1
|
El-Hema HS, Soliman SM, El-Dougdoug W, Ahmed MHM, Abdelmajeid A, Nossier ES, Hussein MF, Alrayes AA, Hassan M, Ahmed NA, Sabry A, Abdel-Rahman AAH. Design, Characterization, Antimicrobial Activity, and In Silico Studies of Theinothiazoloquinazoline Derivatives Bearing Thiazinone, Tetrazole, and Triazole Moieties. ACS OMEGA 2025; 10:9703-9717. [PMID: 40092816 PMCID: PMC11904721 DOI: 10.1021/acsomega.4c11076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 03/19/2025]
Abstract
The pressing demand for novel antibiotics to counter drug-resistant bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), underscores the serious public health threat posed by antibiotic resistance. To address this issue, novel quinazoline-4-one derivatives were developed, synthesized, and evaluated in vitro against a range of pathogens, including fungi like Aspergillus fumigatus (RCMB 002008), Gram-negative bacteria like Escherichia coli (ATCC 25922), and Gram-positive bacteria like Staphylococcus aureus (ATCC 25923) and MRSA (USA300). Notably, the thieno-thiazolo-quinazoline compounds 4 and 5 demonstrated a strong ability to inhibit and disrupt MRSA USA300 biofilm formation across all tested concentrations. Furthermore, in an in vivo MRSA skin infection model, these compounds effectively reduced bacterial counts compared to both vehicle-treated and untreated control groups. To enhance understanding and provide deeper insights, ADMET and docking simulations were also conducted.
Collapse
Affiliation(s)
- Hagar S. El-Hema
- Basic Science
Department (Chemistry), Thebes Higher Institute
for Engineering, Thebes academy, Maadi 11434, Egypt
| | - Sara. M. Soliman
- Chemistry
Department, Faculty of Science, Benha University, Banha 13518, Egypt
| | - Wagdy El-Dougdoug
- Chemistry
Department, Faculty of Science, Benha University, Banha 13518, Egypt
| | - Mohamed H. M. Ahmed
- Chemistry
Department, Faculty of Science, Benha University, Banha 13518, Egypt
| | | | - Eman S. Nossier
- Pharmaceutical
Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy
(Girls), Al-Azhar University, Cairo 11754, Egypt
- The National
Committee of Drugs, Academy of Scientific
Research and Technology, Cairo 11516, Egypt
| | - Modather F. Hussein
- Chemistry
Department, College of Science, Jouf University, P.O. Box 2014, Sakaka, Aljouf 72341, Saudi Arabia
- Chemistry
Department, Faculty of Science, Al-Azhar
University, Assiut 71524, Egypt
| | - Ashtar A. Alrayes
- Chemistry
Department, College of Science, Jouf University, P.O. Box 2014, Sakaka, Aljouf 72341, Saudi Arabia
| | - Mariam Hassan
- Department
of Microbiology and Immunology, Faculty
of Pharmacy Cairo University, Cairo 12411, Egypt
- Department
of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala
City, Suez 991017, Egypt
| | - Noha A. Ahmed
- Department
of Microbiology and Immunology, Faculty
of Pharmacy Cairo University, Cairo 12411, Egypt
| | - Amr Sabry
- Department
of pharmaceutical manufacturing, Faculty of Pharmacy, MUST University, Giza 3237101, Egypt
| | | |
Collapse
|
2
|
Sharma S, Raju S, Verma SK, Kamal, Verma R, Thakur PK, Sharath Kumar KS. Pyrazoles: A Master Key to Tackle Multidrug-Resistant Acinetobacter baumannii and Its Structure Activity Relationship Studies. Chem Biol Drug Des 2025; 105:e70092. [PMID: 40125645 DOI: 10.1111/cbdd.70092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/01/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025]
Abstract
Infections caused by Gram-negative bacteria within the ESKAPE group pose significant treatment challenges. These bacteria feature effective efflux pumps and possess lipopolysaccharides in their outer membranes, as well as a thin peptidoglycan layer measuring 5-10 nm in thickness. Acinetobacter baumannii (A. baumannii), a Gram-negative bacterium, is a significant contributor to serious infections acquired in hospitals and communities, representing a substantial risk to human health. This bacterium has developed resistance to nearly all existing antibiotics, and in the past 50 years, no new antibacterial class has been introduced for treating A. baumannii infections, highlighting an urgent necessity for the development of new antibacterials. The unique structural framework and adaptable features of the pyrazole ring attract researchers to develop new antibiotics. The present study outlines the advancements made over the last decade in pyrazole-containing derivatives that exhibit a wide range of antibacterial activity against various bacterial strains. Specifically, we discuss the effectiveness of diverse pyrazole derivatives against multidrug-resistant A. baumannii strains and explore various aspects of the structure-activity relationship (SAR). This compilation of data could serve as an excellent platform for designing and developing new pyrazole-based small molecules to target the growth of A. baumannii.
