1
|
Jia Y, Dang W, Zhang X, Mi Y, Guo T, Mu D, Zhou D, Chen G, Hou Y, Li N. Characteristic terpenylated coumarins from Ferula ferulaeoides as potential inhibitors on overactivation of microglia. Bioorg Chem 2024; 149:107484. [PMID: 38810482 DOI: 10.1016/j.bioorg.2024.107484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/07/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
A total of 37 characteristic terpenylated coumarins (1-25), including 17 undescribed compounds (1-5, 6a/6b, 7-10, 11a/11b-13a/13b), have been isolated from the root of Ferula ferulaeoides. Meanwhile, twelve pairs of enantiomers (6a/6b, 11a/11b-15a/15b, 17a/17b, 18a/18b, 20a/20b-22a/22b, and 25a/25b) were chirally purified. The structures of these new compounds were elucidated using HRESIMS, UV, NMR, and calculated 13C NMR with a custom DP4 + analysis. The absolute configurations of all the compounds were determined for the first time using electronic circular dichroism (ECD). Then, their inhibitory effects on nitric oxide (NO) production were evaluated with LPS-induced BV-2 microglia. Compared with the positive control minocycline (IC50 = 59.3 μM), ferulaferone B (2) exhibited stronger inhibitory potency with an IC50 value of 12.4 μM. The immunofluorescence investigation indicated that ferulaferone B (2) could inhibit Iba-1 expression in LPS-stimulated BV-2 microglia.
Collapse
Affiliation(s)
- Yewen Jia
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Wen Dang
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xueni Zhang
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Yan Mi
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110016, PR China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang 110016, PR China
| | - Tingting Guo
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Danyang Mu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110016, PR China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang 110016, PR China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Yue Hou
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110016, PR China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang 110016, PR China.
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
2
|
Karimi MR, Jariani P, Yang JL, Naghavi MR. A comprehensive review of the molecular and genetic mechanisms underlying gum and resin synthesis in Ferula species. Int J Biol Macromol 2024; 269:132168. [PMID: 38729496 DOI: 10.1016/j.ijbiomac.2024.132168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/11/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Ferula spp. are plants that produce oleo-gum-resins (OGRs), which are plant exudates with various colors. These OGRs have various industrial applications in pharmacology, perfumery, and food. The main constituents of these OGRs are terpenoids, a diverse group of organic compounds with different structures and functions. The biosynthesis of OGRs in Ferula spp., particularly galbanum, holds considerable economic and ecological importance. However, the molecular and genetic underpinnings of this biosynthetic pathway remain largely enigmatic. This review provides an overview of the current state of knowledge on the biosynthesis of OGRs in Ferula spp., highlighting the major enzymes, genes, and pathways involved in the synthesis of different terpenoid classes, such as monoterpenes, sesquiterpenes, and triterpenes. It also examines the potential of using omics techniques, such as transcriptomics and metabolomics, and genome editing tools, such as CRISPR/Cas, to increase the yield and quality of Ferula OGRs, as well as to create novel bioactive compounds with enhanced properties. Moreover, this review addresses the current challenges and opportunities of applying gene editing in Ferula spp., and suggests some directions for future research and development.
Collapse
Affiliation(s)
- Mohammad Reza Karimi
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj, Iran
| | - Parisa Jariani
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj, Iran
| | - Jun-Li Yang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People's Republic of China
| | - Mohammad Reza Naghavi
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj, Iran.
| |
Collapse
|
3
|
Wang J, Zheng Q, Wang H, Shi L, Wang G, Zhao Y, Fan C, Si J. Sesquiterpenes and Sesquiterpene Derivatives from Ferula: Their Chemical Structures, Biosynthetic Pathways, and Biological Properties. Antioxidants (Basel) 2023; 13:7. [PMID: 38275627 PMCID: PMC10812793 DOI: 10.3390/antiox13010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Ferula is a genus of flowering plants known for its edible and medicinal properties. Since ancient times, many species of Ferula have been used in traditional medicine to treat various health issues across countries, such as digestive disorders, respiratory problems, and even as a remedy for headaches and toothaches. In addition, they are also used as a flavoring agent in various cuisines. As the main active ingredients in Ferula, sesquiterpenes and their derivatives, especially sesquiterpene coumarins, sesquiterpene phenylpropanoids, and sesquiterpene chromones, have attracted the attention of scientists due to the diversity of their chemical structures, as well as their extensive and promising biological properties, such as antioxidative, anti-inflammatory, antibacterial properties. However, there has not been a comprehensive review of sesquiterpenes and their derivatives from this plant. This review aims to provide an overview of the chemical structures, biosynthetic pathways, and biological properties of sesquiterpenes and sesquiterpene derivatives from Ferula, which may help guide future research directions and possible application methods for this valuable edible and medicinal plant.
