1
|
Van Quoc N, Huu Tai B, Hai Yen P, Huy Hoang N, Thuy Hang DT, Thanh Huong PT, Anh Bang N, Thi Dung D, Thi Trang D, Giang LD, Van Kiem P. Three Undescribed Furanoditerpenoids from the Tinospora crispa that Inhibit NO Production. Chem Biodivers 2024; 21:e202401679. [PMID: 39136410 DOI: 10.1002/cbdv.202401679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/13/2024] [Indexed: 10/13/2024]
Abstract
Phytochemical study on the methanol extract of the stems of Tinospora crispa (L.) Hook.f. & Thomson led to the isolation of thirteen compounds including three undescribed cis-clerodane-type furanoditerpenoids (1-3) and ten known ones (4-13). Their chemical structures were determined by IR, HR-ESI-MS, 1D-, and 2D-NMR spectra. Compounds 2-4, 6 and 8 inhibited moderately NO production in LPS activated RAW 264.7 cells with the IC50 values of 83.5, 57.6, 75.3, 78.1, and 74.7 μM, respectively.
Collapse
Affiliation(s)
- Nguyen Van Quoc
- School of Chemistry, Biology and Environment, Vinh University, 182 Le Duan, Ben Thuy, Vinh City, Nghe An, 461010, Vietnam
| | - Bui Huu Tai
- Institute of Marine Biochemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 10072, Vietnam
| | - Pham Hai Yen
- Institute of Marine Biochemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 10072, Vietnam
| | - Nguyen Huy Hoang
- Institute of Marine Biochemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 10072, Vietnam
| | - Dan Thi Thuy Hang
- Institute of Marine Biochemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 10072, Vietnam
| | - Phan Thi Thanh Huong
- Institute of Marine Biochemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 10072, Vietnam
| | - Ngo Anh Bang
- Institute of Marine Biochemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 10072, Vietnam
| | - Duong Thi Dung
- Institute of Marine Biochemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 10072, Vietnam
| | - Do Thi Trang
- Institute of Marine Biochemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 10072, Vietnam
| | - Le Duc Giang
- Department of Chemistry, Vinh University, 182 Le Duan, Ben Thuy, Vinh City, Nghe An, 461010, Vietnam
| | - Phan Van Kiem
- Institute of Marine Biochemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 10072, Vietnam
| |
Collapse
|
2
|
Peng ZH, Jia H, Luo YL, Zhang LJ, Zhou JT, Xie YH, Wang LJ, Qin JK, Li J, Zhang GH, Yang RY, Xu WF. Talaroterpenoids A-F: Six New Seco-Terpenoids from the Marine-Derived Fungus Talaromyces aurantiacus. Mar Drugs 2024; 22:475. [PMID: 39452883 PMCID: PMC11509394 DOI: 10.3390/md22100475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Six new highly oxidized seco-terpenoids, including three 3-nor-labdane type diterpenes, talaroterpenoids A-C (1-3), and three meroterpenoids containing an orthoester group, talaroterpenoids D-F (6-8), together with five known compounds (4-5 and 9-11), were isolated from the marine-derived fungus Talaromyces aurantiacus. Their chemical structures were elucidated through 1D, 2D NMR, HRESIMS, J-based configuration analysis (JBCA), computational ECD calculations, and single-crystal X-ray diffraction analysis. Compounds 1 and 2 contain an unusual 6,20-γ-lactone-bridged scaffold. Compounds 10 and 11 presented inhibitory effects on NO release in lipopolysaccharide (LPS)-induced BV-2 cells with IC50 values of 11.47 and 11.32 μM, respectively. Talaroterpenoid C (3) showed moderate antifungal activity against A. alternata and P. theae Steyaert.
Collapse
Affiliation(s)
- Zi-Hong Peng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; (Z.-H.P.); (H.J.); (Y.-L.L.); (L.-J.Z.); (J.-T.Z.); (Y.-H.X.); (J.-K.Q.); (J.L.)
| | - Hui Jia
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; (Z.-H.P.); (H.J.); (Y.-L.L.); (L.-J.Z.); (J.-T.Z.); (Y.-H.X.); (J.-K.Q.); (J.L.)
| | - Yan-Liang Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; (Z.-H.P.); (H.J.); (Y.-L.L.); (L.-J.Z.); (J.-T.Z.); (Y.-H.X.); (J.-K.Q.); (J.L.)
| | - Li-Jun Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; (Z.-H.P.); (H.J.); (Y.-L.L.); (L.-J.Z.); (J.-T.Z.); (Y.-H.X.); (J.-K.Q.); (J.L.)
| | - Jia-Tong Zhou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; (Z.-H.P.); (H.J.); (Y.-L.L.); (L.-J.Z.); (J.-T.Z.); (Y.-H.X.); (J.-K.Q.); (J.L.)