Collapse
Affiliation(s)
- Saraswati Sharma
- Faculty of Science and Technology, The ICFAI University Raipur, Durg, Chhattisgarh, India
| | - Sahana Raju
- Department of Physics, GSSS Institute of Engineering and Technology for Women, Metagalli, Mysuru, Visvesvaraya Technological University, Belagavi, Karnataka, India
| | - Santosh Kumar Verma
- School of Chemistry and Chemical Engineering, Yulin University, Yulin, Shaanxi, China
| | - Kamal
- Department of Chemistry, Indian Institute of Technology Jammu, Jammu, India
| | - Rameshwari Verma
- School of Chemistry and Chemical Engineering, Yulin University, Yulin, Shaanxi, China
| | - Piyush Kumar Thakur
- Faculty of Science and Technology, The ICFAI University Raipur, Durg, Chhattisgarh, India
| | | |
Collapse
|
3
|
Sun Y, Li X, Wang Y, Shang X, Huang W, Ang S, Li D, Wong WL, Hong WD, Zhang K, Wu P. In vitro and in vivo evaluation of novel ursolic acid derivatives as potential antibacterial agents against methicillin-resistant Staphylococcus aureus (MRSA). Bioorg Chem 2025; 154:107986. [PMID: 39615282 DOI: 10.1016/j.bioorg.2024.107986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/21/2024] [Accepted: 11/17/2024] [Indexed: 01/15/2025]
Abstract
The misuse and abuse of antibiotics have led to the increase of drug resistance and the emergence of multi-drug resistant bacteria. Therefore, it is an urgent need to develop novel antimicrobial agents to address this problem. Natural products (NPs) could provide an effective strategy for the discovery of drug due to their wide range of source and biological activities. Ursolic acid (UA) is a naturally occurring compound known for its wide range of biological properties. In this study, a series of UA derivatives were rationally designed and synthesized by incorporating antibacterial potential fragments of benzenesulfonamide and indole, with the aim of obtaining novel UA derivatives for the treatment of bacterial infections. Based on the preliminary screening, UA derivatives 27 (yield of 26 %), containing 4-chlorobenzenesulfonamide and 6-carboxyindole pharmacophores, as well as 34 (yield of 42 %), containing 4-carboxybenzenesulfonamide and unsubstituted indole pharmacophores, were identified as promising antibacterial agents against Staphylococcus aureus, especially for methicillin-resistant Staphylococcus aureus (MRSA), possessing MICs of 1 μM. Furthermore, both of them also displayed low hemolytic activity, non-resistance, and low-toxicity to mammalian cells. In addition, further mechanistic studies revealed that 27 and 34 were able to inhibit and eliminate MRSA biofilm formation, affecting the permeability of bacterial cell membrane, leading to increase intracellular reactive oxygen species (ROS) and ultimately inducing bacterial death. Notably, 27 and 34 also showed promising in vivo efficacy against MRSA in a mouse wound model. These results suggested that 27 and 34 should have promising applications against MRSA infection.