Collapse
Affiliation(s)
- Junchi Wang
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (J.W.); (Q.Z.); (H.W.)
| | - Qi Zheng
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (J.W.); (Q.Z.); (H.W.)
| | - Huaxiang Wang
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (J.W.); (Q.Z.); (H.W.)
| | - Leiling Shi
- Xinjiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi 830002, China; (L.S.); (G.W.); (Y.Z.)
| | - Guoping Wang
- Xinjiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi 830002, China; (L.S.); (G.W.); (Y.Z.)
| | - Yaqin Zhao
- Xinjiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi 830002, China; (L.S.); (G.W.); (Y.Z.)
| | - Congzhao Fan
- Xinjiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi 830002, China; (L.S.); (G.W.); (Y.Z.)
| | - Jianyong Si
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (J.W.); (Q.Z.); (H.W.)
| |
Collapse
|
4
|
Zhang PP, Liang JJ, Lu QY, Yin X, Zhou YQ, Feng TT, Zhou Y, Chang D, Wei X. New Monoterpenoid Indole Hybrids from Gelsemium elegans with Anti-Inflammatory and Osteoclast Inhibitory Activities. Chem Biodivers 2023; 20:e202301665. [PMID: 37968250 DOI: 10.1002/cbdv.202301665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/17/2023]
Abstract
Gelsegansymines A (1) and B (2), two new indole alkaloids along with six known analogues (3-8) were isolated from the aerial parts of Gelsemium elegans. Their structures were elucidated by means of spectroscopic techniques. Structurally, compounds 1 and 2 possessed the rare cage-like gelsedine skeleton hybrid with bicyclic monoterpenoid. The anti-inflammatory activities of isolated compounds (1-3) were tested on LPS induced RAW264.7 cells. Under the treated concentration without toxicity for cells, the cytokines levels of nitric oxide (NO), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were evaluated by Griess method and enzyme-linked immunosorbent assay (ELISA). The results showed that compounds 1-3 exhibited anti-inflammatory activities with dose-dependent manner range from 12.5 to 50 μmol/L. Furthermore, the inhibitory activities of compounds 1 and 2 on receptor activator of NF-κB ligand (RANKL) induced osteoclast formation were tested in vitro. Compounds 1 and 2 at 5 μmol/L exhibited the significant inhibitory effect on the osteoclastogenesis induced by RANKL. This work reported the anti-inflammatory and osteoclast inhibitory activities of new monoterpenoid indole hybrids, which may inspire the further light on the related traditional application research of G. elegans.
Collapse
Affiliation(s)
- Pan-Pan Zhang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, People's Republic of China
| | - Jia-Jun Liang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, People's Republic of China
| | - Qing-Yu Lu
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, People's Republic of China
| | - Xin Yin
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, People's Republic of China
| | - Yong-Qiang Zhou
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, People's Republic of China
| | - Ting-Ting Feng
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, People's Republic of China
| | - Ying Zhou
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, People's Republic of China
| | - Dong Chang
- Yunnan Academy of Scientific & Technical Information, Kunming, 650500
| | - Xin Wei
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, People's Republic of China
| |
Collapse
|
5
|
Wang J, Zheng Q, Shi M, Wang H, Fan C, Wang G, Zhao Y, Si J. Isolation, Identification, Anti-Inflammatory, and In Silico Analysis of New Lignans from the Resin of Ferula sinkiangensis. Pharmaceuticals (Basel) 2023; 16:1351. [PMID: 37895822 PMCID: PMC10610263 DOI: 10.3390/ph16101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Ferula sinkiangensis K. M. Shen (Apiaceae) is distributed in arid desert areas of Xinjiang, and its resin is a traditional Chinese medicine to treat gastrointestinal digestive diseases. To explore bioactive components from F. sinkiangensis, three new lignans and thirteen known components were isolated. The structural elucidation of the components was established utilizing spectroscopic analyses together with ECD calculations. Griess reaction results indicated new compounds 1 and 2 significantly decreased NO production in LPS-stimulated RAW 264.7 macrophages, and ELISA results indicated that they effectively attenuated LPS-induced inflammation by inhibiting TNF-α, IL-1β, and IL-6 expressions. The in silico approach confirmed that compound 1 docked into the receptors with strong binding energies of -5.84~-10.79 kcal/mol. In addition, compound 6 inhibited the proliferation of AGS gastric cancer cells with IC50 values of 15.2 μM by suppressing the cell migration and invasion. This study disclosed that F. sinkiangensis might be a promising potential resource for bioactive components.
Collapse
Affiliation(s)
- Junchi Wang
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (J.W.); (Q.Z.); (H.W.)
| | - Qi Zheng
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (J.W.); (Q.Z.); (H.W.)
| | - Minghui Shi
- Xinjiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi 830002, China; (M.S.); (C.F.); (G.W.); (Y.Z.)
| | - Huaxiang Wang
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (J.W.); (Q.Z.); (H.W.)
| | - Congzhao Fan
- Xinjiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi 830002, China; (M.S.); (C.F.); (G.W.); (Y.Z.)
| | - Guoping Wang
- Xinjiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi 830002, China; (M.S.); (C.F.); (G.W.); (Y.Z.)
| | - Yaqin Zhao
- Xinjiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi 830002, China; (M.S.); (C.F.); (G.W.); (Y.Z.)
| | - Jianyong Si
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (J.W.); (Q.Z.); (H.W.)
| |
Collapse
|
6
|
A. Ibrahim M, A. Alshaye N. Synthesis and Characterization of Some Novel Heteroannulated Chromeno[4,3-b]quinolines. HETEROCYCLES 2023. [DOI: 10.3987/com-22-14770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|