1
|
Panda SK, Robinson N, Desiderio V. Decoding secret role of mesenchymal stem cells in regulating cancer stem cells and drug resistance. Biochim Biophys Acta Rev Cancer 2024; 1879:189205. [PMID: 39481663 DOI: 10.1016/j.bbcan.2024.189205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/23/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024]
Abstract
Drug resistance caused by the efflux of chemotherapeutic drugs is one of the most challenging obstacles to successful cancer therapy. Several efflux transporters have been identified since the discovery of the P-gp/ABCB1 transporter in 1976. Over the last four decades, researchers have focused on developing efflux transporter inhibitors to overcome drug resistance. However, even with the third-generation inhibitors available, we are still far from effectively inhibiting the efflux transporters. Additionally, Cancer stem cells (CSCs) pose another significant challenge, contributing to cancer recurrence even after successful treatment. The ability of CSCs to enter dormancy and evade detection makes them almost invulnerable to chemotherapeutic drug treatment. In this review, we discuss how Mesenchymal stem cells (MSCs), one of the key components of the Tumor Microenvironment (TME), regulate both the CSCs and efflux transporters. We propose a new approach focusing on MSCs, which can be crucial to successfully address CSCs and efflux transporters.
Collapse
Affiliation(s)
- Sameer Kumar Panda
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples 80138, Italy; Center for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5001, Australia
| | - Nirmal Robinson
- Center for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5001, Australia
| | - Vincenzo Desiderio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples 80138, Italy.
| |
Collapse
|
2
|
Abrahams B, Gerber A, Hiss DC. Combination Treatment with EGFR Inhibitor and Doxorubicin Synergistically Inhibits Proliferation of MCF-7 Cells and MDA-MB-231 Triple-Negative Breast Cancer Cells In Vitro. Int J Mol Sci 2024; 25:3066. [PMID: 38474312 DOI: 10.3390/ijms25053066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
The role of the epidermal growth factor receptor (EGFR) in tumor progression and survival is often underplayed. Its expression and/or dysregulation is associated with disease advancement and poor patient outcome as well as drug resistance in breast cancer. EGFR is often overexpressed in breast cancer and particularly triple-negative breast cancer (TNBC), which currently lacks molecular targets. We examined the synergistic potential of an EGFR inhibitor (EGFRi) in combination with doxorubicin (Dox) in estrogen-positive (ER+) MCF-7 and MDA-MB-231 TNBC cell lines. The exposure of MDA-MB-231 and MCF-7 to EGFRi produced an IC50s of 6.03 µM and 3.96 µM, respectively. Dox induced MDA-MB-231 (IC50 9.67 µM) and MCF-7 (IC50 1.4 µM) cytotoxicity. Combinations of EGFRi-Dox significantly reduced the IC50 in MCF-7 (0.46 µM) and MBA-MB 231 (0.01 µM). Synergistic drug interactions in both cell lines were confirmed using the Bliss independence model. Pro-apoptotic Caspase-3/7 activation occurred in MCF-7 at 0.1-10 µM of EGFRi and Dox single treatments, whilst 1 μM Dox yielded a more potent effect on MDA-MB-231. EGFRi and Dox individually and in combination downregulated the EGFR gene expression in MCF-7 and MDA-MB-231 (p < 0.001). This study demonstrates EGFRi's potential for eliciting synergistic interactions with Dox, causing enhanced growth inhibition, apoptosis induction, and downregulation of EGFR in both cell lines.
Collapse
Affiliation(s)
- Beynon Abrahams
- Department of Basic Medical Sciences, Faculty of Health Sciences, University of the Free State, Bloemfontein 9301, South Africa
| | - Anthonie Gerber
- Department of Basic Medical Sciences, Faculty of Health Sciences, University of the Free State, Bloemfontein 9301, South Africa
| | - Donavon Charles Hiss
- Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Bellville 7535, South Africa
| |
Collapse
|
3
|
Teng QX, Lei ZN, Wang JQ, Yang Y, Wu ZX, Acharekar ND, Zhang W, Yoganathan S, Pan Y, Wurpel J, Chen ZS, Fang S. Overexpression of ABCC1 and ABCG2 confers resistance to talazoparib, a poly (ADP-Ribose) polymerase inhibitor. Drug Resist Updat 2024; 73:101028. [PMID: 38340425 DOI: 10.1016/j.drup.2023.101028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 02/12/2024]
Abstract
AIMS The overexpression of ABC transporters on cancer cell membranes is one of the most common causes of multidrug resistance (MDR). This study investigates the impact of ABCC1 and ABCG2 on the resistance to talazoparib (BMN-673), a potent poly (ADP-ribose) polymerase (PARP) inhibitor, in ovarian cancer treatment. METHODS The cell viability test was used to indicate the effect of talazoparib in different cell lines. Computational molecular docking analysis was conducted to simulate the interaction between talazoparib and ABCC1 or ABCG2. The mechanism of talazoparib resistance was investigated by constructing talazoparib-resistant subline A2780/T4 from A2780 through drug selection with gradually increasing talazoparib concentration. RESULTS Talazoparib cytotoxicity decreased in drug-selected or gene-transfected cell lines overexpressing ABCC1 or ABCG2 but can be restored by ABCC1 or ABCG2 inhibitors. Talazoparib competitively inhibited substrate drug efflux activity of ABCC1 or ABCG2. Upregulated ABCC1 and ABCG2 protein expression on the plasma membrane of A2780/T4 cells enhances resistance to other substrate drugs, which could be overcome by the knockout of either gene. In vivo experiments confirmed the retention of drug-resistant characteristics in tumor xenograft mouse models. CONCLUSIONS The therapeutic efficacy of talazoparib in cancer may be compromised by its susceptibility to MDR, which is attributed to its interactions with the ABCC1 or ABCG2 transporters. The overexpression of these transporters can potentially diminish the therapeutic impact of talazoparib in cancer treatment.
Collapse
Affiliation(s)
- Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA; Department of Oncology, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong 518107, PR China
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Nikita Dilip Acharekar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Wei Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA; Institute of Plastic Surgery, Weifang Medical University, Weifang, Shandong 261041, PR China
| | - Sabesan Yoganathan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Yihang Pan
- Department of Oncology, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong 518107, PR China
| | - John Wurpel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Shuo Fang
- Department of Oncology, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong 518107, PR China.
| |
Collapse
|
4
|
Lai R, Lin Z, Yang C, Hai L, Yang Z, Guo L, Nie R, Wu Y. Novel berberine derivatives as p300 histone acetyltransferase inhibitors in combination treatment for breast cancer. Eur J Med Chem 2024; 266:116116. [PMID: 38215590 DOI: 10.1016/j.ejmech.2023.116116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/30/2023] [Accepted: 12/30/2023] [Indexed: 01/14/2024]
Abstract
Adenoviral E1A binding protein p300 (EP300 or p300) and its similar paralog, cyclic-AMP response element binding protein (CBP), are important histone acetyltransferases (HAT) and transcriptional co-activators in epigenetics, participating in numerous cellular pathways including proliferation, differentiation and apoptosis. The overexpression or dysregulation of p300/CBP is closely related to oncology-relevant disease. The inhibition of p300 HAT has been found to be a potential drug target. Berberine has been reported to show anticancer activity and synergistic effect in combination with some of the clinical anticancer drugs via modulation of various pathways. Here, the present study sought to discover more chemotypes of berberine derivatives as p300 HAT inhibitors and to examine the combination of these novel analogues with doxorubicin for the treatment of breast cancer. A series of novel berberine derivatives with modifications of A/B/D rings of berberine have been designed, synthesized and screened. Compound 7b was found to exhibit inhibitory potency against p300 HAT with IC50 values of 1.51 μM. Western blotting proved that 7b decreased H3K27Ac and interfered with the expression of oncology-relevant protein in MCF-7 cells. Further bioactive evaluation showed that combination of compound 7b with doxorubicin could significantly inhibit tumor growth and invasion in vitro and in vivo.
Collapse
Affiliation(s)
- Ruizhi Lai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zhiqian Lin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Chunyan Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Li Hai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China; Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, 646100, China
| | - Zhongzhen Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Li Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Ruifang Nie
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China.
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Liu Y, Ma Q, Kong X, Huo X, Dong Z, Ma Y, Yang K, Niu W, Zhang K. Design of balanced dual-target inhibitors of EGFR and microtubule. Bioorg Chem 2024; 143:107087. [PMID: 38181660 DOI: 10.1016/j.bioorg.2023.107087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/04/2023] [Accepted: 12/30/2023] [Indexed: 01/07/2024]
Abstract
Motivated by the clinical success of combining tyrosine kinase inhibitors with microtubule-targeted drugs in antitumor treatment, this paper presents a novel combi-targeting design for dual-target inhibitors, featuring arylformylurea-coupled quinazoline backbones. A series of target compounds (10a-10r) were designed, synthesized, and characterized. Biological assessments demonstrated that 10c notably potentiated ten tumor cell lines in vitro, with IC50 values ranging from 1.04 µM to 7.66 µM. Importantly, 10c (IC50 = 10.66 nM) exhibited superior inhibitory activity against EGFR kinases compared to the reference drug Gefitinib (25.42 nM) and reduced phosphorylated levels of EGFR, AKT, and ERK. Moreover, 10c significantly impeded tubulin polymerization, disrupted the intracellular microtubule network in A549 cells, induced apoptosis, led to S-phase cell cycle arrest, and hindered cell migration. In anticancer evaluation tests using A549 cancer-bearing nude mice models, 10c showed a therapeutic effect similar to Gefitinib, but required only half the dosage (15 mg/kg). These findings indicate that compound 10c is a promising dual-target candidate for anticancer therapy.
