1
|
Zarzyka I, Czerniecka-Kubicka A, Szyszkowska A, Longosz M, Dobrowolski L, Gonciarz W, Chmiela M, Trzybiński D, Wróbel A, Woźniak K, Hęclik K. Molecular Modeling of 3-chloro-3-phenylquinoline-2,4-dione, Crystal Structure and Cytotoxic Activity for developments in a potential new drug. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
2
|
Fathalla EM, Altowyan MS, Albering JH, Barakat A, Abu-Youssef MAM, Soliman SM, Badr AMA. Synthesis, X-ray Structure, Hirshfeld, DFT and Biological Studies on a Quinazolinone-Nitrate Complex. Molecules 2022; 27:1089. [PMID: 35164351 PMCID: PMC8840642 DOI: 10.3390/molecules27031089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
The reaction of 4-hydroxyquinazoline (4HQZ) with aqueous solution of nitric acid afforded the corresponding quinazolinone-nitrate (4HQZN) complex in very good yield. The crystal structure of 4HQZN was determined and its structural and supramolecular structural aspects were analyzed. 4HQZN crystallized in the space group P21/c and monoclinic crystal system with one [4HQZ-H]+[NO3]- formula and Z = 4. Its supramolecular structure could be described as a 2D infinite layers in which the 4HQZN molecules are connected via N-H…O and C-H…O hydrogen bridges. Using DFT calculations, the relative stability of five suggested isomers of 4HQZN were predicted. It was found that the medium effects have strong impact not only on the isomers' stability but also on the structure of the 4HQZN. It was found that the structure of 4HQZN in DMSO and methanol matched well with the reported X-ray structure which shed the light on the importance of the intermolecular interactions on the isomers' stability. The structure of 4HQZN could be described as a proton transfer complex in which the nitrate anion acting as an e-donor whiles the protonated 4HQZ is an e-acceptor. In contrast, the structure of the isolated 4HQZN in gas phase and in cyclohexane could be described as a 4HQZ…HNO3 hydrogen bonded complex. Biological screening of the antioxidant, anticancer and antimicrobial activities of 4HQZ and 4HQZN was presented and compared. It was found that, 4HQZN has higher antioxidant activity (IC50 = 36.59 ± 1.23 µg/mL) than 4HQZ. Both of 4HQZ and 4HQZN showed cell growth inhibition against breast (MCF-7) and lung (A-549) carcinoma cell lines with different extents. The 4HQZ has better activity with IC50 of 178.08 ± 6.24 µg/mL and 119.84 ± 4.98 µg/mL, respectively. The corresponding values for 4HQZN are 249.87 ± 9.71 µg/mL and 237.02 ± 8.64 µg/mL, respectively. Also, the antibacterial and antifungal activities of 4HQZN are higher than 4HQZ against all studied microbes. The most promising result is for 4HQZN against A. fumigatus (MIC = 312.5 μg/mL).
Collapse
Affiliation(s)
- Eman M. Fathalla
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321, Egypt; (E.M.F.); (A.M.A.B.)
| | - Mezna Saleh Altowyan
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Jörg H. Albering
- Graz University of Technology, Mandellstr. 11/III, A-8010 Graz, Austria;
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Morsy A. M. Abu-Youssef
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321, Egypt; (E.M.F.); (A.M.A.B.)
| | - Saied M. Soliman
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321, Egypt; (E.M.F.); (A.M.A.B.)
| | - Ahmed M. A. Badr
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321, Egypt; (E.M.F.); (A.M.A.B.)
| |
Collapse
|
5
|
Fröhlich T, Reiter C, Ibrahim MM, Beutel J, Hutterer C, Zeitträger I, Bahsi H, Leidenberger M, Friedrich O, Kappes B, Efferth T, Marschall M, Tsogoeva SB. Synthesis of Novel Hybrids of Quinazoline and Artemisinin with High Activities against Plasmodium falciparum, Human Cytomegalovirus, and Leukemia Cells. ACS OMEGA 2017; 2:2422-2431. [PMID: 30023664 PMCID: PMC6044832 DOI: 10.1021/acsomega.7b00310] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/05/2017] [Indexed: 05/27/2023]
Abstract
Many quinazoline derivatives have been synthesized over the last few decades with great pharmacological potential, such as antimalarial, anti-inflammatory, antimicrobial, anticancer, and antiviral. But so far, no quinazoline-artemisinin hybrids have been reported in the literature. In the present study, five novel quinazoline-artemisinin hybrids were synthesized and evaluated for their in vitro biological activity against malarial parasites (Plasmodium falciparum 3D7), leukemia cells (CCRF-CEM and CEM/ADR5000), and human cytomegalovirus. Remarkably, hybrid 9 (EC50 = 1.4 nM), the most active antimalarial compound of this study, was not only more potent than artesunic acid (EC50 = 9.7 nM) but at the same time more active than the clinically used drugs dihydroartemisinin (EC50 = 2.4 nM) and chloroquine (EC50 = 9.8 nM). Furthermore, hybrids 9 and 10 were the most potent compounds with regard to anticytomegaloviral activity (EC50 = 0.15-0.21 μM). They were able to outperform ganciclovir (EC50 = 2.6 μM), which is the relevant standard drug of antiviral therapy, by a factor of 12-17. Moreover, we identified a new highly active quinazoline derivative, compound 14, that is most effective in suppressing cytomegalovirus replication with an EC50 value in the nanomolar range (EC50 = 50 nM). In addition, hybrid 9 exhibited an antileukemia effect similar to that of artesunic acid, with EC50 values in the low micromolar range, and was 45 times more active toward the multidrug-resistant CEM/ADR5000 cells (EC50 = 0.5 μM) than the standard drug doxorubicin.