Collapse
Affiliation(s)
- Ying Sun
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, PR China
| | - Xiaofang Li
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, PR China
| | - Yan Wang
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, PR China
| | - Xiangcun Shang
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, PR China
| | - Wenhuan Huang
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, PR China
| | - Song Ang
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, PR China
| | - Dongli Li
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, PR China
| | - Wing-Leung Wong
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | | | - Kun Zhang
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, PR China.
| | - Panpan Wu
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, PR China.
| |
Collapse
|
4
|
Yao Z, Xiang M, Yang Y, Shao W, Zhang J, Wang L, Liu B, Tang W, Zhang J. A new antibacterial with anti-inflammatory properties promotes wound healing through inhibiting cGAS/STING/NF-κB/IRF3 pathway. Int Immunopharmacol 2024; 143:113303. [PMID: 39366076 DOI: 10.1016/j.intimp.2024.113303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/18/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
Benzothiazole-urea hybrid 8l was found to be a potent anti-bacterial agent against methicillin-resistant Staphylococcus aureus (MRSA2858) (MIC = 0.78 μM, Eur J Med Chem. 2022,236:114333). Herein, 8l was further evaluated to remedy the MRSA-infected scald with bacterial infection and severe inflammation. In scalded skin model with MRSA infection, 8l not only effectively reduced bacterial load, but also decreased pro-inflammatory cytokines secretion and promoted collagen deposition to effectively reverse the progression of wound infection and inflammation by blocking cGAS/STING/NF-κB/IRF3 signaling pathway. In vitro model of RAW264.7 cells verified that 8l can inhibit MRSA-induced inflammation via regulating this pathway. All in all, dual anti-bacterial and anti-inflammatory agent 8l could heal MRSA-infected refractory scald by regulating cGAS/STING/NF-κB/IRF3 pathway.
Collapse
Affiliation(s)
- Zongze Yao
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, China; Anhui Province Key Laboratory of Occupational Health, Anhui No.2 Provincial People's Hospital, Hefei 230041, China
| | - Miaoqing Xiang
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Yang Yang
- Anhui Province Key Laboratory of Occupational Health, Anhui No.2 Provincial People's Hospital, Hefei 230041, China
| | - Wei Shao
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jiazhen Zhang
- Anhui Province Key Laboratory of Occupational Health, Anhui No.2 Provincial People's Hospital, Hefei 230041, China
| | - Lei Wang
- Anhui Province Key Laboratory of Occupational Health, Anhui No.2 Provincial People's Hospital, Hefei 230041, China
| | - Biyong Liu
- Anhui Province Key Laboratory of Occupational Health, Anhui No.2 Provincial People's Hospital, Hefei 230041, China
| | - Wenjian Tang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jing Zhang
- Anhui Province Key Laboratory of Occupational Health, Anhui No.2 Provincial People's Hospital, Hefei 230041, China.
| |
Collapse
|
5
|
Li J, Sun Y, Su K, Wang X, Deng D, Li X, Liang L, Huang W, Shang X, Wang Y, Zhang Z, Ang S, Wong WL, Wu P, Hong WD. Design and synthesis of unique indole-benzosulfonamide oleanolic acid derivatives as potent antibacterial agents against MRSA. Eur J Med Chem 2024; 276:116625. [PMID: 38991300 DOI: 10.1016/j.ejmech.2024.116625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/09/2024] [Accepted: 06/23/2024] [Indexed: 07/13/2024]
Abstract
The rapid emergence of antibiotic resistance and the scarcity of novel antibacterial agents have necessitated an urgent pursuit for the discovery and development of novel antibacterial agents against multidrug-resistant bacteria. This study involved the design and synthesis of series of novel indole-benzosulfonamide oleanolic acid (OA) derivatives, in which the indole and benzosulfonamide pharmacophores were introduced into the OA skeleton semisynthetically. These target OA derivatives show antibacterial activity against Staphylococcus strains in vitro and in vivo. Among them, derivative c17 was the most promising antibacterial agent while compared with the positive control of norfloxacin, especially against methicillin-resistant Staphylococcus aureus (MRSA) in vitro. In addition, derivative c17 also showed remarkable efficacy against MRSA-infected murine skin model, leading to a significant reduction of bacterial counts during this in vivo study. Furthermore, some preliminary studies indicated that derivative c17 could effectively inhibit and eradicate the biofilm formation, disrupt the integrity of the bacterial cell membrane. Moreover, derivative c17 showed low hemolytic activity and low toxicity to mammalian cells of NIH 3T3 and HEK 293T. These aforementioned findings strongly support the potential of novel indole-benzosulfonamide OA derivatives as anti-MRSA agents.