Collapse
Affiliation(s)
- Yifan Liu
- Department of Medicinal Chemistry, Hebei Medical University, Shijiazhuang, China
| | - Qiuya Ma
- The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiangyu Kong
- Department of Medicinal Chemistry, Hebei Medical University, Shijiazhuang, China
| | - Xinyao Huo
- Department of Medicinal Chemistry, Hebei Medical University, Shijiazhuang, China
| | - Zongyue Dong
- Department of Medicinal Chemistry, Hebei Medical University, Shijiazhuang, China
| | - Yan Ma
- Department of Medicinal Chemistry, Hebei Medical University, Shijiazhuang, China
| | - Kehao Yang
- Department of Medicinal Chemistry, Hebei Medical University, Shijiazhuang, China
| | - Weiwei Niu
- The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Kai Zhang
- Department of Medicinal Chemistry, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
6
|
Fernandes NB, Velagacherla V, Spandana KJ, N B, Mehta CH, Gadag S, Sabhahit JN, Nayak UY. Co-delivery of lapatinib and 5-fluorouracil transfersomes using transpapillary iontophoresis for breast cancer therapy. Int J Pharm 2024; 650:123686. [PMID: 38070658 DOI: 10.1016/j.ijpharm.2023.123686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/18/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023]
Abstract
Combination chemotherapy, involving the intervention of two or more anti-neoplastic agents has been the cornerstone in breast cancer treatment, owing to the applications it holds in contrast to the mono-therapy approach. This research predominantly focussed on proving the synergy between Lapatinib (LPT) and 5-Fluorouracil (5-FU) and further enhancing its localized permeation via transfersome-loaded delivery and iontophoresis to treat breast tumors. The IC50 values for LPT and 5-FU were found to be 19.38 µg/ml and 5.7 µg/ml respectively and their synergistic effect was proven by the Chou-Talalay assay using CompuSyn software. Furthermore, LPT and 5-FU were encapsulated within transfersomes and administered via the transpapillary route. The drug-loaded carriers were characterized for their particle size, polydispersity index, zeta potential, and entrapment efficiency. The ex vivo rat skin permeation studies indicated that when compared to LPT dispersion and 5-FU solution, drug-loaded transfersomes exhibited better permeability and their transpapillary permeation was enhanced on using iontophoresis. Moreover, both LPT and 5-FU transfersomes were found to be stable for 3 months when stored at a temperature of 5 ± 3 °C. The results indicated that this treatment strategy could be an effective approach in contrast to some of the conventional treatments employed to date.
Collapse
Affiliation(s)
- Neha B Fernandes
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Varalakshmi Velagacherla
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - K J Spandana
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangaluru 575018, Karnataka, India
| | - Bhagya N
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangaluru 575018, Karnataka, India
| | - Chetan H Mehta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shivaprasad Gadag
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Jayalakshmi N Sabhahit
- Department of Electrical and Electronics Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
7
|
Altintas DM, Comoglio PM. An Observatory for the MET Oncogene: A Guide for Targeted Therapies. Cancers (Basel) 2023; 15:4672. [PMID: 37760640 PMCID: PMC10526818 DOI: 10.3390/cancers15184672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
The MET proto-oncogene encodes a pivotal tyrosine kinase receptor, binding the hepatocyte growth factor (HGF, also known as scatter factor, SF) and governing essential biological processes such as organogenesis, tissue repair, and angiogenesis. The pleiotropic physiological functions of MET explain its diverse role in cancer progression in a broad range of tumors; genetic/epigenetic alterations of MET drive tumor cell dissemination, metastasis, and acquired resistance to conventional and targeted therapies. Therefore, targeting MET emerged as a promising strategy, and many efforts were devoted to identifying the optimal way of hampering MET signaling. Despite encouraging results, however, the complexity of MET's functions in oncogenesis yields intriguing observations, fostering a humbler stance on our comprehension. This review explores recent discoveries concerning MET alterations in cancer, elucidating their biological repercussions, discussing therapeutic avenues, and outlining future directions. By contextualizing the research question and articulating the study's purpose, this work navigates MET biology's intricacies in cancer, offering a comprehensive perspective.
Collapse
Affiliation(s)
| | - Paolo M. Comoglio
- IFOM ETS—The AIRC Institute of Molecular Oncology, 20139 Milano, Italy;
| |
Collapse
|
8
|
Soussi M, Hasselsweiller A, Gkika D. TRP Channels: The Neglected Culprits in Breast Cancer Chemotherapy Resistance? MEMBRANES 2023; 13:788. [PMID: 37755210 PMCID: PMC10536409 DOI: 10.3390/membranes13090788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023]
Abstract
Breast cancer is a major health concern worldwide, and resistance to therapies remains a significant challenge in treating this disease. In breast cancer, Transient Receptor Potential (TRP) channels are well studied and constitute key players in nearly all carcinogenesis hallmarks. Recently, they have also emerged as important actors in resistance to therapy by modulating the response to various pharmaceutical agents. Targeting TRP channels may represent a promising approach to overcome resistance to therapies in breast cancer patients.
Collapse
Affiliation(s)
| | | | - Dimitra Gkika
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (M.S.); (A.H.)
| |
Collapse
|
9
|
Belyaeva E, Loginova N, Schroeder BA, Goldlust IS, Acharya A, Kumar S, Timashev P, Ulasov I. The spectrum of cell death in sarcoma. Biomed Pharmacother 2023; 162:114683. [PMID: 37031493 DOI: 10.1016/j.biopha.2023.114683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023] Open
Abstract
The balance between cell death and cell survival is a highly coordinated process by which cells break down and remove unnecessary or harmful materials in a controlled, highly regulated, and compartmentalized manner. Cell exposure to various stresses, such as oxygen starvation, a lack of nutrients, or exposure to radiation, can initiate autophagy. Autophagy is a carefully orchestrated process with multiple steps, each regulated by specific genes and proteins. Autophagy proteins impact cellular maintenance and cell fate in response to stress, and targeting this process is one of the most promising methods of anti-tumor therapy. It is currently not fully understood how autophagy affects different types of tumor cells, which makes it challenging to predict outcomes when this process is manipulated. In this review, we will explore the mechanisms of autophagy and investigate it as a potential and promising therapeutic target for aggressive sarcomas.
Collapse
Affiliation(s)
- Elizaveta Belyaeva
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Nina Loginova
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Brett A Schroeder
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Ian S Goldlust
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Arbind Acharya
- Laboratory of Cancer Immunology, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Sandeep Kumar
- Laboratory of Cancer Immunology, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Peter Timashev
- World-Class Research Centre "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia.
| |
Collapse
|
10
|
Todosenko N, Yurova K, Khaziakhmatova O, Malashchenko V, Khlusov I, Litvinova L. Heparin and Heparin-Based Drug Delivery Systems: Pleiotropic Molecular Effects at Multiple Drug Resistance of Osteosarcoma and Immune Cells. Pharmaceutics 2022; 14:pharmaceutics14102181. [PMID: 36297616 PMCID: PMC9612132 DOI: 10.3390/pharmaceutics14102181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 11/23/2022] Open
Abstract
One of the main problems of modern health care is the growing number of oncological diseases both in the elderly and young population. Inadequately effective chemotherapy, which remains the main method of cancer control, is largely associated with the emergence of multidrug resistance in tumor cells. The search for new solutions to overcome the resistance of malignant cells to pharmacological agents is being actively pursued. Another serious problem is immunosuppression caused both by the tumor cells themselves and by antitumor drugs. Of great interest in this context is heparin, a biomolecule belonging to the class of glycosaminoglycans and possessing a broad spectrum of biological activity, including immunomodulatory and antitumor properties. In the context of the rapid development of the new field of “osteoimmunology,” which focuses on the collaboration of bone and immune cells, heparin and delivery systems based on it may be of intriguing importance for the oncotherapy of malignant bone tumors. Osteosarcoma is a rare but highly aggressive, chemoresistant malignant tumor that affects young adults and is characterized by constant recurrence and metastasis. This review describes the direct and immune-mediated regulatory effects of heparin and drug delivery systems based on it on the molecular mechanisms of (multiple) drug resistance in (onco) pathological conditions of bone tissue, especially osteosarcoma.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Vladimir Malashchenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Igor Khlusov
- Department of Morphology and General Pathology, Siberian State Medical University, 634050 Tomsk, Russia
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
- Correspondence:
| |
Collapse
|
11
|
Elsayed GH, Fahim AM, Khodair AI. Synthesis, anti-cancer activity, gene expression and docking stimulation of 2-thioxoimidazolidin-4-one derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Ng CX, Affendi MM, Chong PP, Lee SH. The Potential of Plant-Derived Extracts and Compounds to Augment Anticancer Effects of Chemotherapeutic Drugs. Nutr Cancer 2022; 74:3058-3076. [PMID: 35675271 DOI: 10.1080/01635581.2022.2069274] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Plant extracts comprise a complex mixture of natural compounds with diverse biological activities including anticancer activities. This has made the use of plant extracts a trending strategy in cancer treatment. In addition, plants' active constituents such as polyphenols could confer protective effects on normal cells against damage by free radicals as well as lessen the toxicity of chemotherapeutic drugs. Recently, many emerging studies revealed the combinatory uses of plant extracts and individual therapeutic compounds that could be a promising panacea in hampering multiple signaling pathways involved in cancer development and progression. Besides enhancing the therapeutic efficacy, this has also been proven to reduce the dosage of chemotherapeutic drugs used, and hence overcome multiple drug resistance and minimize treatment side effects. Notably, combined use of plant extracts with chemotherapeutics drugs was shown to enhance anticancer effects through modulating various signaling pathways, such as P13K/AKT, NF-κB, JNK, ERK, WNT/β-catenin, and many more. Hence, this review aims to comprehensively summarize both In Vitro and In Vivo mechanisms of actions of well-studied plant extracts, such as Ganoderma Lucidum, Korean red ginseng, Garcinia sp., curcumin, and luteolin extracts in augmenting anticancer properties of the conventional chemotherapeutic drugs from an extensive literature search of recent publications.
