1
|
Ye M, Lin X, Wang Q, Yang B, Wang C. Neuroprotective Iridoids and Lignans from Valeriana amurensis. Molecules 2023; 28:5793. [PMID: 37570763 PMCID: PMC10421132 DOI: 10.3390/molecules28155793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Valeriana amurensis (V. amurensis) is widely distributed in Northeast China. In addition to medicines, it has also been used to prepare food, wine, tobacco, cosmetics, perfume, and functional foods. Other studies have investigated the neuroprotective effects of V. amurensis extract. As the therapeutic basis, the active constituents should be further evaluated. In this paper, six new compounds (1-6) were isolated, including five iridoids (Xiecaoiridoidside A-E) and one bisepoxylignan (Xiecaolignanside A), as well as six known compounds (7-12). The neuroprotective effects of 1-12 were also investigated with amyloid β protein 1-42 (Aβ1-42)-induced injury to rat pheochromocytoma (PC12) cells. As a result, iridoids 1 and 2 and lignans 6, 8, and 9 could markedly maintain the cells' viability by 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) and lactate dehydrogenase (LDH) release assay.
Collapse
Affiliation(s)
- Minhui Ye
- Guangdong Engineering Technology Research Center for Standardized Processing of Chinese Materia Medica, School of Chinese Materia Medica, Guangdong Pharmaceutical University, No. 280 Outside Loop East Road of Higher Education Mega Center, Guangzhou 510006, China
| | - Xiaoju Lin
- Guangdong Engineering Technology Research Center for Standardized Processing of Chinese Materia Medica, School of Chinese Materia Medica, Guangdong Pharmaceutical University, No. 280 Outside Loop East Road of Higher Education Mega Center, Guangzhou 510006, China
| | - Qiuhong Wang
- Guangdong Engineering Technology Research Center for Standardized Processing of Chinese Materia Medica, School of Chinese Materia Medica, Guangdong Pharmaceutical University, No. 280 Outside Loop East Road of Higher Education Mega Center, Guangzhou 510006, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, No. 24 HePing Road, Harbin 150040, China
| | - Changfu Wang
- Guangdong Engineering Technology Research Center for Standardized Processing of Chinese Materia Medica, School of Chinese Materia Medica, Guangdong Pharmaceutical University, No. 280 Outside Loop East Road of Higher Education Mega Center, Guangzhou 510006, China
| |
Collapse
|
2
|
Effects of Catalpol on Alzheimer's Disease and Its Mechanisms. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2794243. [PMID: 35815283 PMCID: PMC9262514 DOI: 10.1155/2022/2794243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/17/2022] [Indexed: 11/23/2022]
Abstract
Alzheimer's disease (AD) is a degenerative disease of the central nervous system characterized by memory loss and cognitive dysfunction. With the increasing aging of the population, the incidence of AD and the number of patients are also increasing year by year, causing more and more heavy burdens to the family and society. Catalpol, an iridoid glycoside compound, is one of the main active components of Rehmannia glutinosa. At present, a large number of experimental studies in vivo and in vitro have confirmed that catalpol has antioxidant, anti-inflammatory, antiapoptotic, and other neuroprotective effects, and it plays a significant role in the prevention and treatment of AD, with very small side effects and high safety. Therefore, it may be an ideal drug for the treatment of AD. Based on this, the role and mechanism of catalpol in AD will be comprehensively reviewed in the following.
Collapse
|
3
|
Flores-Cuadra JA, Madrid A, Fernández PL, Pérez-Lao AR, Oviedo DC, Britton GB, Carreira MB. Critical Review of the Alzheimer's Disease Non-Transgenic Models: Can They Contribute to Disease Treatment? J Alzheimers Dis 2020; 82:S227-S250. [PMID: 33216029 DOI: 10.3233/jad-200870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) is a growing neurodegenerative disease without effective treatments or therapies. Despite the use of different approaches and an extensive variety of genetic amyloid based models, therapeutic strategies remain elusive. AD is characterized by three main pathological hallmarks that include amyloid-β plaques, neurofibrillary tangles, and neuroinflammatory processes; however, many other pathological mechanisms have been described in the literature. Nonetheless, the study of the disease and the screening of potential therapies is heavily weighted toward the study of amyloid-β transgenic models. Non-transgenic models may aid in the study of complex pathological states and provide a suitable complementary alternative to evaluating therapeutic biomedical and intervention strategies. In this review, we evaluate the literature on non-transgenic alternatives, focusing on the use of these models for testing therapeutic strategies, and assess their contribution to understanding AD. This review aims to underscore the need for a shift in preclinical research on intervention strategies for AD from amyloid-based to alternative, complementary non-amyloid approaches.
