1
|
Jiang D, Chen C, Dai P, Li C, Feng Z, Dong N, Wu F, Xu J, Wu P, Chu L, Li S, Li X, Yang Y, Zhang W, Wang Z. Deep near infrared light-excited stable synergistic photodynamic and photothermal therapies based on P-IR890 nano-photosensitizer constructed via a non-cyanine dye. Asian J Pharm Sci 2024; 19:100955. [PMID: 39483716 PMCID: PMC11525468 DOI: 10.1016/j.ajps.2024.100955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 11/03/2024] Open
Abstract
The cyanine dyes represented by IR780 can achieve synergistic photodynamic therapy (PDT) and photothermal therapy (PTT) under the stimulation of near-infrared (NIR) light (commonly 808 nm). Unfortunately, the stability of NIR-excited cyanine dyes is not satisfactory. These cyanine dyes can be attacked by self-generated reactive oxygen species (ROS) during PDT processes, resulting in structural damage and rapid degradation, which is fatal for phototherapy. To address this issue, a novel non-cyanine dye (IR890) was elaborately designed and synthesized by our team. The maximum absorption wavelength of IR890 was located in the deep NIR region (ca. 890 nm), which was beneficial for further improving tissue penetration depth. Importantly, IR890 exhibited good stability when continuously illuminated by deep NIR light. To improve the hydrophilicity and biocompatibility, the hydrophobic IR890 dye was grafted onto the side chain of hydrophilic polymer (POEGMA-b-PGMA-g-C[bond, triple bond]CH) via click chemistry. Then, the synthesized POEGMA-b-PGMA-g-IR890 amphiphilic polymer was utilized to prepare P-IR890 nano-photosensitizer via self-assembly method. Under irradiation with deep NIR light (850 nm, 0.5 W/cm2, 10 min), the dye degradation rate of P-IR890 was less than 5%. However, IR780 was almost completely degraded with the same light output power density and irradiation duration. In addition, P-IR890 could stably generate a large number of ROS and heat at the same time. It was rarely reported that the stable synergistic combination therapy of PDT and PTT could be efficiently performed by a single photosensitizer via irradiation with deep NIR light. P-IR890 exhibited favorable anti-tumor outcomes through apoptosis pathway. Therefore, the P-IR890 could provide a new insight into the design of photosensitizers and new opportunities for synergistic combination therapy of PDT and PTT.
Collapse
Affiliation(s)
- Dawei Jiang
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo 325300, China
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, School of Pharmaceutical Science, Wenzhou 325000, China
| | - Chao Chen
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Peng Dai
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo 325300, China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, School of Pharmaceutical Science, Wenzhou 325000, China
| | - Caiyan Li
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo 325300, China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, School of Pharmaceutical Science, Wenzhou 325000, China
| | - Zhiyi Feng
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo 325300, China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, School of Pharmaceutical Science, Wenzhou 325000, China
| | - Na Dong
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo 325300, China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, School of Pharmaceutical Science, Wenzhou 325000, China
| | - Fenzan Wu
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo 325300, China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, School of Pharmaceutical Science, Wenzhou 325000, China
| | - Junpeng Xu
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo 325300, China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, School of Pharmaceutical Science, Wenzhou 325000, China
| | - Ping Wu
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo 325300, China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, School of Pharmaceutical Science, Wenzhou 325000, China
| | - Liuxi Chu
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo 325300, China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Shengcun Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, School of Pharmaceutical Science, Wenzhou 325000, China
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xiaokun Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, School of Pharmaceutical Science, Wenzhou 325000, China
- National Key laboratory of macromolecular drug development and manufacturing, School of Pharmaceutical Science, Wenzhou Medical University 325035, China
| | - Youjun Yang
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhouguang Wang