Collapse
Affiliation(s)
- Chu Xin Ng
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Muzaira Mazrul Affendi
- School of Health Sciences, Faculty of Medicine and Health Sciences, International Medical University, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Pei Pei Chong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Sau Har Lee
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia.,Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor's University, Selangor, Malaysia
| |
Collapse
|
13
|
Saha T, Lukong KE. Breast Cancer Stem-Like Cells in Drug Resistance: A Review of Mechanisms and Novel Therapeutic Strategies to Overcome Drug Resistance. Front Oncol 2022; 12:856974. [PMID: 35392236 PMCID: PMC8979779 DOI: 10.3389/fonc.2022.856974] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most frequent type of malignancy in women worldwide, and drug resistance to the available systemic therapies remains a major challenge. At the molecular level, breast cancer is heterogeneous, where the cancer-initiating stem-like cells (bCSCs) comprise a small yet distinct population of cells within the tumor microenvironment (TME) that can differentiate into cells of multiple lineages, displaying varying degrees of cellular differentiation, enhanced metastatic potential, invasiveness, and resistance to radio- and chemotherapy. Based on the expression of estrogen and progesterone hormone receptors, expression of human epidermal growth factor receptor 2 (HER2), and/or BRCA mutations, the breast cancer molecular subtypes are identified as TNBC, HER2 enriched, luminal A, and luminal B. Management of breast cancer primarily involves resection of the tumor, followed by radiotherapy, and systemic therapies including endocrine therapies for hormone-responsive breast cancers; HER2-targeted therapy for HER2-enriched breast cancers; chemotherapy and poly (ADP-ribose) polymerase inhibitors for TNBC, and the recent development of immunotherapy. However, the complex crosstalk between the malignant cells and stromal cells in the breast TME, rewiring of the many different signaling networks, and bCSC-mediated processes, all contribute to overall drug resistance in breast cancer. However, strategically targeting bCSCs to reverse chemoresistance and increase drug sensitivity is an underexplored stream in breast cancer research. The recent identification of dysregulated miRNAs/ncRNAs/mRNAs signatures in bCSCs and their crosstalk with many cellular signaling pathways has uncovered promising molecular leads to be used as potential therapeutic targets in drug-resistant situations. Moreover, therapies that can induce alternate forms of regulated cell death including ferroptosis, pyroptosis, and immunotherapy; drugs targeting bCSC metabolism; and nanoparticle therapy are the upcoming approaches to target the bCSCs overcome drug resistance. Thus, individualizing treatment strategies will eliminate the minimal residual disease, resulting in better pathological and complete response in drug-resistant scenarios. This review summarizes basic understanding of breast cancer subtypes, concept of bCSCs, molecular basis of drug resistance, dysregulated miRNAs/ncRNAs patterns in bCSCs, and future perspective of developing anticancer therapeutics to address breast cancer drug resistance.
Collapse
Affiliation(s)
- Taniya Saha
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kiven Erique Lukong
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
14
|
Lei Y, Chen L, Liu J, Zhong Y, Deng L. The MicroRNA-Based Strategies to Combat Cancer Chemoresistance via Regulating Autophagy. Front Oncol 2022; 12:841625. [PMID: 35211417 PMCID: PMC8861360 DOI: 10.3389/fonc.2022.841625] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
Chemoresistance frequently occurs in cancer treatment, which results in chemotherapy failure and is one of the most leading causes of cancer-related death worldwide. Understanding the mechanism of chemoresistance and exploring strategies to overcome chemoresistance have become an urgent need. Autophagy is a highly conserved self-degraded process in cells. The dual roles of autophagy (pro-death or pro-survival) have been implicated in cancers and chemotherapy. MicroRNA (miRNA) is a class of small non-coding molecules that regulate autophagy at the post-transcriptional level in cancer cells. The association between miRNAs and autophagy in cancer chemoresistance has been emphasized. In this review, we focus on the dual roles of miRNA-mediated autophagy in facilitating or combating chemoresistance, aiming to shed lights on the potential role of miRNAs as targets to overcome chemoresistance.
Collapse
Affiliation(s)
- Yuhe Lei
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lei Chen
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Junshan Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yinqin Zhong
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lijuan Deng
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
15
|
Research Progress and Prospects of Autophagy in the Mechanism of Multidrug Resistance in Tumors. JOURNAL OF ONCOLOGY 2022; 2022:7032614. [PMID: 35136409 PMCID: PMC8818414 DOI: 10.1155/2022/7032614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/19/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022]
Abstract
Although the treatment of cancer has made great strides in clinical practice, its high morbidity and fatality rates remain a major threat to human health. Multidrug resistance (MDR) often appears in the process of tumor treatment, leading to tumor refractory and aggravating the risk of tumor recurrence. Therefore, antitumor MDR plays a key role in tumor chemotherapy. Autophagy is an important process for the turnover of intracellular materials, which is commonly seen in the treatment of sensitive and multidrug-resistant tumors, and it can play different roles in various types of MDR tumor cells and tissues. Autophagy plays a dual regulatory role in MDR tumors. On the one hand, autophagy can promote the formation of MDR in tumor cells, weaken the killing effect of chemotherapy drugs on tumor cells, and play a protective role in tumor survival. On the other hand, autophagy production in the cellular environment can kill MDR tumor cells, reverse tumor resistance and enhance the efficiency of chemotherapy drugs. Therefore, the regulation of autophagy to overcome MDR has become increasingly significant in tumor chemotherapy. In this article, we discussed and summarized the research progress of autophagy in MDR tumors, mainly involving the different characteristics of autophagy in MDR cancer cells.
Collapse
|
16
|
Troitskaya O, Novak D, Nushtaeva A, Savinkova M, Varlamov M, Ermakov M, Richter V, Koval O. EGFR Transgene Stimulates Spontaneous Formation of MCF7 Breast Cancer Cells Spheroids with Partly Loss of HER3 Receptor. Int J Mol Sci 2021; 22:12937. [PMID: 34884742 PMCID: PMC8657849 DOI: 10.3390/ijms222312937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/12/2022] Open
Abstract
Multicellular spheroids with 3D cell-cell interactions are a useful model to simulate the growth conditions of cancer. There is evidence that in tumor spheroids, the expression of various essential molecules is changed compared to the adherent form of cell cultures. These changes include growth factor receptors and ABC transporters and result in the enhanced invasiveness of the cells and drug resistance. It is known that breast adenocarcinoma MCF7 cells can spontaneously form 3D spheroids and such spheroids are characterized by high expression of EGFR/HER2, while the natural phenotype of MCF7 cells is EGFRlow/HER2low. Therefore, it was interesting to reveal if high epidermal growth factor receptor (EGFR) expression is sufficient for the conversion of adherent MCF7 to spheroids. In this study, an MCF7 cell line with high expression of EGFR was engineered using the retroviral transduction method. These MCF7-EGFR cells assembled in spheroids very quickly and grew predominantly as a 3D suspension culture with no special plates, scaffolds, growth supplements, or exogenous matrixes. These spheroids were characterized by a rounded shape with a well-defined external border and 100 µM median diameter. The sphere-forming ability of MCF7-EGFR cells was up to 5 times stronger than in MCF7wt cells. Thus, high EGFR expression was the initiation factor of conversion of adherent MCF7wt cells to spheroids. MCF7-EGFR spheroids were enriched by the cells with a cancer stem cell (CSC) phenotype CD24-/low/CD44- in comparison with parental MCF7wt cells and MCF7-EGFR adhesive cells. We suppose that these properties of MCF7-EGFR spheroids originate from the typical features of parental MCF7 cells. We showed the decreasing of HER3 receptors in MCF7-EGFR spheroids compared to that in MCFwt and in adherent MCF7-EGFR cells, and the same decrease was observed in the MCF7wt spheroids growing under the growth factors stimulation. To summarize, the expression of EGFR transgene in MCF7 cells stimulates rapid spheroids formation; these spheroids are enriched by CSC-like CD24-/CD44- cells, they partly lose HER3 receptors, and are characterized by a lower potency in drug resistance pomp activation compared to MCF7wt. These MCF7-EGFR spheroids are a useful cancer model for the development of anticancer drugs, including EGFR-targeted therapeutics.