Collapse
Affiliation(s)
- Jinxuan Li
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Ying Sun
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Kaize Su
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Xu Wang
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Duanyu Deng
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Xiaofang Li
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Lihua Liang
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Wenhuan Huang
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Xiangcun Shang
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Yan Wang
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Zhen Zhang
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Song Ang
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Wing-Leung Wong
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Panpan Wu
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China.
| | - Weiqian David Hong
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK.
| |
Collapse
|
6
|
Roszkowski P, Bielenica A, Stefańska J, Majewska A, Markowska K, Pituch H, Koliński M, Kmiecik S, Chrzanowska A, Struga M. Antibacterial and anti-biofilm activities of new fluoroquinolone derivatives coupled with nitrogen-based heterocycles. Biomed Pharmacother 2024; 179:117439. [PMID: 39270539 DOI: 10.1016/j.biopha.2024.117439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024] Open
Abstract
We report the design, synthesis, and antimicrobial evaluation of a series of ciprofloxacin (CP) conjugates coupled with nitrogen-containing heterocycles. In vitro screening of these new hybrid compounds (1-13) against a panel of planktonic bacterial strains highlighted thiazolyl homologs 6 and 7 as the most promising candidates for further investigation. These derivatives demonstrated potent growth-inhibitory activity against various standard and clinical isolates, with minimum inhibitory concentrations (MICs) ranging from 0.05 to 0.4 µg/ml, which are higher or comparable to the reference fluoroquinolone. Both compounds effectively inhibited biofilm formation by selected staphylococci across all tested concentrations (1-8 x MIC), displaying greater efficacy at higher doses compared to CP alone. Notably, conjugate 7 also significantly eradicated existing biofilms formed by S. aureus of various origin. Molecular docking studies revealed that conjugate 7 engages in a broader range of interactions with DNA gyrase and DNA topoisomerase IV than CP, suggesting stronger binding affinity and enhanced flexibility. This may contribute to its potential in overcoming bacterial resistance mechanisms. The above findings indicate compound 7 as a promising candidate for clinical development.
Collapse
Affiliation(s)
- Piotr Roszkowski
- Faculty of Chemistry, University of Warsaw, Pasteura 1 Str, Warsaw 02-093, Poland
| | - Anna Bielenica
- Chair and Department of Biochemistry, Medical University of Warsaw, Banacha 1 Str, Warsaw 02-097, Poland.
| | - Joanna Stefańska
- Department of Pharmaceutical Microbiology, Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b Str, Warsaw 02-097, Poland
| | - Anna Majewska
- Department of Medical Microbiology, Medical University of Warsaw, Chalubinskiego 5 Str, Warsaw 02-004, Poland
| | - Kinga Markowska
- Department of Medical Microbiology, Medical University of Warsaw, Chalubinskiego 5 Str, Warsaw 02-004, Poland
| | - Hanna Pituch
- Department of Medical Microbiology, Medical University of Warsaw, Chalubinskiego 5 Str, Warsaw 02-004, Poland
| | - Michał Koliński
- Bioinformatics Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5 Str, Warsaw 02-106, Poland
| | - Sebastian Kmiecik
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Zwirki i Wigury 101 Str, Warsaw 02-089, Poland
| | - Alicja Chrzanowska
- Chair and Department of Biochemistry, Medical University of Warsaw, Banacha 1 Str, Warsaw 02-097, Poland
| | - Marta Struga
- Chair and Department of Biochemistry, Medical University of Warsaw, Banacha 1 Str, Warsaw 02-097, Poland
| |
Collapse
|
7
|
Shakirova OG, Morozova TD, Kudyakova YS, Bazhin DN, Kuratieva NV, Klyushova LS, Lavrov AN, Lavrenova LG. Synthesis, Structure, and Properties of a Copper(II) Binuclear Complex Based on Trifluoromethyl Containing Bis(pyrazolyl)hydrazone. Int J Mol Sci 2024; 25:9414. [PMID: 39273361 PMCID: PMC11395124 DOI: 10.3390/ijms25179414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
A new complex of copper(II) with methyl-5-(trifluoromethyl)pyrazol-3-yl-ketazine (H2L) was synthesized with the composition [Cu2L2]∙C2H5OH (1). Recrystallization of the sample from DMSO yielded a single crystal of the composition [Cu2L2((CH3)2SO)] (2). The coordination compounds were studied by single-crystal X-ray diffraction analysis, IR spectroscopy, and static magnetic susceptibility method. The data obtained indicate that the polydentate ligand is coordinated by both acyclic nitrogen and heterocyclic nitrogen atoms. The cytotoxic activity of the ligand and complex 1 was investigated on human cell lines MCF7 (breast adenocarcinoma), Hep2 (laryngeal carcinoma), A549 (lung carcinoma), HepG2 (hepatocellular carcinoma), and MRC5 (non-tumor lung fibroblasts). The complex was shown to have a pronounced dose-dependent cytotoxicity towards these cell lines with LC50 values in the range of 0.18-4.03 μM.