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo 325300, China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, School of Pharmaceutical Science, Wenzhou 325000, China
- National Key laboratory of macromolecular drug development and manufacturing, School of Pharmaceutical Science, Wenzhou Medical University 325035, China
| |
Collapse
|
2
|
Sawicka E, Kulbacka J, Drąg-Zalesińska M, Woźniak A, Piwowar A. Effect of Interaction between Chromium(VI) with 17β-Estradiol and Its Metabolites on Breast Cancer Cell Lines MCF-7/WT and MDA-MB-175-VII: Preliminary Study. Molecules 2023; 28:molecules28062752. [PMID: 36985725 PMCID: PMC10052759 DOI: 10.3390/molecules28062752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
The number of factors initiating and stimulating the progression of breast cancer are constantly increasing. Estrogens are a risk factor for breast adenocarcinoma, the toxicity of which increases as a result of metabolism and interaction with other factors. Due to the presence of environmental exposure to estrogens and metalloestrogens, we investigated how interactions between estrogens and toxic chromium(VI)[Cr(VI)] affect breast cancer lines and investigated whether estrogens play a protective role. The aim of the study was to investigate the effect of 17β-estradiol and its metabolites: 2-methoxyestradiol (2-MeOE2), 4-hydroxyestradiol (4-OHE2), and 16α-hydroxyestrone (16α-OHE1) in exposure to Cr(VI) on cell viability and DNA cell damage. Two estrogen-dependent breast cancer cell lines, MCF 7/WT and MDA-MB-175-VII, were examined. In addition, the expression of Cu-Zn superoxide dismutase (SOD1) was determined immunocytochemically to elucidate the mechanism of oxidative stress. The effects of single substances and their mixtures were tested in the model of simultaneous and 7-day estrogen pre-incubation. As a result, the viability of MCF-7 and MDA-MB-175-VII cells is lowered most by Cr(VI) and least by 17β-E2. In the combined action of estrogens and metalloestrogens, we observed a protective effect mainly of 17β-E2 against Cr(VI)-induced cytotoxicity. The highest expression of SOD1 was found in MCF-7/WT cells exposed to 17β-E2. Moreover, high apoptosis was caused by both Cr(VI) itself and its interaction with 4-OHE2 and 2-MeOE2. The direction and dynamics of changes in viability are consistent for both lines.
Collapse
Affiliation(s)
- Ewa Sawicka
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
- Correspondence: ; Tel.: +48-71-784-04-53; Fax: +48-71-784-04-52
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių 5, 08410 Vilnius, Lithuania
| | - Małgorzata Drąg-Zalesińska
- Division of Histology and Embrylogy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chałubińskiego 6a, 50-368 Wroclaw, Poland
| | - Arkadiusz Woźniak
- Students’ Scientific Society at the Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| |
Collapse
|
3
|
The Influence of Interaction between Cadmium with 17β-Estradiol, 2-Methoxyestradiol and 16α-Hydroxyestrone on Viability and p-Glycoprotein in Ovarian Cancer Cell Line. Int J Mol Sci 2022; 23:ijms23052628. [PMID: 35269769 PMCID: PMC8910160 DOI: 10.3390/ijms23052628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 12/04/2022] Open
Abstract
Occupational and environmental exposure to xenoestrogens, a subgroup of endocrine disruptors (EDCs), can affect the endocrine system and increase the risk of cancer, primarily the hormone-dependent kind. This type of cancer includes ovarian cancer, which is the leading cause of death from gynecological tumors. The aim of this study was to assess the role of 17β-estradiol and its metabolites: 2-MeOE2, 16α-OHE1 in exposure to the metalloestrogen cadmium. The effect of interactions of cadmium with estrogens on the viability of cells in malignant ovarian cancer cells SKOV-3 was investigated, both in simultaneous action and in the pre-incubation model. There are no known interactions between estrogens and cadmium in ovarian cancer cells. Due to the frequent occurrence of multidrug resistance (MDR) in ovarian cancer, the effects of estrogens and cadmium on MDR in SKOV-3, measured as P-glycoprotein (P-gp), were assessed. An interaction study showed that E2 had an antagonistic effect on cadmium-induced cell damage, while 2-MeOE2 showed less of a protective effect in combination with CdCl2 than E2. There were two types of interaction: toxic synergism and beneficial antagonism. E2 and cadmium increased P-gp expression in SKOV-3 cells, while 2-MeOE2 decreased P-gp expression to a potentially beneficial effect on MDR prevention. The obtained results constitute an interesting starting point for further research in the field of interactions between estrogens and xenoestrogens in ovarian cancer.