Collapse
Affiliation(s)
- Olga Troitskaya
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (A.N.); (M.S.); (M.V.); (M.E.); (V.R.); (O.K.)
| | - Diana Novak
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Anna Nushtaeva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (A.N.); (M.S.); (M.V.); (M.E.); (V.R.); (O.K.)
| | - Maria Savinkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (A.N.); (M.S.); (M.V.); (M.E.); (V.R.); (O.K.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Mikhail Varlamov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (A.N.); (M.S.); (M.V.); (M.E.); (V.R.); (O.K.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Mikhail Ermakov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (A.N.); (M.S.); (M.V.); (M.E.); (V.R.); (O.K.)
| | - Vladimir Richter
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (A.N.); (M.S.); (M.V.); (M.E.); (V.R.); (O.K.)
| | - Olga Koval
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (A.N.); (M.S.); (M.V.); (M.E.); (V.R.); (O.K.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| |
Collapse
|
17
|
Kwon YS, Nam KS, Kim S. Tamoxifen overcomes the trastuzumab-resistance of SK-BR-3 tumorspheres by targeting crosstalk between cytoplasmic estrogen receptor α and the EGFR/HER2 signaling pathway. Biochem Pharmacol 2021; 190:114635. [PMID: 34058187 DOI: 10.1016/j.bcp.2021.114635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
Since trastuzumab-resistance remains a major obstacle to the successful treatment of HER2-positive breast cancer, a detailed understanding of the mechanisms responsible is required to direct future pharmacotherapeutic strategies. Recently, several studies have indicated that the quiescent natures of cancer stem cells contribute to treatment resistance and tumor recurrence. Thus, in this study, we investigated the mechanism underlying trastuzumab resistance in a quiescent cell population using tumorsphere cultures and explored better therapeutic strategies to overcome trastuzumab resistance in HER2-positive breast cancer patients. We observed that most cells in SK-BR-3 tumorspheres were quiescent, showing the accumulation of cells at the G0/G1 phase as compared to cells in monolayer culture. Furthermore, SK-BR-3 tumorspheres exhibited enhanced EGFR/HER2 signaling, which was incompletely inhibited by trastuzumab, and subsequently led to trastuzumab-resistance. Interestingly, cytoplasmic estrogen receptor α (ERα) expression was markedly elevated in tumorspheres and was associated with enhanced EGFR/HER2 signaling. Accordingly, inhibition of ERα with tamoxifen selectively targeted tumorspheres rather than cells in monolayer culture and overcame trastuzumab resistance in tumorspheres. Taken together, our findings indicate that crosstalk between cytoplasmic ERα and the HER2/EGFR signaling pathway can be considered a novel therapeutic target for quiescent cell populations within HER2-positive breast cancer and that simultaneous inhibition of ER and the EGFR/HER2 pathway may prevent trastuzumab resistance. We hope that these results provide a basis for the use of combinations of tamoxifen and trastuzumab in HER2-positive breast cancer patients.
Collapse
Affiliation(s)
- Yun-Suk Kwon
- Department of Pharmacology and Intractable Disease Research Center, School of Medicine, Dongguk University, Dongdae-ro 123, Gyeongju, Gyeongsangbuk-do 38066, Republic of Korea
| | - Kyung-Soo Nam
- Department of Pharmacology and Intractable Disease Research Center, School of Medicine, Dongguk University, Dongdae-ro 123, Gyeongju, Gyeongsangbuk-do 38066, Republic of Korea
| | - Soyoung Kim
- Department of Pharmacology and Intractable Disease Research Center, School of Medicine, Dongguk University, Dongdae-ro 123, Gyeongju, Gyeongsangbuk-do 38066, Republic of Korea.
| |
Collapse
|
18
|
Mensa-Wilmot K. How Physiologic Targets Can Be Distinguished from Drug-Binding Proteins. Mol Pharmacol 2021; 100:1-6. [PMID: 33941662 DOI: 10.1124/molpharm.120.000186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 04/09/2021] [Indexed: 01/04/2023] Open
Abstract
In clinical trials, some drugs owe their effectiveness to off-target activity. This and other observations raise a possibility that many studies identifying targets of drugs are incomplete. If off-target proteins are pharmacologically important, it will be worthwhile to identify them early in the development process to gain a better understanding of the molecular basis of drug action. Herein, we outline a multidisciplinary strategy for systematic identification of physiologic targets of drugs in cells. A drug-binding protein whose genetic disruption yields very similar molecular effects as treatment of cells with the drug may be defined as a physiologic target of the drug. For a drug developed with a rational approach, it is desirable to verify experimentally that a protein used for hit optimization in vitro remains the sole polypeptide recognized by the drug in a cell. SIGNIFICANCE STATEMENT: A body of evidence indicates that inactivation of many drug-binding proteins may not cause the pharmacological effects triggered by the drugs. A multidisciplinary cell-based approach can be of great value in identifying the physiologic targets of drugs, including those developed with target-based strategies.
Collapse
Affiliation(s)
- Kojo Mensa-Wilmot
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, Georgia, and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia
| |
Collapse
|
19
|
Trailblazing perspectives on targeting breast cancer stem cells. Pharmacol Ther 2021; 223:107800. [PMID: 33421449 DOI: 10.1016/j.pharmthera.2021.107800] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
Breast cancer (BCa) is one of the most prevalent malignant tumors affecting women's health worldwide. The recurrence and metastasis of BCa have made it a long-standing challenge to achieve remission-persistent or disease-undetectable clinical outcomes. Cancer stem cells (CSCs) possess the ability to self-renew and generate heterogeneous tumor bulk. The existence of CSCs has been found to be vital in the initiation, metastasis, therapy resistance, and recurrence of tumors across cancer types. Because CSCs grow slowly in their dormant state, they are insensitive to conventional chemotherapies; however, when CSCs emerge from their dormant state and become clinically evident, they usually acquire genetic traits that make them resistant to existing therapies. Moreover, CSCs also show evidence of acquired drug resistance in synchrony with tumor relapses. The concept of CSCs provides a new treatment strategy for BCa. In this review, we highlight the recent advances in research on breast CSCs and their association with epithelial-mesenchymal transition (EMT), circulating tumor cells (CTCs), plasticity of tumor cells, tumor microenvironment (TME), T-cell modulatory protein PD-L1, and non-coding RNAs. On the basis that CSCs are associated with multiple dysregulated biological processes, we envisage that increased understanding of disease sub-classification, selected combination of conventional treatment, molecular aberration directed therapy, immunotherapy, and CSC targeting/sensitizing strategy might improve the treatment outcome of patients with advanced BCa. We also discuss novel perspectives on new drugs and therapeutics purposing the potent and selective expunging of CSCs.
Collapse
|
20
|
Gupta G, Borglum K, Chen H. Immunogenic Cell Death: A Step Ahead of Autophagy in Cancer Therapy. JOURNAL OF CANCER IMMUNOLOGY 2021; 3:47-59. [PMID: 34263254 PMCID: PMC8276988 DOI: 10.33696/cancerimmunol.3.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Immunogenic cell death (ICD) plays a major role in providing long lasting protective antitumor immunity by the chronic exposure of damage associated molecular patterns (DAMPs) in the tumor microenvironment (TME). DAMPs are essential for attracting immunogenic cells to the TME, maturation of DCs, and proper presentation of tumor antigens to the T cells so they can kill more cancer cells. Thus for the proper release of DAMPs, a controlled mechanism of cell death is necessary. Drug induced tumor cell killing occurs by apoptosis, wherein autophagy may act as a shield protecting the tumor cells and sometimes providing multi-drug resistance to chemotherapeutics. However, autophagy is required for the release of ATP as it remains one of the key DAMPs for the induction of ICD. In this review, we discuss the intricate balance between autophagy and apoptosis and the various strategies that we can apply to make these immunologically silent processes immunogenic. There are several steps of autophagy and apoptosis that can be regulated to generate an immune response. The genes involved in the processes can be regulated by drugs or inhibitors to amplify the effects of ICD and therefore serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Gourab Gupta
- Department of Biological Science, Center for Colon Cancer Research, University of South Carolina, Columbia, SC 29208, USA
| | - Kristina Borglum
- Department of Biological Science, Center for Colon Cancer Research, University of South Carolina, Columbia, SC 29208, USA
| | - Hexin Chen
- Department of Biological Science, Center for Colon Cancer Research, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
21
|
Sui J, He M, Yang Y, Ma M, Guo Z, Zhao M, Liang J, Sun Y, Fan Y, Zhang X. Reversing P-Glycoprotein-Associated Multidrug Resistance of Breast Cancer by Targeted Acid-Cleavable Polysaccharide Nanoparticles with Lapatinib Sensitization. ACS APPLIED MATERIALS & INTERFACES 2020; 12:51198-51211. [PMID: 33147005 DOI: 10.1021/acsami.0c13986] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
For reversing the treatment failure in P-glycoprotein (P-gp)-associated MDR (multidrug resistance) of breast cancer, a high dose of Lapatinib (Lap), a substrate of breast cancer-resistant protein, was encapsulated into safe and effective acid-cleavable polysaccharide-doxorubicin (Dox) conjugates to form targeted HPP-Dox/Lap nanoparticles with an optimal drug ratio and appropriate nanosize decorated with oligomeric hyaluronic acid (HA) for specially targeting overexpressed CD44 receptors of MCF-7/ADR. The markedly increased cellular uptake and the strongest synergetic cytotoxicity revealed the enhanced reversal efficiency of HPP-Dox/Lap nanoparticles with reversal multiples at 29.83. This was also verified by the enhanced penetrating capacity in multicellular tumor spheroids. The reinforced Dox retention and substantial down-regulation of P-gp expression implied the possible mechanism of MDR reversal. Furthermore, the efficient ex vivo accumulation and distribution of nanoparticles in the tumor site and the high tumor growth inhibition (93%) even at a lower dosage (1 mg/kg) as well as lung metastasis inhibition in vivo with negligible side effects revealed the overwhelming advantages of targeted polysaccharide nanoparticles and Lap-sensitizing effect against drug-resistant tumor. The development of an efficient and nontoxic-targeted polysaccharide delivery system for reversing MDR by synergistic therapy might provide a potential clinical application value.