Collapse
Affiliation(s)
- Olga G Shakirova
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia
- Department of Chemistry and Chemical Technologies, Faculty of Machinery and Chemical Technologies, Federal State Budget Institution of Higher Education Komsomolsk-na-Amure State University, Komsomolsk-on-Amur 681013, Russia
| | - Tatiana D Morozova
- Department of Chemistry and Chemical Technologies, Faculty of Machinery and Chemical Technologies, Federal State Budget Institution of Higher Education Komsomolsk-na-Amure State University, Komsomolsk-on-Amur 681013, Russia
| | - Yulia S Kudyakova
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, Yekaterinburg 620137, Russia
| | - Denis N Bazhin
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, Yekaterinburg 620137, Russia
- Department of Organic and Biomolecular Chemistry, Institute of Chemical Technology, Ural Federal University Named after the First President of Russia B.N. Yeltsin, Mira Str. 19, Yekaterinburg 620002, Russia
| | - Natalia V Kuratieva
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Lyubov S Klyushova
- Research Institute of Molecular Biology and Biophysics, FRC FTM, 2/12, Timakova Str., Novosibirsk 630060, Russia
| | - Alexander N Lavrov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Lyudmila G Lavrenova
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
8
|
Lin SN, Deng Y, Zhong H, Mao LL, Ji CB, Zhu XH, Zhang X, Yang BM. Visible Light-Induced Radical Cascade Difluoromethylation/Cyclization of Unactivated Alkenes: Access to CF 2H-Substituted Polycyclic Imidazoles. ACS OMEGA 2024; 9:28129-28143. [PMID: 38973879 PMCID: PMC11223139 DOI: 10.1021/acsomega.4c01177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024]
Abstract
An efficient and mild protocol for the visible light-induced radical cascade difluoromethylation/cyclization of imidazoles with unactivated alkenes using easily accessible and bench-stable difluoromethyltriphenylphosphonium bromide as the precursor of the -CF2H group has been developed to afford CF2H-substituted polycyclic imidazoles in moderate to good yields. This strategy, along with the construction of Csp3-CF2H/C-C bonds, is distinguished by mild conditions, no requirement of additives, simple operation, and wide substrate scope. In addition, the mechanistic experiments have indicated that the difluoromethyl radical pathway is essential for the methodology.