Collapse
Affiliation(s)
- Tony Fröhlich
- Organic
Chemistry Chair I and Interdisciplinary Center for Molecular Materials
(ICMM), Friedrich-Alexander University of
Erlangen-Nürnberg, Henkestraße 42, 91054 Erlangen, Germany
| | - Christoph Reiter
- Organic
Chemistry Chair I and Interdisciplinary Center for Molecular Materials
(ICMM), Friedrich-Alexander University of
Erlangen-Nürnberg, Henkestraße 42, 91054 Erlangen, Germany
| | - Mohammad M. Ibrahim
- Organic
Chemistry Chair I and Interdisciplinary Center for Molecular Materials
(ICMM), Friedrich-Alexander University of
Erlangen-Nürnberg, Henkestraße 42, 91054 Erlangen, Germany
- Department
of Chemistry, Faculty of Science, University
of Al al-Bayt, P.O. Box 130040, 25113 Al-Mafraq, Jordan
| | - Jannis Beutel
- Organic
Chemistry Chair I and Interdisciplinary Center for Molecular Materials
(ICMM), Friedrich-Alexander University of
Erlangen-Nürnberg, Henkestraße 42, 91054 Erlangen, Germany
| | - Corina Hutterer
- Institute
for Clinical and Molecular Virology, Friedrich-Alexander
University of Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - Isabel Zeitträger
- Institute
for Clinical and Molecular Virology, Friedrich-Alexander
University of Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - Hanife Bahsi
- Institute
for Clinical and Molecular Virology, Friedrich-Alexander
University of Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - Maria Leidenberger
- Institute
of Medical Biotechnology, Friedrich-Alexander
University of Erlangen-Nürnberg, Paul-Gordon-Straße 3, 91052 Erlangen, Germany
| | - Oliver Friedrich
- Institute
of Medical Biotechnology, Friedrich-Alexander
University of Erlangen-Nürnberg, Paul-Gordon-Straße 3, 91052 Erlangen, Germany
| | - Barbara Kappes
- Institute
of Medical Biotechnology, Friedrich-Alexander
University of Erlangen-Nürnberg, Paul-Gordon-Straße 3, 91052 Erlangen, Germany
| | - Thomas Efferth
- Department
of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Manfred Marschall
- Institute
for Clinical and Molecular Virology, Friedrich-Alexander
University of Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - Svetlana B. Tsogoeva
- Organic
Chemistry Chair I and Interdisciplinary Center for Molecular Materials
(ICMM), Friedrich-Alexander University of
Erlangen-Nürnberg, Henkestraße 42, 91054 Erlangen, Germany
| |
Collapse
|
9
|
Kumar KS, Ganguly S, Veerasamy R, De Clercq E. Synthesis, antiviral activity and cytotoxicity evaluation of Schiff bases of some 2-phenyl quinazoline-4(3)H-ones. Eur J Med Chem 2010; 45:5474-9. [PMID: 20724039 PMCID: PMC7115544 DOI: 10.1016/j.ejmech.2010.07.058] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 07/27/2010] [Accepted: 07/28/2010] [Indexed: 11/15/2022]
Abstract
A new series of 3-(benzylideneamino)-2-phenylquinazoline-4(3H)-ones were prepared through Schiff base formation of 3-amino-2-phenyl quinazoline-4(3)H-one with various substituted carbonyl compounds. Their chemical structures were elucidated by spectral studies. Cytotoxicity and antiviral activity were evaluated against herpes simplex virus-1 (KOS), herpes simplex virus-2 (G), vaccinia virus, vesicular stomatitis virus, herpes simplex virus-1 TK- KOS ACVr, para influenza-3 virus, reovirus-1, Sindbis virus, Coxsackie virus B4, Punta Toro virus, feline corona virus (FIPV), feline herpes virus, respiratory syncytial virus, influenza A H1N1 subtype, influenza A H3N2 subtype, and influenza B virus. Compound 2a showed better antiviral activity against the entire tested virus.
Collapse
Affiliation(s)
- Krishnan Suresh Kumar
- Medicinal chemistry research Laboratory, KMCH College of Pharmacy, Coimbatore, India.
| | | | | | | |
Collapse
|
10
|
Hoonur RS, Patil BR, Badiger DS, Vadavi RS, Gudasi KB, Dandawate PR, Ghaisas MM, Padhye SB, Nethaji M. Transition metal complexes of 3-aryl-2-substituted 1,2-dihydroquinazolin-4(3H)-one derivatives: new class of analgesic and anti-inflammatory agents. Eur J Med Chem 2010; 45:2277-82. [PMID: 20185211 DOI: 10.1016/j.ejmech.2010.01.072] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 01/25/2010] [Accepted: 01/28/2010] [Indexed: 10/19/2022]
Abstract
Five-coordinate, neutral transition metal complexes of newly designed pyridine-2-ethyl-(3-carboxylideneamino)-3-(2-phenyl)-1,2-dihydroquinazolin-4(3H)-one (L) were synthesized and characterized. The structure of ligand is confirmed by single crystal X-ray diffraction studies. The compounds were evaluated for the anti-inflammatory activity by carrageenan-induced rat paw edema model while their analgesic activity was determined by acetic acid-induced writhing test in mice wherein the transition metal complexes were found to be more active than the free ligand.
Collapse
Affiliation(s)
- Rekha S Hoonur
- Department of Chemistry, Karnatak University, Pavate Nagar, Dharwad, Karnataka 580003, India
| | | | | | | | | | | | | | | | | |
Collapse
|