Collapse
Affiliation(s)
- Junhui Sui
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
| | - Mengmeng He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yuedi Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
| | - Mengcheng Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
| | - Zhihao Guo
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, China
| | - Mingda Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
22
|
Diltiazem potentiates the cytotoxicity of gemcitabine and 5-fluorouracil in PANC-1 human pancreatic cancer cells through inhibition of P-glycoprotein. Life Sci 2020; 262:118518. [PMID: 33011221 DOI: 10.1016/j.lfs.2020.118518] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023]
Abstract
AIM Pancreatic cancer (PC) is one of the most aggressive tumors with dismal survival and a high death rate due to chemotherapeutic failure. P-glycoprotein (P-gp) plays a pivotal role in PC response to gemcitabine and 5-fluorouracil (5-FU). Diltiazem, a calcium channel blocker, is a P-gp inhibitor. In the current study, we investigated the hypothesis that targeting of P-gp by diltiazem can enhance the cytotoxicity of gemcitabine and 5-FU against human pancreatic cancer cells. MAIN METHODS The cytotoxic effect of diltiazem, gemcitabine, and 5-FU in single and combined forms against PANC-1 and AsPC-1 cells were assayed by MTT. Flow cytometric analysis was used for the determination of cell cycle, apoptosis, and stemness markers in PC cells. Besides, immunoblotting was used for assessment of Bax, caspase 3, cyclin D1, and P-gp expressions. KEY FINDINGS Diltiazem co-treatment, either with gemcitabine or 5-FU, synergistically reduced cell viability, induced apoptosis, and caused cell cycle arrest. In addition, diltiazem co-treatment decreased the expressions of stem cell markers CD24 and CD44, increased the expressions of Bax and cleaved caspase 3, enhanced DNA fragmentation, and attenuated cyclin D1 and P-gp expressions as compared to cells treated with either gemcitabine or 5-FU alone. SIGNIFICANCE Our findings suggest that diltiazem may be potential neoadjuvant therapy to enhance the response of PC to gemcitabine or 5-FU treatment.
Collapse
|
23
|
The Multidrug Resistance-Reversing Activity of a Novel Antimicrobial Peptide. Cancers (Basel) 2020; 12:cancers12071963. [PMID: 32707710 PMCID: PMC7409168 DOI: 10.3390/cancers12071963] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/07/2020] [Accepted: 07/17/2020] [Indexed: 11/16/2022] Open
Abstract
The overexpression of ATP-binding cassette (ABC) transporters is a common cause of multidrug resistance (MDR) in cancers. The intracellular drug concentration of cancer cells can be decreased relative to their normal cell counterparts due to increased expression of ABC transporters acting as efflux pumps of anticancer drugs. Over the past decades, antimicrobial peptides have been investigated as a new generation of anticancer drugs and some of them were reported to have interactions with ABC transporters. In this article, we investigated several novel antimicrobial peptides to see if they could sensitize ABCB1-overexpressing cells to the anticancer drugs paclitaxel and doxorubicin, which are transported by ABCB1. It was found that peptide XH-14C increased the intracellular accumulation of ABCB1 substrate paclitaxel, which demonstrated that XH-14C could reverse ABCB1-mediated MDR. Furthermore, XH-14C could stimulate the ATPase activity of ABCB1 and the molecular dynamic simulation revealed a stable binding pose of XH-14C-ABCB1 complex. There was no change on the expression level or the location of ABCB1 transporter with the treatment of XH-14C. Our results suggest that XH-14C in combination with conventional anticancer agents could be used as a novel strategy for cancer treatment.
Collapse
|
24
|
Huang T, Song X, Xu D, Tiek D, Goenka A, Wu B, Sastry N, Hu B, Cheng SY. Stem cell programs in cancer initiation, progression, and therapy resistance. Am J Cancer Res 2020; 10:8721-8743. [PMID: 32754274 PMCID: PMC7392012 DOI: 10.7150/thno.41648] [Citation(s) in RCA: 229] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
Over the past few decades, substantial evidence has convincingly revealed the existence of cancer stem cells (CSCs) as a minor subpopulation in cancers, contributing to an aberrantly high degree of cellular heterogeneity within the tumor. CSCs are functionally defined by their abilities of self-renewal and differentiation, often in response to cues from their microenvironment. Biological phenotypes of CSCs are regulated by the integrated transcriptional, post-transcriptional, metabolic, and epigenetic regulatory networks. CSCs contribute to tumor progression, therapeutic resistance, and disease recurrence through their sustained proliferation, invasion into normal tissue, promotion of angiogenesis, evasion of the immune system, and resistance to conventional anticancer therapies. Therefore, elucidation of the molecular mechanisms that drive cancer stem cell maintenance, plasticity, and therapeutic resistance will enhance our ability to improve the effectiveness of targeted therapies for CSCs. In this review, we highlight the key features and mechanisms that regulate CSC function in tumor initiation, progression, and therapy resistance. We discuss factors for CSC therapeutic resistance, such as quiescence, induction of epithelial-to-mesenchymal transition (EMT), and resistance to DNA damage-induced cell death. We evaluate therapeutic approaches for eliminating therapy-resistant CSC subpopulations, including anticancer drugs that target key CSC signaling pathways and cell surface markers, viral therapies, the awakening of quiescent CSCs, and immunotherapy. We also assess the impact of new technologies, such as single-cell sequencing and CRISPR-Cas9 screening, on the investigation of the biological properties of CSCs. Moreover, challenges remain to be addressed in the coming years, including experimental approaches for investigating CSCs and obstacles in therapeutic targeting of CSCs.
Collapse
|
25
|
Sui J, Zhao M, Yang Y, Guo Z, Ma M, Xu Z, Liang J, Sun Y, Fan Y, Zhang X. Acid-labile polysaccharide prodrug via lapatinib-sensitizing effect substantially prevented metastasis and postoperative recurrence of triple-negative breast cancer. NANOSCALE 2020; 12:13567-13581. [PMID: 32555923 DOI: 10.1039/d0nr03395b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Surgical resection and chemotherapy are routinely performed for triple-negative breast cancer (TNBC) because it is insensitive to endocrine therapy and molecular targeted therapy. Here, the optimal surface charge (-28 mV) and particle size (51 nm) enabled the acid-labile hyaluronic acid pullulan prodrug (HPP)-doxorubicin (Dox)/lapatinib (Lap) conjugate to circulate in the blood for a lengthy period of time and enhance the electron paramagnetic resonance effect, while the targeted molecule hyaluronic acid accelerated CD44 receptor-mediated 4T1 cell internalization. The inefficient anti-proliferation capability of Lap increased more than 10-fold after sensitization of Dox to metastatic 4T1 cells, while cellular uptake significantly increased, and cell viability dramatically decreased to nearly 20% of the free Dox group. Furthermore, HPP-Dox/Lap more effectively inhibited lateral mobility, vertical migration, and invasion ability of 4T1 cells. The ex vivo biodistribution of representative Dox indicated that Lap obviously facilitated the intratumoral infiltration and accumulation. The in vivo research revealed that there were overwhelming advantages in using HPP-Dox/Lap to inhibit tumor growth, progression, and lung metastasis even at a low dosage (1 mg kg-1), and it decreased postoperative recurrence and pulmonary metastatic nodules. Because of the excellent biosafety and visible therapeutic effect on the 4T1 metastasis and recurrence model, there is great potential value for HPP-Dox/Lap to be used to treat metastatic TNBC.