| | - Yuan-Han Xie
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; (Z.-H.P.); (H.J.); (Y.-L.L.); (L.-J.Z.); (J.-T.Z.); (Y.-H.X.); (J.-K.Q.); (J.L.)
| | - Li-Jun Wang
- School of Design, Guangxi Normal University, Guilin 541004, China;
| | - Jiang-Ke Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; (Z.-H.P.); (H.J.); (Y.-L.L.); (L.-J.Z.); (J.-T.Z.); (Y.-H.X.); (J.-K.Q.); (J.L.)
| | - Jun Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; (Z.-H.P.); (H.J.); (Y.-L.L.); (L.-J.Z.); (J.-T.Z.); (Y.-H.X.); (J.-K.Q.); (J.L.)
| | - Guo-Hai Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; (Z.-H.P.); (H.J.); (Y.-L.L.); (L.-J.Z.); (J.-T.Z.); (Y.-H.X.); (J.-K.Q.); (J.L.)
| | - Rui-Yun Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; (Z.-H.P.); (H.J.); (Y.-L.L.); (L.-J.Z.); (J.-T.Z.); (Y.-H.X.); (J.-K.Q.); (J.L.)
| | - Wei-Feng Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; (Z.-H.P.); (H.J.); (Y.-L.L.); (L.-J.Z.); (J.-T.Z.); (Y.-H.X.); (J.-K.Q.); (J.L.)
| |
Collapse
|
3
|
Shao LL, Lin KQ, Liu HF, Li ZY, Zhang N, Chen C, Pan WD, Lou HY, Li JY. Meliasanines A-L, tirucallane-type triterpenoids from Melia toosendan with anti-inflammatory properties via NF-κB signaling pathway. PHYTOCHEMISTRY 2024; 225:114192. [PMID: 38901624 DOI: 10.1016/j.phytochem.2024.114192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Meliasanines A-L, twelve previously unreported tirucallane-type triterpenoids, together with fifteen known ones, have been isolated from the stem bark of Melia toosendan. Their structures and absolute configurations were determined based on HRESIMS, and NMR, combined with calculated ECD and single-crystal X-ray diffraction analyses. Subsequently, all compounds except 10 were evaluated for their inhibitory effect on the production of nitric oxide induced by lipopolysaccharide in RAW264.7 macrophage cells. The results indicated that seven compounds (1, 13, 14, 16, 20, 22, and 23) exhibited significant NO inhibitory effects, with IC50 values ranging from 1.35 to 5.93 μM, which were more effective than the positive control indomethacin (IC50 = 13.18 μM). Moreover, the corresponding results of Western blot analysis revealed that meliasanine A (1) can significantly suppress the protein expression of inducible nitric oxide synthase and cyclooxygenase 2 in a concentration-dependent manner. The mechanism study suggested that meliasanine A exerts an anti-inflammatory effect via the nuclear factor-κB signaling pathway by suppressing phosphorylation of P65 and IκBα.
Collapse
Affiliation(s)
- Li-Li Shao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, PR China
| | - Kai-Qin Lin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, PR China
| | - Han-Fei Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, PR China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, PR China
| | - Zhi-Yao Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, PR China
| | - Ni Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, PR China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, PR China
| | - Chao Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, PR China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, PR China
| | - Wei-Dong Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, PR China.
| | - Hua-Yong Lou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, PR China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, PR China.
| | - Jin-Yu Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, PR China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, PR China.
| |
Collapse
|
4
|
Jia Y, Dang W, Zhang X, Mi Y, Guo T, Mu D, Zhou D, Chen G, Hou Y, Li N. Characteristic terpenylated coumarins from Ferula ferulaeoides as potential inhibitors on overactivation of microglia. Bioorg Chem 2024; 149:107484. [PMID: 38810482 DOI: 10.1016/j.bioorg.2024.107484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/07/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
A total of 37 characteristic terpenylated coumarins (1-25), including 17 undescribed compounds (1-5, 6a/6b, 7-10, 11a/11b-13a/13b), have been isolated from the root of Ferula ferulaeoides. Meanwhile, twelve pairs of enantiomers (6a/6b, 11a/11b-15a/15b, 17a/17b, 18a/18b, 20a/20b-22a/22b, and 25a/25b) were chirally purified. The structures of these new compounds were elucidated using HRESIMS, UV, NMR, and calculated 13C NMR with a custom DP4 + analysis. The absolute configurations of all the compounds were determined for the first time using electronic circular dichroism (ECD). Then, their inhibitory effects on nitric oxide (NO) production were evaluated with LPS-induced BV-2 microglia. Compared with the positive control minocycline (IC50 = 59.3 μM), ferulaferone B (2) exhibited stronger inhibitory potency with an IC50 value of 12.4 μM. The immunofluorescence investigation indicated that ferulaferone B (2) could inhibit Iba-1 expression in LPS-stimulated BV-2 microglia.