Collapse
|
4
|
Waszkiewicz M, Choromanska A, Kulbacka J, Saczko J. The photodynamic reaction with IR-775 cyanine combined with 2-methoxyestradiol in ovarian (SKOV-3) and human breast adenocarcinoma (MDA MB-231) cell lines. Photodiagnosis Photodyn Ther 2022; 38:102766. [PMID: 35182779 DOI: 10.1016/j.pdpdt.2022.102766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Photodynamic therapy (PDT) is a commonly known anticancer approach but is rarely applied in clinical use, mainly in topical skin cancer. However, it could serve as an excellent alternative to traditional anticancer therapies, such as chemotherapy or radiotherapy. AIMS The study aimed to assess the effect of PDT, where the combination of cyanine with 2-methoxyestradiol (2-Me) was used on mammary and ovary adenocarcinoma human cell lines. MATERIALS AND METHODS The cyanine IR-775 was used as the photosensitizer. Two human malignant adenocarcinoma cell lines - ovary and mammary adenocarcinoma (MDA MB-231 and SKOV-3) were investigated in photodynamic reaction (PDR), with the enhancement of 2-Me. PDR efficiency was evaluated by the MTT test. Photosensitizer intracellular distribution was assessed by fluorescent microscopy. Additionally, apoptotic and oxidative stress markers were investigated by immunocytochemistry staining. RESULTS AND CONCLUSIONS It was observed that PDR enhanced by 2-Me is effective against two common but different types of cancer. The treatment decreased cells' viability by around 70%. Immunocytochemical staining of SOD2 and caspase-12 indicated apoptosis and oxidative stress induction in tested cell lines. The results suggest that the therapy could be involved in further in vivo and clinical applications.
Collapse
Affiliation(s)
- Marta Waszkiewicz
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wroclaw, Poland
| | - Anna Choromanska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland.
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
5
|
Xie A, Li H, Hao Y, Zhang Y. Tuning the Toxicity of Reactive Oxygen Species into Advanced Tumor Therapy. NANOSCALE RESEARCH LETTERS 2021; 16:142. [PMID: 34518937 PMCID: PMC8438097 DOI: 10.1186/s11671-021-03599-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
The biological functions and toxic effects of reactive oxygen species (ROS) are generally entangled. A large amount of ROS may cause oxidative damage to cell biomolecules, leading to cell death. Tumor treatment can be carried out by using the toxicity of ROS, and various nanosystems related to ROS have been designed. In fact, the level of active oxygen in the biological microenvironment can be regulated in advanced therapeutics via designed nanoscale engineering, which can open up a new direction of treatment with specific simplicity. In this progress report, the authors first introduced how ROS causes cell death. Then, recent studies on converting the inherent toxicity from ROS into advanced treatment tools are highlighted.