Collapse
Affiliation(s)
- Junhui Sui
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gao Y, Tang M, Leung E, Svirskis D, Shelling A, Wu Z. Dual or multiple drug loaded nanoparticles to target breast cancer stem cells. RSC Adv 2020; 10:19089-19105. [PMID: 35518295 PMCID: PMC9054075 DOI: 10.1039/d0ra02801k] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/13/2020] [Indexed: 12/18/2022] Open
Abstract
Breast cancer stem(-like) cells (BCSCs) have been found to be responsible for therapeutic resistance and disease relapse. BCSCs are difficult to eradicate due to their high resistance to conventional treatments and high plasticity. Functionalised nanoparticles have been investigated as smart vehicles to transport across various barriers and increase the interaction of therapeutic agents with cancer cells, as well as BCSCs. In this review, we discuss the different characteristics of BCSCs, and challenges to tackle BCSCs at cellular and molecular levels. The mechanisms of action and physicochemical properties of the current BCSC targeting agents are also covered. We will focus on the rational design and recent advances of "Nano + Nano" or single tumour targeting nanoparticle systems loaded with dual or multiple agents to kill all cancer cells including BCSCs. These cocktail therapies include the combination of a chemotherapy agent with a BCSC-specific inhibitor, a phytochemical agent or RNA based therapy. Given the heterogeneity of breast tumour tissue, targeting both BCSCs and bulk breast cancer cells simultaneously with multiple agents holds great promise in eliminating breast cancer. The future research needs to focus on overcoming various barriers in the 'clinical translation' of BCSC-targeting nanomedicines to cure breast cancer, which requires a significant multidisciplinary effort.
Collapse
Affiliation(s)
- Yu Gao
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland Auckland 1142 New Zealand +64-9-9231709
| | - Mingtan Tang
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland Auckland 1142 New Zealand +64-9-9231709
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland Auckland 1023 New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland Auckland 1142 New Zealand +64-9-9231709
| | - Andrew Shelling
- School of Medicine, Faculty of Medical and Health Sciences, The University of Auckland Auckland 1142 New Zealand
| | - Zimei Wu
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland Auckland 1142 New Zealand +64-9-9231709
| |
Collapse
|
27
|
Jia L, Jia N, Gao Y, Hu H, Zhao X, Chen D, Qiao M. Multi-Modulation of Doxorubicin Resistance in Breast Cancer Cells by Poly(l-histidine)-Based Multifunctional Micelles. Pharmaceutics 2019; 11:E385. [PMID: 31382390 PMCID: PMC6723117 DOI: 10.3390/pharmaceutics11080385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 02/06/2023] Open
Abstract
Even though the reversal of multi-drug resistance (MDR) by numerous nanoparticles has been extensively studied, limited success has been achieved. To overcome this barrier, we report a rationally-designed pH-sensitive micelle, in which doxorubicin (Dox) and resveratrol (Res) were co-loaded. The micelle was based on methoxy poly (ethylene glycol)-poly(d,l-lactide)-poly(l-histidine) (mPEG-PLA-PHis), which integrated passive targeting, endo-lysosomal escape and pH-responsive payloads release. At a physiological pH of 7.4 (slightly alkali), Dox and Res were incorporated into the micelles core using the thin-film hydration method (pH-endoSM/Dox/Res). After cellular uptake, the micelles exhibited an enhanced dissociation in response to the acidic endosomes, triggering the release of Res and Dox. Furthermore, Res was observed to synergistically improve the cytotoxicity of Dox by down-regulating the P-glycoprotein (P-gp) expression, decreasing the membrane potential of the mitochondrial and ATP level, as well as inducing cell apoptosis mediated by mitochondria. The pH-endoSM/Dox/Res showed a prominent ability to decrease the IC50 of Dox by a factor of 17.38 in cell cytotoxicity against the MCF-7/ADR cell line. In vivo distribution demonstrated the excellent tumor-targeting ability of the pH-endoSM/Dox/Res. All results indicated that pH-endoSM/Dox/Res held great potential for the treatment of Dox-resistance breast cancer cells.
Collapse
Affiliation(s)
- Li Jia
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, P.O. Box 42, Shenyang 110016, China
- Department of Pharmacy, Heze Medical College, Heze 274000, China
| | - Nan Jia
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, P.O. Box 42, Shenyang 110016, China
| | - Yan Gao
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, P.O. Box 42, Shenyang 110016, China
| | - Haiyang Hu
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, P.O. Box 42, Shenyang 110016, China
| | - Xiuli Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, P.O. Box 42, Shenyang 110016, China
| | - Dawei Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, P.O. Box 42, Shenyang 110016, China
| | - Mingxi Qiao
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, P.O. Box 42, Shenyang 110016, China.
| |
Collapse
|
28
|
Cytotoxic Effect of Paclitaxel and Lapatinib Co-Delivered in Polylactide- co-Poly(ethylene glycol) Micelles on HER-2-Negative Breast Cancer Cells. Pharmaceutics 2019; 11:pharmaceutics11040169. [PMID: 30959904 PMCID: PMC6523169 DOI: 10.3390/pharmaceutics11040169] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 03/29/2019] [Accepted: 04/04/2019] [Indexed: 12/12/2022] Open
Abstract
To find better strategies to enhance the cytotoxic effect of paclitaxel (PTX) and lapatinib (LAP) against breast cancer cells, we analyzed the efficacy of a novel delivery system containing polylactide-co-poly(ethylene glycol) (PLA-PEG) filomicelles of over 100 nm in length and spherical micelles of approximately 20 nm in diameter. The 1H NMR measurements confirmed the incorporation of PTX and LAP into micelles. Analysis of the drug release mechanism revealed the diffusion-controlled release of LAP and anomalous transport of PTX. Drug content analysis in lyophilized micelles and micellar solution showed their good storage stability for at least 6 weeks. Blank micelles, LAP-loaded micelles and free LAP did not affect MCF-7 breast cancer cell proliferation, suggesting that the cytotoxicity of PTX-, PTX/LAP-loaded micelles, and the binary mixture of free PTX and LAP was solely caused by PTX. PTX/LAP-loaded micelles showed greater toxicity compared to the binary mixture of PTX and LAP after 48 h and 72 h. Only free PTX alone induced P-gp activity. This study showed the feasibility of using a LAP and PTX combination to overcome MDR in MCF-7 cells, particularly when co-loaded into micelles. We suggest that PTX/LAP micelles can be applicable not only for the therapy of HER-2-positive, but also HER-2-negative breast cancers.
Collapse
|
29
|
Vinciguerra D, Jacobs M, Denis S, Mougin J, Guillaneuf Y, Lazzari G, Zhu C, Mura S, Couvreur P, Nicolas J. Heterotelechelic polymer prodrug nanoparticles: Adaptability to different drug combinations and influence of the dual functionalization on the cytotoxicity. J Control Release 2019; 295:223-236. [DOI: 10.1016/j.jconrel.2018.12.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/25/2018] [Accepted: 12/28/2018] [Indexed: 11/27/2022]
|
30
|
Orlando UD, Castillo AF, Medrano MAR, Solano AR, Maloberti PM, Podesta EJ. Acyl-CoA synthetase-4 is implicated in drug resistance in breast cancer cell lines involving the regulation of energy-dependent transporter expression. Biochem Pharmacol 2019; 159:52-63. [DOI: 10.1016/j.bcp.2018.11.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/05/2018] [Indexed: 12/26/2022]
|
31
|
Kwon YS, Chun SY, Nan HY, Nam KS, Lee C, Kim S. Metformin selectively targets 4T1 tumorspheres and enhances the antitumor effects of doxorubicin by downregulating the AKT and STAT3 signaling pathways. Oncol Lett 2018; 17:2523-2530. [PMID: 30675314 DOI: 10.3892/ol.2018.9827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023] Open
Abstract
Recent studies have reported that metformin (Met), the first-line medication for the treatment of type 2 diabetes, exhibited anticancer and chemoprotective effects in diverse cancer cells. In this study, we investigated the effects of Met on the drug-resistance of 4T1 murine breast cancer tumorspheres (TS) and the mechanism responsible for its drug-resistance. 4T1 TS exhibited accumulations of cells at the G0/G1 phase compared with cells in monolayer culture, which suggested the majority of cells in TS were quiescent. Furthermore, it was identified that activations of the signal transducer and activator of transcription 3 (STAT3) and protein kinase B (AKT) signaling pathways in 4T1 TS conferred drug-resistance to doxorubicin (Dox) and lapatinib (Lapa). However, Met selectively targeted TS rather than cells in monolayer culture and increased the cytotoxic effect of Dox on TS by inhibiting activations of the STAT3 and AKT signaling pathways. These observations suggested that inhibitions of STAT3 and AKT underlie the selective cytotoxic effects of Met on TS. In addition, Met exhibited synergistic antitumor effects with Dox on 4T1 tumor-bearing BALB/c mice. Our findings suggest that combinations of Met and cytotoxic anticancer drugs may offer an advantage for treating drug-resistant breast cancer.