Collapse
Affiliation(s)
- Yewen Jia
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Wen Dang
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xueni Zhang
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Yan Mi
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110016, PR China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang 110016, PR China
| | - Tingting Guo
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Danyang Mu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110016, PR China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang 110016, PR China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Yue Hou
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110016, PR China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang 110016, PR China.
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
5
|
Wang G, Wu J, Li Z, Chen T, Liu Y, Wang B, Chen Y, She Z. Talaroacids A-D and Talaromarane A, Diterpenoids with Anti-Inflammatory Activities from Mangrove Endophytic Fungus Talaromyces sp. JNQQJ-4. Int J Mol Sci 2024; 25:6691. [PMID: 38928398 PMCID: PMC11204306 DOI: 10.3390/ijms25126691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Five new diterpenes including four diterpenes with 1,2,3,4,4a,5,6,8a-octalin skeleton talaroacids A-D (1-4) and an isopimarane diterpenoid talaromarane A (5) were isolated from the mangrove endophytic fungus Talaromyces sp. JNQQJ-4. Their structures and absolute configurations were determined by analysis of high-resolution electrospray ionization mass spectroscopy (HRESIMS), 1D/2D Nuclear Magnetic Resonance (NMR) spectra, single-crystal X-ray diffraction, quantum chemical calculation, and electronic circular dichroism (ECD). Talaromarane A (5) contains a rare 2-oxabicyclo [3.2.1] octan moiety in isopimarane diterpenoids. In bioassays, compounds 1, 2, 4, and 5 displayed significant anti-inflammatory activities with the IC50 value from 4.59 to 21.60 μM.
Collapse
Affiliation(s)
- Guisheng Wang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; (G.W.); (J.W.); (T.C.); (Y.L.); (B.W.)
| | - Jianying Wu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; (G.W.); (J.W.); (T.C.); (Y.L.); (B.W.)
| | - Zhaokun Li
- School of Pharmacy, Anhui Medical University, Hefei 230032, China;
| | - Tao Chen
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; (G.W.); (J.W.); (T.C.); (Y.L.); (B.W.)
| | - Yufeng Liu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; (G.W.); (J.W.); (T.C.); (Y.L.); (B.W.)
| | - Bo Wang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; (G.W.); (J.W.); (T.C.); (Y.L.); (B.W.)
| | - Yan Chen
- School of Pharmacy, Anhui Medical University, Hefei 230032, China;
| | - Zhigang She
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; (G.W.); (J.W.); (T.C.); (Y.L.); (B.W.)
| |
Collapse
|
6
|
Jin Y, Guo Z, Zhu H, Zhang Z, Jiang X, Yang Y, Liu P, Yang Y, Wang M, Gao H. Discovery of potential components characteristic by conjugated enone from the branches and leaves of Croton lauioides with anti-neuroinflammatory activity via regulating the NF-κB pathway. Bioorg Chem 2024; 146:107301. [PMID: 38522392 DOI: 10.1016/j.bioorg.2024.107301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/03/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
In this study, the chemical composition and pharmacological activity of Croton lauioides were investigated for the first time. The bioactive and HPLC-UV guided isolation led to the discovery of twenty-three conjugated enone-type components (1-23), including nine previously unknown sesquiterpenoid derivatives (1-4, 9-10, 12-14). Notably, compounds 1 and 12 are epoxides containing an endoperoxide bridge (1) or a unique dioxaspiro core (12), respectively. Compounds 2-7 are non-benzenoid aromatics featuring a tropone function, while 9-11 possess a rare rearranged scaffold with tropone shift into benzene. Extensive characterization was performed using NMR spectra, HRESIMS data, and electronic circular dichroism (ECD) calculations. Furthermore, we evaluated the bioactivities of all isolated compounds against neuroinflammation in LPS-stimulated BV-2 microglial cells. Remarkably, most sesquiterpenoid derivatives exhibited significant NO inhibit activities, and compound 5 showed the most potent effect with an IC50 value of 0.14 ± 0.04 μM. Structure-activity relationship (SAR) analysis revealed that sesquiterpenoids modified with endocyclic enone conjugation may serve as a key pharmacophore for NO inhibition, particularly involving aromatic tropone moiety. The qPCR and Western blot results demonstrated that 5 exerted an inhibitory effect on the mRNA levels of iNOS, TNF-α and COX-2 in a time-dependent manner, as well as suppressed the protein expression of iNOS, TNF-α, COX-2. In mechanism, 5 could prevented activation of NF-κB pathway by suppressing phosphorylation of p65 and IκB-α. These findings revealed C. lauioides might be a promising resource for drug candidate development targeting neuroinflammation.