Collapse
Affiliation(s)
- An Xie
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230000 Anhui China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, 230000 Anhui China
| | - He Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 China
| | - Yumei Hao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 China
| | - Yujia Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 China
| |
Collapse
|
6
|
Effect of Interaction between 17β-Estradiol, 2-Methoxyestradiol and 16α-Hydroxyestrone with Chromium (VI) on Ovary Cancer Line SKOV-3: Preliminary Study. Molecules 2020; 25:molecules25215214. [PMID: 33182506 PMCID: PMC7665134 DOI: 10.3390/molecules25215214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/22/2020] [Accepted: 11/06/2020] [Indexed: 01/06/2023] Open
Abstract
Ovarian cancer is the leading cause of death from gynecologic malignancies. Some estrogens, as well as xenoestrogens, such as chromium (VI) (Cr(VI)), are indicated as important pathogenic agents. The objective of this study was to evaluate the role of estradiol and some its metabolites upon exposure to the metalloestrogen Cr(VI) in an in vitro model. The changes in cell viability of malignant ovarian cancer cells (SKOV-3 resistant to cisplatin) exposed to 17β-estradiol (E2) and its two metabolites, 2-methoxyestradiol (2-MeOE2) and 16α-hydroxyestrone (16α-OHE1), upon exposure to potassium chromate (VI) and its interactions were examined. The single and mixed models of action, during short and long times of incubation with estrogens, were applied. The different effects (synergism and antagonism) of estrogens on cell viability in the presence of Cr(VI) was observed. E2 and 16α-OHE1 caused a synergistic effect after exposure to Cr(VI). 2-MeOE2 showed an antagonistic effect on Cr(VI). The examined estrogens could be ranked according to the most protective effect or least toxicity in the order: 2-MeOE2 > E2 > 16α-OHE1. Early pre-incubation (24 h or 7 days) of cells with estrogens caused mostly an antagonistic effect-protective against the toxic action of Cr(VI). The beneficial action of estrogens on the toxic effect of Cr(VI), in the context of the risk of ovarian cancer, seems to be important and further studies are needed.
Collapse
|
7
|
Rawat L, Hegde H, Hoti SL, Nayak V. Piperlongumine induces ROS mediated cell death and synergizes paclitaxel in human intestinal cancer cells. Biomed Pharmacother 2020; 128:110243. [PMID: 32470748 DOI: 10.1016/j.biopha.2020.110243] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 05/02/2020] [Accepted: 05/10/2020] [Indexed: 01/20/2023] Open
Abstract
Piperlongumine (PL), a herbal drug extracted from long pepper (Piper longum L), is known for its anti-inflammatory and anti-cancer properties. Although, its anti-cancer potential has been evaluated in cancer models like breast, pancreatic, gastric, hepatocellular and lung carcinoma, there is no report on its bio-activity evaluation in intestinal cancers. Here, we report the anti-neoplastic potential of PL against human intestinal carcinoma in-vitro and its possible mechanisms of action. Cytotoxicity studies demonstrate that PL inhibits cell proliferation of INT-407 and HCT-116 cells in a concentration and time-dependent manner. Also, PL elevated the levels of intracellular reactive oxygen species, which may lead to lethal oxidative stress, mitochondrial dysfunction, and nuclear fragmentation. Remarkably, P53, P21, BAX, and SMAD4 were significantly upregulated after PL treatment whereas; BCL2 and SURVIVIN were down-regulated. Moreover, the combination study also shows the synergistic effect of PL with the current chemotherapeutic drug paclitaxel. These findings suggest that PL possesses anti-neoplastic properties in intestinal cancer cells.
Collapse
Affiliation(s)
- Laxminarayan Rawat
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, K.K. Birla Goa Campus, NH-17B, Zuarinagar, Goa 403726, India.
| | - Harsha Hegde
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi, 590010, Karnataka, India.
| | | | - Vijayashree Nayak
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, K.K. Birla Goa Campus, NH-17B, Zuarinagar, Goa 403726, India.