Collapse
Affiliation(s)
- Yun-Suk Kwon
- Department of Pharmacology and Intractable Disease Research Center, School of Medicine, Dongguk University, Gyeongju, Gyeongsangbuk-do 380660, Republic of Korea
| | - So-Young Chun
- Department of Pharmacology and Intractable Disease Research Center, School of Medicine, Dongguk University, Gyeongju, Gyeongsangbuk-do 380660, Republic of Korea
| | - Hong-Yan Nan
- Department of Biochemistry and Molecular Biology, School of Medicine, Yeungnam University, Daegu 42415, Republic of Korea
| | - Kyung-Soo Nam
- Department of Pharmacology and Intractable Disease Research Center, School of Medicine, Dongguk University, Gyeongju, Gyeongsangbuk-do 380660, Republic of Korea
| | - Chuhee Lee
- Department of Biochemistry and Molecular Biology, School of Medicine, Yeungnam University, Daegu 42415, Republic of Korea
| | - Soyoung Kim
- Department of Pharmacology and Intractable Disease Research Center, School of Medicine, Dongguk University, Gyeongju, Gyeongsangbuk-do 380660, Republic of Korea
| |
Collapse
|
32
|
Lee MG, Lee KS, Nam KS. The association of changes in RAD51 and survivin expression levels with the proton beam sensitivity of Capan‑1 and Panc‑1 human pancreatic cancer cells. Int J Oncol 2018; 54:744-752. [PMID: 30483758 DOI: 10.3892/ijo.2018.4642] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/11/2018] [Indexed: 11/05/2022] Open
Abstract
Fewer than 20% of patients diagnosed with pancreatic cancer can be treated with surgical resection. The effects of proton beam irradiation were evaluated on the cell viabilities in Panc‑1 and Capan‑1 pancreatic cancer cells. The cells were irradiated with proton beams at the center of Bragg peaks with a 6‑cm width using a proton accelerator. Cell proliferation was assessed with the MTT assay, gene expression was analyzed with semi‑quantitative or quantitative reverse transcription‑polymerase chain reaction analyses and protein expression was evaluated by western blotting. The results demonstrated that Capan‑1 cells had lower cell viability than Panc‑1 cells at 72 h after proton beam irradiation. Furthermore, the cleaved poly (ADP‑ribose) polymerase protein level was increased by irradiation in Capan‑1 cells, but not in Panc‑1 cells. Additionally, it was determined that histone H2AX phosphorylation in the two cell lines was increased by irradiation. Although a 16 Gy proton beam was only slightly up‑regulated cyclin‑dependent kinase inhibitor 1 (p21) protein expression in Capan‑1 cells, p21 expression levels in Capan‑1 and Panc‑1 cells were significantly increased at 72 h after irradiation. Furthermore, it was observed that the expression of DNA repair protein RAD51 homolog 1 (RAD51), a homogenous repair enzyme, was decreased in what appeared to be a dose‑dependent manner by irradiation in Capan‑1 cells. Contrastingly, the transcription of survivin in Panc‑1 was significantly enhanced. The results suggest that RAD51 and survivin are potent markers that determine the therapeutic efficacy of proton beam therapy in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Min-Gu Lee
- Department of Pharmacology and Intractable Disease Research Center, School of Medicine, Dongguk University, Gyeongju, Gyeongsanbuk-do 38066, Republic of Korea
| | - Kyu-Shik Lee
- Department of Pharmacology and Intractable Disease Research Center, School of Medicine, Dongguk University, Gyeongju, Gyeongsanbuk-do 38066, Republic of Korea
| | - Kyung-Soo Nam
- Department of Pharmacology and Intractable Disease Research Center, School of Medicine, Dongguk University, Gyeongju, Gyeongsanbuk-do 38066, Republic of Korea
| |
Collapse
|
33
|
Stokes E, Shuang T, Zhang Y, Pei Y, Fu M, Guo B, Parissenti A, Wu L, Wang R, Yang G. Efflux inhibition by H2S confers sensitivity to doxorubicin-induced cell death in liver cancer cells. Life Sci 2018; 213:116-125. [DOI: 10.1016/j.lfs.2018.10.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/09/2018] [Accepted: 10/17/2018] [Indexed: 02/07/2023]
|
34
|
Huang KM, Hu S, Sparreboom A. Drug transporters and anthracycline-induced cardiotoxicity. Pharmacogenomics 2018; 19:883-888. [DOI: 10.2217/pgs-2018-0056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The solute carrier superfamily comprises of uptake transporters that can contribute to the absorption and elimination of a broad array of clinically important drugs. Recent studies have suggested that the tissue-specific expression of these transporters may have important consequences for an individual's susceptibility to drug-induced organ damage or to drug–drug interactions. Polymorphic variants have been identified in genes encoded by this family, and some of these have been associated with functional changes in transport function and response to anthracycline-induced toxicity and efficacy. Here, we review recent advances in the role solute carrier transporters play in anthracycline-induced cardiotoxicity, highlight potential implications of genetic variants that may contribute to drug response and discuss novel technologies to study mechanisms of anthracycline transport.
Collapse
Affiliation(s)
- Kevin M Huang
- Division of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Shuiying Hu
- Division of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Alex Sparreboom
- Division of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
35
|
Xia YQ, Hua RJ, Juan C, Zhong ZH, Tao CS, Fang R, Lin H, Rui G, Yong C. SIRT6 Depletion Sensitizes Human Hepatoma Cells to Chemotherapeutics by Downregulating MDR1 Expression. Front Pharmacol 2018; 9:194. [PMID: 29563873 PMCID: PMC5845756 DOI: 10.3389/fphar.2018.00194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/21/2018] [Indexed: 12/13/2022] Open
Abstract
Multidrug resistance (MDR) due to overexpression of MDR1 is a major obstacle that hinders the treatment of hepatocellular carcinoma (HCC). In this study, we explored the function and underlying molecular mechanism of SIRT6 in MDR of HCC. Chemotherapeutic agents (doxorubicin, cisplatin, and sorafenib) treatment increased SIRT6 mRNA and protein level in two HCC cell lines in a dose-dependent manner. SIRT6 depletion resulted in decreased cell viability and increased apoptosis in HCC cells treated with chemotherapeutic agents. Mechanistically, SIRT6 depletion reduced MDR1 transcription by targeting its promoter in HCC cells treated with chemotherapeutic agents. Consistently, the protein level of MDR1 was also reduced in SIRT6-depleted HCC cells. Further studies indicated that SIRT6 depletion may suppress CCAAT/enhancer binding protein β (C/EBPβ), to act as a transcriptional activator of MDR1 in HCC cells treated with chemotherapeutic agents. Importantly, forced expression of MDR1 could attenuate the apoptosis induced by chemotherapeutic agents in SIRT6-depleted cells. Taken together, these results indicated SIRT6 depletion enhanced chemosensitivity of human hepatoma cells by downregulating MDR1 expression through suppressing C/EBPβ. SIRT6 may serve as a novel target to enhance chemosensitivity in HCC cells.
Collapse
Affiliation(s)
- Yang Q Xia
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Chongqing Medical University, Chongqing, China.,The Key Laboratory of Molecular Biology of Infectious Diseases, Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ren J Hua
- The Key Laboratory of Molecular Biology of Infectious Diseases, Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Chen Juan
- The Key Laboratory of Molecular Biology of Infectious Diseases, Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Zhou H Zhong
- The Key Laboratory of Molecular Biology of Infectious Diseases, Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Cheng S Tao
- The Key Laboratory of Molecular Biology of Infectious Diseases, Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ren Fang
- The Key Laboratory of Molecular Biology of Infectious Diseases, Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - He Lin
- The Key Laboratory of Molecular Biology of Infectious Diseases, Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Gong Rui
- The Key Laboratory of Molecular Biology of Infectious Diseases, Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Chen Yong
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
36
|
Begicevic RR, Falasca M. ABC Transporters in Cancer Stem Cells: Beyond Chemoresistance. Int J Mol Sci 2017; 18:E2362. [PMID: 29117122 PMCID: PMC5713331 DOI: 10.3390/ijms18112362] [Citation(s) in RCA: 238] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/02/2017] [Accepted: 11/02/2017] [Indexed: 12/19/2022] Open
Abstract
The efficacy of chemotherapy is one of the main challenges in cancer treatment and one of the major obstacles to overcome in achieving lasting remission and a definitive cure in patients with cancer is the emergence of cancer resistance. Indeed, drug resistance is ultimately accountable for poor treatment outcomes and tumour relapse. There are various molecular mechanisms involved in multidrug resistance, such as the change in the activity of membrane transporters primarily belonging to the ATP binding cassette (ABC) transporter family. In addition, it has been proposed that this common feature could be attributed to a subpopulation of slow-cycling cancer stem cells (CSCs), endowed with enhanced tumorigenic potential and multidrug resistance. CSCs are characterized by the overexpression of specific surface markers that vary in different cancer cell types. Overexpression of ABC transporters has been reported in several cancers and more predominantly in CSCs. While the major focus on the role played by ABC transporters in cancer is polarized by their involvement in chemoresistance, emerging evidence supports a more active role of these proteins, in which they release specific bioactive molecules in the extracellular milieu. This review will outline our current understanding of the role played by ABC transporters in CSCs, how their expression is regulated and how they support the malignant metabolic phenotype. To summarize, we suggest that the increased expression of ABC transporters in CSCs may have precise functional roles and provide the opportunity to target, particularly these cells, by using specific ABC transporter inhibitors.