Collapse
Affiliation(s)
- Julio A Flores-Cuadra
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| | - Alanna Madrid
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| | - Patricia L Fernández
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| | - Ambar R Pérez-Lao
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| | - Diana C Oviedo
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá.,Escuela de Psicología, Facultad de Ciencias Sociales, Universidad Católica Santa María La Antigua (USMA), Panamá
| | - Gabrielle B Britton
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| | - Maria B Carreira
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| |
Collapse
|
4
|
Cheng X, Zhang Q, Li Z, Dong C, Jiang S, Sun YA, Wang G. Determination of behavior of catalpol hexapropionate in simulated gastric conditions by UPLC-ESI-HRMS. Sci Rep 2020; 10:11185. [PMID: 32636447 PMCID: PMC7341753 DOI: 10.1038/s41598-020-68056-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/15/2020] [Indexed: 11/09/2022] Open
Abstract
Catalpol hexapropionate (CP-6) was designed and synthesized as anti-aging drug. In order to investigate the behavior of CP-6 in simulated gastric juice, ultra-high performance liquid chromatography-electrospray ionization-high resolution mass spectrometry was used to determinate the components produced in simulated gastric conditions. Six metabolites were identified with the possible metabolic processes proposed. Hydrolysis may be the main metabolic pathways. The relative contents of CP-6 and its metabolites were determined using their extractive ion chromatograms. The results show that the relative content of CP-6 is rapidly decreased about 15% during the first 0.5 h and generally stable after 0.5 h. The mainly produced metabolites are catalpol penta-propionate (CP-5), catalpol and a spot of catalpol tetra-propionate (CP-4), catalpol tri-propionate (CP-3), catalpol dipropionate (CP-2) and catalpol propionate (CP-1). The metabolitic process of CP-6 may be an hydrolysis under acid conditions. The research results can provide useful information for development and utilization of CP-6 as a pharmaceutical preparation.
Collapse
Affiliation(s)
- Xiaodong Cheng
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Qiuxia Zhang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
- School of Chemical and Environmental Engineering, Pingdingshan University, Pingdingshan, China
| | - Zhenxing Li
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Chunhong Dong
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Shiqing Jiang
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Yu-an Sun
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Guoqing Wang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| |
Collapse
|
5
|
Catalpol in Diabetes and its Complications: A Review of Pharmacology, Pharmacokinetics, and Safety. Molecules 2019; 24:molecules24183302. [PMID: 31514313 PMCID: PMC6767014 DOI: 10.3390/molecules24183302] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022] Open
Abstract
This review aimed to provide a general view of catalpol in protection against diabetes and diabetic complications, as well as its pharmacokinetics and safety concerns. The following databases were consulted with the retrieval of more than 100 publications through June 2019: PubMed, Chinese National Knowledge Infrastructure, WanFang Data, and web of science. Catalpol exerts an anti-diabetic effect in different animal models with an oral dosage ranging from 2.5 to 200 mg/kg in rats and 10 to 200 mg/kg in mice. Besides, catalpol may prevent the development of diabetic complications in kidney, heart, central nervous system, and bone. The underlying mechanism may be associated with an inhibition of inflammation, oxidative stress, and apoptosis through modulation of various cellular signaling, such as AMPK/PI3K/Akt, PPAR/ACC, JNK/NF-κB, and AGE/RAGE/NOX4 signaling pathways, as well as PKCγ and Cav-1 expression. The pharmacokinetic profile reveals that catalpol could pass the blood-brain barrier and has a potential to be orally administrated. Taken together, catalpol is a well-tolerated natural compound with promising pharmacological actions in protection against diabetes and diabetic complications via multi-targets, offering a novel scaffold for the development of anti-diabetic drug candidate. Further prospective and well-designed clinical trials will shed light on the potential of clinical usage of catalpol.
Collapse
|
6
|
Habtemariam S. Iridoids and Other Monoterpenes in the Alzheimer's Brain: Recent Development and Future Prospects. Molecules 2018; 23:molecules23010117. [PMID: 29316661 PMCID: PMC6017424 DOI: 10.3390/molecules23010117] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 12/14/2022] Open
Abstract
Iridoids are a class of monoterpenoid compounds constructed from 10-carbon skeleton of isoprene building units. These compounds in their aglycones and glycosylated forms exist in nature to contribute to mechanisms related to plant defenses and diverse plant-animal interactions. Recent studies have also shown that iridoids and other structurally related monoterpenes display a vast array of pharmacological effects that make them potential modulators of the Alzheimer’s disease (AD). This review critically evaluates the therapeutic potential of these natural products by assessing key in vitro and in vivo data published in the scientific literature. Mechanistic approach of scrutiny addressing their effects in the Alzheimer’s brain including the τ-protein phosphorylation signaling, amyloid beta (Aβ) formation, aggregation, toxicity and clearance along with various effects from antioxidant to antiinflammatory mechanisms are discussed. The drug likeness of these compounds and future prospects to consider in their development as potential leads are addressed.