Collapse
Affiliation(s)
- Sheng-Nan Lin
- College
of Chemistry and Environment Science, Shangrao
Normal University, Shangrao 334001, China
| | - Yuanyuan Deng
- College
of Chemistry and Environment Science, Shangrao
Normal University, Shangrao 334001, China
| | - Hanxun Zhong
- College
of Chemistry and Environment Science, Shangrao
Normal University, Shangrao 334001, China
| | - Liu-Liang Mao
- College
of Chemistry and Environment Science, Shangrao
Normal University, Shangrao 334001, China
| | - Cong-Bin Ji
- College
of Chemistry and Environment Science, Shangrao
Normal University, Shangrao 334001, China
| | - Xian-Hong Zhu
- College
of Chemistry and Environment Science, Shangrao
Normal University, Shangrao 334001, China
| | - Xiaolan Zhang
- College
of Chemistry and Environment Science, Shangrao
Normal University, Shangrao 334001, China
| | - Bin-Miao Yang
- Joint
School of National University of Singapore and Tianjin University, Fuzhou 350207, China
| |
Collapse
|
9
|
Dai H, Hu Y, Zhang Y, Zhu Q, Xu T, Cui P, Fan R, He Q. Identification of CH 2-linked quinolone-aminopyrimidine hybrids as potent anti-MRSA agents: Low resistance potential and lack of cross-resistance with fluoroquinolone antibiotics. Eur J Med Chem 2024; 271:116399. [PMID: 38640868 DOI: 10.1016/j.ejmech.2024.116399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/03/2024] [Accepted: 04/06/2024] [Indexed: 04/21/2024]
Abstract
The structural optimization of B14, an antibacterial agent we previously obtained, has led to the discovery of a new class of CH2-linked quinolone-aminopyrimidine hybrids with potent anti-MRSA activities. Surprisingly, the hybrids lacking a C-6 fluoro atom at the quinolone nucleus showed equal or even stronger anti-MRSA activities than their corresponding 6-fluoro counterparts, despite the well-established structure-activity relationships (SARs) indicating that the 6-fluoro substituent enhances the antibacterial activity in conventional fluoroquinolone antibiotics. Moreover, these new hybrids, albeit structurally related to conventional fluoroquinolones, showed no cross-resistance with fluoroquinolone drugs. The most active compound, 15m, exhibited excellent activities with a MIC value of 0.39 μg/mL against both fluoroquinolone-sensitive strain USA500 and -resistant MRSA isolate Mu50. Further resistance development studies indicated MRSA is unlikely to acquire resistance against 15m. Moreover, 15m displayed favorable in vivo half-life and safety profiles. These findings suggest a rationale for further evolution of quinolone antibiotics with a high barrier to resistance.
Collapse
Affiliation(s)
- Hongxue Dai
- Department of Chemistry, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, China
| | - Yue Hu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, China
| | - Yiwen Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, China
| | - Qi Zhu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, China
| | - Tao Xu
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, 525 Wulumuqizhong Road, Jing'an District, Shanghai, China
| | - Peng Cui
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, 525 Wulumuqizhong Road, Jing'an District, Shanghai, China.
| | - Renhua Fan
- Department of Chemistry, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, China.
| | - Qiuqin He
- Department of Chemistry, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, China.
| |
Collapse
|
10
|
Verma SK, Rangappa S, Verma R, Xue F, Verma S, Sharath Kumar KS, Rangappa KS. Sulfur (S Ⅵ)-containing heterocyclic hybrids as antibacterial agents against methicillin-resistant Staphylococcus aureus (MRSA) and its SAR. Bioorg Chem 2024; 145:107241. [PMID: 38437761 DOI: 10.1016/j.bioorg.2024.107241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024]
Abstract
The discovery of new small molecule-based inhibitors is an attractive field in medicinal chemistry. Structurally diversified heterocyclic derivatives have been investigated to combat multi-drug resistant bacterial infections and they offers several mechanism of action. Methicillin-resistant Staphylococcus aureus (MRSA) is becoming more and more deadly to humans because of its simple method of transmission, quick development of antibiotic resistance, and ability to cause hard-to-treat skin and filmy diseases. The sulfur (SVI) particularly sulfonyl and sulfonamide based heterocyclic moieties, have found to be good anti-MRSA agents. The development of new nontoxic, economical and highly active sulfur (SVI) containing derivatives has become hot research topics in drug discovery research. Presently, more than 150 FDA approved Sulfur (SVI)-based drugs are available in the market, and they are widely used to treat various types of diseases with different therapeutic potential. The present collective data provides the latest advancements in Sulfur (SVI)-hybrid compounds as antibacterial agents against MRSA. It also examines the outcomes of in-vitro and in-vivo investigations, exploring potential mechanisms of action and offering alternative perspectives on the structure-activity relationship (SAR). Sulfur (SVI)-hybrids exhibits synergistic effects with existing drugs to provide antibacterial action against MRSA.
Collapse
Affiliation(s)
| | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, Adichunchanagiri Institute of Medical Sciences, Adichunchanagiri University, B. G. Nagar 571448, India
| | - Rameshwari Verma
- School of New Energy, Yulin University, Yulin 719000, Shaanxi, PR China.
| | - Fan Xue
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, Yulin University, Yulin 719000, PR China
| | - Shekhar Verma
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur 495009, Chhattisgarh, India
| | | | | |
Collapse
|