| |
Collapse
|
8
|
Kulbacka J, Choromańska A, Drąg-Zalesińska M, Nowak P, Baczyńska D, Kotulska M, Bednarz-Misa I, Saczko J, Chwiłkowska A. Proapoptotic activity induced by photodynamic reaction with novel cyanine dyes in caspase-3-deficient human breast adenocarcinoma cell lines (MCF/WT and MCF/DX). Photodiagnosis Photodyn Ther 2020; 30:101775. [PMID: 32330609 DOI: 10.1016/j.pdpdt.2020.101775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 01/10/2023]
Abstract
Photodynamic therapy (PDT) is currently one of the cancer treatment options. PDT requires the application of a photosensitizer (such as: porphyrins, chlorines, and phthalocyanines) that selectively targets malignant cells. It is a dilemma to find a proper photosensitizer. In our study, we have tested a new in-vitro group of cyanine dyes. These dyes are widely applied in biotechnology as fluorescent markers. Two malignant adenocarcinoma cell lines (MCF-7/WT and MCF-7/DOX) were investigated using photodynamic reaction (PDR) with four cyanine dyes (KF-570, HM-118, FBF-749, and ER-139). KF-570 and HM-118 were irradiated with red light (630 nm), whereas FBF-749 and ER-139 with green light (435 nm). To evaluate PDR efficiency, a clonogenic test was conducted. Apoptosis was investigated by TUNEL and NCA (neutral comet) assays. Proteins selected as indicators of the apoptotic pathway (AIF, sPLA2, Smac/Diablo) and intracellular response markers (SOD-1 and GST-pi) were detected using western blot. The highest number of apoptotic cells (ca. 100%) was observed after PDR with HM-118 and KF-570 in both conducted tests, in both cell lines. The results showed that HM-118 and KF-570 cyanine dyes demonstrated a major phototoxic effect causing apoptosis in doxorubicin-resistant and sensitive cell lines.
Collapse
Affiliation(s)
- Julita Kulbacka
- Wroclaw Medical University, Department of Molecular and Cellular Biology, Wroclaw, Poland.
| | - Anna Choromańska
- Wroclaw Medical University, Department of Molecular and Cellular Biology, Wroclaw, Poland
| | - Małgorzata Drąg-Zalesińska
- Wrocław Medical University, Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw, Poland
| | - Piotr Nowak
- Wroclaw University of Science and Technology, Department of Physical and Quantum Chemistry, Faculty of Chemistry, Poland
| | - Dagmara Baczyńska
- Wroclaw Medical University, Department of Molecular and Cellular Biology, Wroclaw, Poland
| | - Małgorzata Kotulska
- Wroclaw University of Science Technology, Institute of Biomedical Engineering and Instrumentation, Wroclaw, Poland
| | - Iwona Bednarz-Misa
- Wroclaw Medical University, Department of Medical Biochemistry, Wroclaw, Poland
| | - Jolanta Saczko
- Wroclaw Medical University, Department of Molecular and Cellular Biology, Wroclaw, Poland
| | - Agnieszka Chwiłkowska
- Wroclaw Medical University, Department of Molecular and Cellular Biology, Wroclaw, Poland
| |
Collapse
|
9
|
Sawicka E, Woźniak A, Drąg-Zalesińska M, Piwowar A. Effect of estrogens and their metabolites genotoxicity on the pathogenesis and progression of estrogen-dependent breast cancer. POSTEP HIG MED DOSW 2019. [DOI: 10.5604/01.3001.0013.7541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Oncological diseases, due to the still increasing morbidity and mortality, are one of the main problems of modern medicine. Cancer of the mammary gland is the most common cancer among women around the world, and is the second cause of cancer deaths in this group, immediately after lung cancer. This kind of cancer belongs to an estrogen-dependent cancer, with proven associations with hormonal disorders in the body, occurring especially in the perimenopausal period and among women using hormone replacement therapy, as well as a result of the action of various xenobiotics that may interact with the estrogen receptor. Hormone steroids are widely used in medicine and their side effects are constantly discussed. The role of these compounds and their metabolites in maintaining hormonal balance is well understood, while many studies indicate the possible contribution of these steroids in the progression of the cancer process, especially in mammary gland tissue. Therefore, the genotoxic action of this group of compounds is still studied. Due to the limited number of scientific reports, the aim of this paper was to review and critically analyze data from the literature regarding the participation of estrogens (17β-estradiol) and their metabolites (2-methoxy estradiol, 4-hydroxy estradiol, 16α-hydroxyestrone) in the induction of carcinogenesis in mammary gland, in particular concerning the genotoxic activity of 17β-estradiol metabolites.