Collapse
Affiliation(s)
- Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK.
| |
Collapse
|
7
|
Xia Z, Wang F, Zhou S, Zhang R, Wang F, Huang JH, Wu E, Zhang Y, Hu Y. Catalpol protects synaptic proteins from beta-amyloid induced neuron injury and improves cognitive functions in aged rats. Oncotarget 2017; 8:69303-69315. [PMID: 29050205 PMCID: PMC5642480 DOI: 10.18632/oncotarget.17951] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/30/2017] [Indexed: 12/11/2022] Open
Abstract
Synapse loss is one of the common factors contributing to cognitive disorders, such as Alzheimer’s disease (AD), which is manifested by the impairment of basic cognitive functions including memory processing, perception, problem solving, and language. The current therapies for patients with cognitive disorders are mainly palliative; thus, regimens preventing and/or delaying dementia progression are urgently needed. In this study, we evaluated the effects of catalpol, isolated from traditional Chinese medicine Rehmannia glutinosa, on synaptic plasticity in aged rat models. We found that catalpol markedly improved the cognitive function of aged male Sprague-Dawley rats and simultaneously increased the expression of synaptic proteins (dynamin 1, PSD-95, and synaptophysin) in the cerebral cortex and hippocampus, respectively. In beta-amyloid (Aβ) injured primary rat’s cortical neuron, catalpol did not increase the viability of neuron but extended the length of microtubule-associated protein 2 (MAP-2) positive neurites and reversed the suppressive effects on expression of synaptic proteins induced by Aβ. Additionally, the effects of catalpol on stimulating the growth of MAP-2 positive neurites and the expression of synaptic proteins were diminished by a PKC inhibitor, bisindolylmaleimide I, suggesting that PKC may be implicated in catalpol’s function of preventing the neurodegeneration induced by Aβ. Altogether, our study indicates that catalpol could be a potential disease-modifying drug for cognitive disorders such as AD.
Collapse
Affiliation(s)
- Zhiming Xia
- Research Laboratory of Cell Regulation, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, China.,Current address: Department of Nuclear Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Fengfei Wang
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas 76508, USA.,Department of Neurology, Baylor Scott & White Health, Temple, Texas 78508, USA.,Department of Surgery, Texas A & M University College of Medicine, Temple, Texas 76504, USA
| | - Shuang Zhou
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas 76508, USA
| | - Rui Zhang
- Research Laboratory of Cell Regulation, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, China
| | - Fushun Wang
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas 76508, USA.,Department of Psychology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Jason H Huang
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas 76508, USA.,Department of Surgery, Texas A & M University College of Medicine, Temple, Texas 76504, USA
| | - Erxi Wu
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas 76508, USA.,Department of Surgery, Texas A & M University College of Medicine, Temple, Texas 76504, USA.,Department of Pharmaceutical Sciences, Texas A & M University College of Pharmacy, College Station, Texas 77843, USA
| | - Yongfang Zhang
- Research Laboratory of Cell Regulation, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, China
| | - Yaer Hu
- Research Laboratory of Cell Regulation, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, China
| |
Collapse
|
8
|
May BH, Feng M, Zhou IW, Chang SY, Lu SC, Zhang AL, Guo XF, Lu CJ, Xue CC. Memory Impairment, Dementia, and Alzheimer's Disease in Classical and Contemporary Traditional Chinese Medicine. J Altern Complement Med 2016; 22:695-705. [PMID: 27464225 DOI: 10.1089/acm.2016.0070] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Brian H. May
- China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Mei Feng
- Guangdong Provincial Academy of Chinese Medical Sciences and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Iris W. Zhou
- China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Su-yueh Chang
- China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Shao-chen Lu
- China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Anthony L. Zhang
- China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Xin-feng Guo
- Guangdong Provincial Academy of Chinese Medical Sciences and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Chuan-jian Lu
- Guangdong Provincial Academy of Chinese Medical Sciences and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Charlie C.L. Xue
- China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
- Guangdong Provincial Academy of Chinese Medical Sciences and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|