Collapse
Affiliation(s)
- Yue Jin
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Pharmacodynamic Substances Research & Translational Medicine of Immune Diseases of Shenyang, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Zongxin Guo
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Pharmacodynamic Substances Research & Translational Medicine of Immune Diseases of Shenyang, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Huilin Zhu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Pharmacodynamic Substances Research & Translational Medicine of Immune Diseases of Shenyang, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Zixuan Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiaowen Jiang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Pharmacodynamic Substances Research & Translational Medicine of Immune Diseases of Shenyang, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yiren Yang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Pharmacodynamic Substances Research & Translational Medicine of Immune Diseases of Shenyang, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Pengyu Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Pharmacodynamic Substances Research & Translational Medicine of Immune Diseases of Shenyang, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yu Yang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Pharmacodynamic Substances Research & Translational Medicine of Immune Diseases of Shenyang, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Miao Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Pharmacodynamic Substances Research & Translational Medicine of Immune Diseases of Shenyang, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Huiyuan Gao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Pharmacodynamic Substances Research & Translational Medicine of Immune Diseases of Shenyang, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|
7
|
Nishidono Y, Tanaka K. Structural Revision of Tinotufolins from Tinospora crispa Leaves Guided by Empirical Rules and DFT Calculations. JOURNAL OF NATURAL PRODUCTS 2024; 87:774-782. [PMID: 38358957 DOI: 10.1021/acs.jnatprod.3c00902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Clerodane diterpenes are a class of secondary metabolites that can be classified into four types according to the configuration of the H3-19/H-10-H3-17/H3-20 fragment, i.e., trans-cis (TC), trans-trans (TT), cis-cis (CC), and cis-trans (CT). Tinotufolins A-C and E (1a-3a and 5a), isolated from the leaves of Tinospora crispa, were previously elucidated as CT-type clerodanes; however, our established 13C NMR-based empirical rules and density functional theory calculations suggested that these clerodanes belong to the CC type. Therefore, tinotufolins A-F (1-6) were reisolated from the leaves of T. crispa, along with an undescribed compound 7 and known compounds 8-11, and their structures were established by extensive spectroscopic analyses. The structures of tinotufolins A-C and E were revised to CC-type 1-3 and 5, and undescribed compound 7 was established as a CC-type clerodane. The present study demonstrates that empirical rules and calculations can efficiently identify and revise erroneous structures in clerodane diterpenes.
Collapse
Affiliation(s)
- Yuto Nishidono
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan
- Research Organization of Science and Technology, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan
| | - Ken Tanaka
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
8
|
Song JQ, Yang KC, Fan XZ, Deng L, Zhu YL, Zhou H, Huang YS, Kong XQ, Zhang LJ, Liao HB. Clerodane diterpenoids with in-vitro anti-neuroinflammatory activity from the tuberous root of Tinospora sagittata (Menispermaceae). PHYTOCHEMISTRY 2024; 218:113932. [PMID: 38056516 DOI: 10.1016/j.phytochem.2023.113932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
Twenty-six clerodane diterpenoids have been isolated from T. sagittata, a plant species of traditional Chinese medicine Radix Tinosporae, also named as "Jin Guo Lan". Among them, there are eight previously undescribed clerodane diterpenoids (tinotanoids A-H: 1-8), and 18 known diterpenoids (9-26). The absolute configurations of compounds 1, 2, 5, 8, 13, 17 and 20 were determined by single-crystal X-ray diffraction. Compound 1 is the first example of rotameric clerodane diterpenoid with a γ-lactone ring which is constructed between C-11 and C-17; meanwhile, compounds 3 and 4 are two pairs of inseparable epimers. Compounds 2, 12 and 17 demonstrated excellent inhibitory activity on NO production against LPS-stimulated BV-2 cells with IC50 values of 9.56 ± 0.69, 9.11 ± 0.53 and 11.12 ± 0.70 μM, respectively. These activities were significantly higher than that of the positive control minocycline (IC50 = 23.57 ± 0.92 μM). Moreover, compounds 2, 12 and 17 dramatically reduced the LPS-induced upregulation of iNOS and COX-2 expression. Compounds 2 and 12 significantly inhibited the levels of pro-inflammatory cytokines TNF-α, IL-1β and IL-6 that were increased by LPS stimulation.
Collapse
Affiliation(s)
- Jia-Qi Song
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Kai-Cheng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Xian-Zhe Fan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Li Deng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Yang-Li Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Hong Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Ya-Si Huang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Xiang-Qian Kong
- GuangZhou Institutes of Biomedicine and Health, Chinese Academy of Science, Guangzhou, 510530, China
| | - Li-Jun Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| | - Hai-Bing Liao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|