, Uma A, Gupta P. Synthesis, in-vitro α-glucosidase inhibition and molecular docking studies of 1,3,4-thiadiazole-5,6-diphenyl-1,2,4-triazine hybrids: Potential leads in the search of new antidiabetic drugs. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Ma C, Liu C, Ren M, Cui L, Xi X, Kang W. Inhibitory effect of quercetin-3-O-α-rhamnoside, p-coumaric acid, phloridzin and 4-O-β-glucopyranosyl-cis-coumaric acid on rats liver microsomes cytochrome P450 enzyme activities. Food Chem Toxicol 2023; 172:113583. [PMID: 36577462 DOI: 10.1016/j.fct.2022.113583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/04/2022] [Accepted: 12/21/2022] [Indexed: 12/26/2022]
Abstract
P-coumaric acid, phloridzin, quercetin-3-O-α-rhamnoside and 4-O-β-glucopyranosyl-cis-coumaric acid isolated in Malus micromalus Makino fruit were investigated the inhibitory activity of cytochrome CYP450 enzyme by the probe test method of rat liver microsomes in vitro, and determined the role in drug metabolism and/or toxicology. Enzymatic kinetics method was used to determine the inhibition type of these components and corresponding inhibition constants. The results demonstrated that all the 4 compounds had no significance to inhibit the activities of CYP2E1 and CYP2C11. P-coumaric acid, phloridzin and quercetin-3-O-α-rhamnoside had a weak inhibitory effect on CYP3A4, which belonged to the competitive inhibitory type with inhibitory constants of 10.56, 30.79 and 40.29 μmol L-1, respectively. 4-O-β-glucopyranosyl-cis-coumaric acid had a moderate inhibitory effect on CYP3A4, which belonged to the anti-competitive inhibition type and the inhibition constant was 5.56 μmol L-1. The CYP1A2 could be weakly inhibited by p-coumaric acid in the competitive type, and the inhibition constant is 25.20 μmol L-1 4-O-β-glucopyranosyl-cis-coumaric acid exhibited anti-competitive inhibition of CYP1A2 with an inhibition constant of 19.91 μmol L-1, and the inhibition effect was weak. The results will be useful to optimize the clinical dosage regimen and avoid drug-drug interactions when it is utilized comminating with other medicines in the clinic.
Collapse
Affiliation(s)
- Changyang Ma
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China; Shenzhen Research Institute of Henan University, Shenzhen, 518000, China; Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng, 475004, China
| | - Cunyu Liu
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China
| | - Mengjie Ren
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China
| | - Lili Cui
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng, 475004, China; Henan Province Functional Food Engineering Technology Research Center, Kaifeng, Henan, 475004, China
| | - Xuefeng Xi
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China; College of Physical Education, Henan University, Henan, Kaifeng, 475004, China.
| | - Wenyi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China; Shenzhen Research Institute of Henan University, Shenzhen, 518000, China; Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng, 475004, China; Henan Province Functional Food Engineering Technology Research Center, Kaifeng, Henan, 475004, China.
| |
Collapse
|
12
|
He Q, Mu Q, Wei Z, Peng B, Lan Z, Zhang Y, Yao W, Nie J. Investigation of the binding behavior of bioactive 7-methoxyflavone to human serum albumin by coupling multi-spectroscopic with computational approaches. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121920. [PMID: 36201870 DOI: 10.1016/j.saa.2022.121920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
The natural flavonoids with bioactivity as secondary plant metabolites are mostly found in fruits, vegetables, tea and herbs, the distribution and bioavailability of which in vivo depends on the interaction and successive binding with carrier proteins in the systemic circulation. In this paper, the binding behavior of bioactive 7-methoxyflavone (7-MF) with human serum albumin (HSA) was studied with the aid of the combination of multi-spectroscopic methods, molecular docking and molecular dynamic simulation. The results of multi-spectroscopic experiments revealed that 7-MF interacted with HSA predominantly via fluorescence static quenching and the microenvironment around the fluorophore Trp residues in HSA became more hydrophilicity with the binding of 7-MF. Thermodynamic analysis demonstrated that hydrogen bonds and van der Waals forces played a dominant role in stabilizing the HSA-7-MF complex. Moreover, the docking experiment and molecular dynamic simulation further confirmed that 7-MF could enter the active cavity of HSA and caused more stable conformation and change of secondary structure of HSA through forming hydrogen bond. The exploration of the mechanism of 7-MF binding to HSA lights a new avenue to understand the stability, transport and distribution of 7-MF and 7-MF may hold great potential to be extended as a promising alternative of dietary supplements or pharmaceutical agents.
Collapse
Affiliation(s)
- Qing He
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Qi'er Mu
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Zhongxun Wei
- Momordica grosvenori Research Institution, Yongfu County Bureau of Agriculture and Rural Affairs, Guilin 541800, China
| | - Bin Peng
- Momordica grosvenori Research Institution, Yongfu County Bureau of Agriculture and Rural Affairs, Guilin 541800, China
| | - Zhenni Lan
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Yun Zhang
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| | - Weihao Yao
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Jinfang Nie
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
13
|
Abadan S, Saglam MF, Koca MS, Bingul M, Sahin H, Zorlu Y, Sengul IF. Synthesis and Molecular Modeling Studies of Naphthazarin Derivatives as Novel Selective Inhibitors of α-Glucosidase and α-Amylase. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|