Collapse
Affiliation(s)
- Ewa Sawicka
- Katedra i Zakład Toksykologii, Wydział Farmaceutyczny z Oddziałem Analityki Medycznej, Uniwersytet Medyczny im. Piastów Śląskich we Wrocławiu
| | - Arkadiusz Woźniak
- Studenckie Koło Naukowe przy Katedrze i Zakładzie Toksykologii, Wydział Farmaceutyczny z Oddziałem Analityki Medycznej, Uniwersytet Medyczny im. Piastów Śląskich we Wrocławiu
| | - Małgorzata Drąg-Zalesińska
- Katedra i Zakład Embriologii i Histologii, Wydział Lekarski, Uniwersytet Medyczny im. Piastów Śląskich we Wrocławiu
| | - Agnieszka Piwowar
- Katedra i Zakład Toksykologii, Wydział Farmaceutyczny z Oddziałem Analityki Medycznej, Uniwersytet Medyczny im. Piastów Śląskich we Wrocławiu
| |
Collapse
|
10
|
Kamm A, Przychodzeń P, Kuban–Jankowska A, Marino Gammazza A, Cappello F, Daca A, Żmijewski MA, Woźniak M, Górska–Ponikowska M. 2-Methoxyestradiol and Its Combination with a Natural Compound, Ferulic Acid, Induces Melanoma Cell Death via Downregulation of Hsp60 and Hsp90. JOURNAL OF ONCOLOGY 2019; 2019:9293416. [PMID: 32082378 PMCID: PMC7012217 DOI: 10.1155/2019/9293416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/28/2019] [Accepted: 09/04/2019] [Indexed: 12/15/2022]
Abstract
Melanoma is an aggressive type of skin cancer with one of the highest mortality rates. Notably, its incidence in the last few decades has increased faster than any other cancer. Therefore, searching for novel anticancer therapies is of great clinical importance. In the present study, we investigated the anticancer potential of 2-methoxyestradiol, potent chemotherapeutic, in the A375 melanoma cellular model. In order to furthermore evaluate the anticancer efficacy of 2-methoxyestradiol, we have additionally combined the treatment with a naturally occurring polyphenol, ferulic acid. The results were obtained using the melanoma A375 cellular model. In the study, we used MTT assay, flow cytometry, and western blot techniques. Herein, we have evidenced that the molecular mechanism of action of 2-methoxyestradiol and ferulic acid is partly related to the reduction of Hsp60 and Hsp90 levels and the induction of nitric oxide in the A375 melanoma cell model, while no changes were observed in Hsp70 expression after 2-methoxyestradiol and ferulic acid treatment separately or in combination. This is especially important in case of chemoresistance mechanisms because the accumulation of Hsp70 reduces induction of cancer cell death, thus decreasing antitumour efficacy.
Collapse
Affiliation(s)
- Anna Kamm
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk 80-211, Poland
| | - Paulina Przychodzeń
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk 80-211, Poland
| | | | - Antonella Marino Gammazza
- Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| | - Francesco Cappello
- Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| | - Agnieszka Daca
- Department of Pathology and Rheumatology, Medical University of Gdansk, Gdansk 80-211, Poland
| | - Michał A. Żmijewski
- Department of Histology, Medical University of Gdansk, Gdansk 80-211, Poland
| | - Michał Woźniak
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk 80-211, Poland
| | - Magdalena Górska–Ponikowska
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk 80-211, Poland
- Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
- Department of Biophysics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
11
|
Michel O, Błasiak P, Saczko J, Kulbacka J, Drąg-Zalesińska M, Rzechonek A. Electropermeabilization of metastatic chondrosarcoma cells from primary cell culture. Biotechnol Appl Biochem 2019; 66:945-954. [PMID: 31476023 DOI: 10.1002/bab.1809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 08/20/2019] [Indexed: 11/12/2022]
Abstract
Primary cell cultures are challenging, but reliable model reflecting tumor response in vitro. The study was designed to examine if the increased electropermeabilization can overcame initial drug insensitivity in chondrosarcoma cells from lung metastasis. We established a primary cell culture and evaluated the cytotoxic impact of four drugs-cisplatin (CDDP), camptothecin, 2-methoxyestradiol, and leucovorin calcium (LeuCa). After determination of parameters allowing for electropermeabilization, we performed electrochemotherapy in vitro with the least toxic drugs-CDDP and LeuCa. Although combining CDDP and leucovorin together increased their toxicity and supported apoptosis, application of pulsed electric fields (PEFs) brought no advantage for their efficacy. The study emphasizes the need for introduction of primary cell cultures into studies on pulse electric fields as model frequently less sensitive to PEF-based treatments than continuous cell lines.
Collapse
Affiliation(s)
- Olga Michel
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | - Piotr Błasiak
- Department of Thoracic Surgery, Wroclaw Medical University, Wroclaw, Poland
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Wroclaw, Poland
| | - Małgorzata Drąg-Zalesińska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Adam Rzechonek
- Department of Thoracic Surgery, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
12
|
Choromanska A, Golba M, Zalewski J, Kulbacka J, Saczko J. The influence of photodynamic reaction on the human ovarian and breast cancer cells in vitro. Photodiagnosis Photodyn Ther 2017. [DOI: 10.1016/j.pdpdt.2017.01.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Kimáková P, Solár P, Fecková B, Sačková V, Solárová Z, Ilkovičová L, Kello M. Photoactivated hypericin increases the expression of SOD-2 and makes MCF-7 cells resistant to photodynamic therapy. Biomed Pharmacother 2017; 85:749-755. [DOI: 10.1016/j.biopha.2016.11.093] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/19/2016] [Accepted: 11/21/2016] [Indexed: 12/20/2022] Open
|
14
|
Wysocka O, Kulbacka J, Saczko J. Adjuvant, neoadjuvant, and experimental regimens in overcoming pancreatic ductal adenocarcinoma. PRZEGLAD GASTROENTEROLOGICZNY 2016; 11:155-162. [PMID: 27713776 PMCID: PMC5047971 DOI: 10.5114/pg.2016.61438] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 07/01/2016] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer is one of the most aggressive and deadly malignancies. Despite better understanding of its biology and pathogenesis, contemporary treatment regimens are still insufficient. Along with the introduction of new treatment agents and combination therapy, the response rates are increasing, but these scores do not go with overall survival, and results are frequently conflicting. Therefore, contemporary medicine faces the challenge of expanding the knowledge base and practice on all grounds - pathology, factor risk, diagnosis, and finally surgical and palliative treatment of this disease. This paper provides a review of current adjuvant and neoadjuvant regimens and the role of experimental therapies in pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Olga Wysocka
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | - Julita Kulbacka
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | - Jolanta Saczko
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
15
|
Wu J, Xiao Q, Zhang N, Xue C, Leung AW, Zhang H, Xu C, Tang QJ. Photodynamic action of palmatine hydrochloride on colon adenocarcinoma HT-29 cells. Photodiagnosis Photodyn Ther 2016; 15:53-8. [PMID: 27181460 DOI: 10.1016/j.pdpdt.2016.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/20/2016] [Accepted: 05/11/2016] [Indexed: 02/07/2023]
Abstract
Palmatine hydrochloride (PaH) is a natural active compound from a traditional Chinese medicine (TCM). The present study aims to evaluate the effect of PaH as a new photosensitizer on colon adenocarcinoma HT-29 cells upon light irradiation. Firstly, the absorption and fluorescence spectra of PaH were measured using a UV-vis spectrophotometer and RF-1500PC spectrophotometer, respectively. Singlet oxygen ((1)O2) production of PaH was determined using 1, 3-diphenylisobenzofuran (DPBF). Dark toxicity of PaH was estimated using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Cellular uptake of PaH in HT-29 cells was detected at different time intervals. Subellular localization of PaH in HT-29 cells was observed using confocal laser fluorescence microscopy. For photodynamic treatment, HT-29 cells were incubated with PaH and then irradiated by visible light (470nm) from a LED light source. Photocytotoxicity was investigated 24h after photodynamic treatment using MTT assay. Cell apoptosis was observed 18h after photodynamic treatment using a flow cytometry with Annexin V/PI staining. Results showed that PaH has an absorption peak in the visible region from 400nm to 500nm and a fluorescence emission peak at 406nm with an excitation wavelength of 365nm. PaH was activated by the 470nm visible light from a LED light source to produce (1)O2. Dark toxicity showed that PaH alone treatment had no cytotoxicity to HT-29 cancer cells and NIH-3T3 normal cells after incubation for 24h. After incubation for 40min, the cellular uptake of PaH reached to the maximum and PaH was located in mitochondria. Photodynamic treatment of PaH demonstrated a significant photocytotoxicity on HT-29 cells. The rate of cell death increased significantly in a PaH concentration-dependent and light dose-dependent manner. Further evaluation revealed that the early and late apoptotic rate of HT-29 cells increased remarkably up to 21.54% and 5.39% after photodynamic treatment of PaH at the concentration of 5μM and energy density of 10.8J/cm(2). Our findings demonstrated that PaH as a naturally occurring photosensitizer has potential in photodynamic therapy on colon adenocarcinoma.
Collapse
Affiliation(s)
- Juan Wu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China; Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
| | - Qicai Xiao
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Na Zhang
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
| | - Changhu Xue
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
| | - Albert Wingnang Leung
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hongwei Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Chuanshan Xu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Qing-Juan Tang
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China.
| |
Collapse
|
16
|
Specific cellular accumulation of photofrin-II in EC cells promotes photodynamic treatment efficacy in esophageal cancer. Photodiagnosis Photodyn Ther 2016; 14:27-33. [PMID: 26829562 DOI: 10.1016/j.pdpdt.2016.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/14/2016] [Accepted: 01/26/2016] [Indexed: 12/29/2022]
Abstract
Photodynamic therapy (PDT), which uses a light-sensitive compound and laser irradiation, is a light-based oncological treatment modality. PDT offers an alternative, less invasive treatment for various malignant tumors, such as esophageal cancer (EC), through a photochemical reaction induced by photofrin-II or other oncotropic photosensitizers without severe complications. Previous studies has shown that cancerous tissues accumulated more photosensitizers than paired normal tissues, however, whether it is cellular or vascular mechanisms remains unknown. Herein, in vivo and in vitro examinations were performed to study the mechanisms by which photofrin-II effectively and specifically killed EC cells. In this study, EC tissue of patients treated with photofrin-II, human ESCC cellline SHEEC and parental normal cellline SHEE, primary culture cells of EC tissue were used. The concentration of photofrin-II in cells were evaluated by high-performance liquid chromatography (HPLC). The results exhibited that accumulation of photofrin-II in cancerous cells were significantly higher than that in non-cancerous cells (p<0.05) under certain dose and time period of incubation of photofrin-II. In summary, our study showed that, photofrin-II specifically accumulated in EC cells in vivo and in vitro after controlling for vascular factors, which provided strong evidence that maybe the cellular factor is the main mechanism by which photofrin-II-mediated PDT selectively caused EC cells death.
Collapse
|