Collapse
Affiliation(s)
- Romana-Rea Begicevic
- Metabolic Signalling Group, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth WA 6102, Australia.
| | - Marco Falasca
- Metabolic Signalling Group, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth WA 6102, Australia.
| |
Collapse
|
37
|
Beretta GL, Cassinelli G, Pennati M, Zuco V, Gatti L. Overcoming ABC transporter-mediated multidrug resistance: The dual role of tyrosine kinase inhibitors as multitargeting agents. Eur J Med Chem 2017; 142:271-289. [PMID: 28851502 DOI: 10.1016/j.ejmech.2017.07.062] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 12/14/2022]
Abstract
Resistance to conventional and target specific antitumor drugs still remains one of the major cause of treatment failure and patience death. This condition often involves ATP-binding cassette (ABC) transporters that, by pumping the drugs outside from cancer cells, attenuate the potency of chemotherapeutics and negatively impact on the fate of anticancer therapy. In recent years, several tyrosine kinase inhibitors (TKIs) (e.g., imatinib, nilotinib, dasatinib, ponatinib, gefitinib, erlotinib, lapatinib, vandetanib, sunitinib, sorafenib) have been reported to interact with ABC transporters (e.g., ABCB1, ABCC1, ABCG2, ABCC10). This finding disclosed a very complex scenario in which TKIs may behave as substrates or inhibitors depending on the expression of specific pumps, drug concentration, affinity for transporters and types of co-administered agents. In this context, in-depth investigation on TKI chemosensitizing functions might provide a strong rationale for combining TKIs and conventional therapeutics in specific malignancies. The reposition of TKIs as antagonists of ABC transporters opens a new way towards anticancer therapy and clinical strategies aimed at counteracting drug resistance. This review will focus on some paradigmatic examples of the complex and not yet fully elucidated interaction between clinical available TKIs (e.g. BCR-ABL, EGFR, VEGFR inhibitors) with the main ABC transporters implicated in multidrug resistance.
Collapse
Affiliation(s)
- Giovanni Luca Beretta
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milano, Italy.
| | - Giuliana Cassinelli
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milano, Italy.
| | - Marzia Pennati
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milano, Italy.
| | - Valentina Zuco
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milano, Italy.
| | - Laura Gatti
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milano, Italy.
| |
Collapse
|
38
|
Li YJ, Lei YH, Yao N, Wang CR, Hu N, Ye WC, Zhang DM, Chen ZS. Autophagy and multidrug resistance in cancer. CHINESE JOURNAL OF CANCER 2017. [PMID: 28646911 PMCID: PMC5482965 DOI: 10.1186/s40880-017-0219-2] [Citation(s) in RCA: 479] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multidrug resistance (MDR) occurs frequently after long-term chemotherapy, resulting in refractory cancer and tumor recurrence. Therefore, combatting MDR is an important issue. Autophagy, a self-degradative system, universally arises during the treatment of sensitive and MDR cancer. Autophagy can be a double-edged sword for MDR tumors: it participates in the development of MDR and protects cancer cells from chemotherapeutics but can also kill MDR cancer cells in which apoptosis pathways are inactive. Autophagy induced by anticancer drugs could also activate apoptosis signaling pathways in MDR cells, facilitating MDR reversal. Therefore, research on the regulation of autophagy to combat MDR is expanding and is becoming increasingly important. We summarize advanced studies of autophagy in MDR tumors, including the variable role of autophagy in MDR cancer cells.
Collapse
Affiliation(s)
- Ying-Jie Li
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, P. R. China
| | - Yu-He Lei
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, P. R. China
| | - Nan Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, P. R. China
| | - Chen-Ran Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, P. R. China
| | - Nan Hu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, P. R. China
| | - Wen-Cai Ye
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, P. R. China
| | - Dong-Mei Zhang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, P. R. China.
| | - Zhe-Sheng Chen
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, P. R. China. .,Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| |
Collapse
|
39
|
Shen X, Zhi Q, Wang Y, Li Z, Zhou J, Huang J. Hypoxia Induces Multidrug Resistance via Enhancement of Epidermal Growth Factor-Like Domain 7 Expression in Non-Small Lung Cancer Cells. Chemotherapy 2017; 62:172-180. [PMID: 28351036 DOI: 10.1159/000456066] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 01/12/2017] [Indexed: 12/20/2022]
Abstract
Chemotherapy is widely used in non-small cell lung cancer (NSCLC) treatment, yet multidrug resistance (MDR) is a major chemotherapeutic obstacle in both resectable and advanced NSCLC. Epidermal growth factor-like domain 7 (EGFL7), also known as vascular endothelial stain, is an endothelial cell-derived secreted factor that regulates vascular tube formulation. The aim of this study was to investigate the potential relationships between EGFL7 and MDR in NSCLC cells. We first obtained the CDDP-based MDR phenotype cell line A549/CDDP by repeated exposure to a proper concentration of CDDP (cisplatin) from original A549 cells. These A549/CDDP cells, which maintained relative high levels of EGFL7 and P-glycoprotein (P-gp), were resistant to other chemotherapy drugs, such as carboplatin (CBP), paclitaxel (TAX), and gemcitabine (GEM) (p < 0.05). We also found that hypoxia significantly reduced the chemosensitivity of NSCLC cells, and hypoxia-induced MDR was mediated by P-gp and EGFL7 (p < 0.05). EGFL7 was veryy relevant to NSCLC cell MDR, and downregulation of EGFL7 could significantly increase the chemosensitivity of NSCLC cells (p < 0.05). Thus, our findings first indicate that hypoxia induced NSCLC cell MDR at least partly by enhancing the expression of EGFL7 protein. EGFL7 might be a feasible target for reversing hypoxia-mediated MDR in NSCLC cells and a promising biomarker for predicting the development of MDR in NSCLC patients on chemotherapy.
Collapse
Affiliation(s)
- Xiaochun Shen
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | | | | | | | | | | |
Collapse
|
40
|
Caetano-Pinto P, Jansen J, Assaraf YG, Masereeuw R. The importance of breast cancer resistance protein to the kidneys excretory function and chemotherapeutic resistance. Drug Resist Updat 2017; 30:15-27. [DOI: 10.1016/j.drup.2017.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 01/03/2017] [Accepted: 01/05/2017] [Indexed: 12/15/2022]
|
41
|
Pavlopoulou A, Oktay Y, Vougas K, Louka M, Vorgias CE, Georgakilas AG. Determinants of resistance to chemotherapy and ionizing radiation in breast cancer stem cells. Cancer Lett 2016; 380:485-493. [DOI: 10.1016/j.canlet.2016.07.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 12/13/2022]
|
42
|
Jang H, Baek J, Nam KS, Kim S. Determination of the optimal time for tamoxifen treatment in combination with radiotherapy. Int J Oncol 2016; 49:2147-2154. [PMID: 27633191 DOI: 10.3892/ijo.2016.3687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/11/2016] [Indexed: 11/06/2022] Open
Abstract
Although radiotherapy and tamoxifen have been extensively used to treat estrogen receptor α (ERα)-positive breast cancers, it is still questionable when tamoxifen should be started to maximize clinical benefits in combination with radiotherapy. Generally, clinician's opinion and experience are major determinants in scheduling concurrent or sequential tamoxifen and radiotherapy. Thus, we attempted to determine an optimal time to start tamoxifen treatment by analyzing tamoxifen responses at different times after irradiating MCF-7 cells to cumulative doses of 10 or 20-30 Gy. MCF-7 cells were irradiated with 5 Gy a week, twice (a cumulative dose of 10 Gy) followed by a period of recovery. MTT viability assay for tamoxifen was done with MCF-7 cells harvested immediately after each 5 Gy (MCF-7-5 Gy) or 10 Gy (MCF-7-10 Gy) irradiation or after subsequent culture of surviving MCF-7-10 Gy cells for 40 days (MCF-7-R1). To establish the radioresistant cells, the above cycles of irradiation were repeated for a cumulative dose of 20 Gy (MCF-7-R2) or 30 Gy (MCF-7-R3). In addition, cytotoxic effects of tamoxifen were also measured. Attenuated tamoxifen response was observed in MCF-7-5 Gy and 10 Gy cells, whereas the efficacy of tamoxifen was restored in MCF-7-R1 cells. Furthermore, these responses to tamoxifen correlated with ERα expression. However, the radioresistant MCF-7 cells (MCF-7-R2/R3) exhibited resistance to tamoxifen without change in ER expression, but the phosphorylation of AKT was increased. Taken together, our data suggest that sequential tamoxifen treatment following radiotherapy is more effective than concurrent treatment. Furthermore, the reduced efficacy of tamoxifen on radioresistant cells indicates that an additional targeted therapy, such as AKT inhibitor treatment, is required to improve tamoxifen response in radioresistant breast cancer.
Collapse
Affiliation(s)
- Hyunsoo Jang
- Department of Radiation Oncology, School of Medicine, Dongguk University, Gyeongju, Gyeongsangbuk-do 780-350, Republic of Korea
| | - Junyoung Baek
- Department of Pharmacology, School of Medicine, Dongguk University, Gyeongju, Gyeongsangbuk-do 780-350, Republic of Korea
| | - Kyung-Soo Nam
- Department of Pharmacology, School of Medicine, Dongguk University, Gyeongju, Gyeongsangbuk-do 780-350, Republic of Korea
| | - Soyoung Kim
- Department of Pharmacology, School of Medicine, Dongguk University, Gyeongju, Gyeongsangbuk-do 780-350, Republic of Korea
| |
Collapse
|
43
|
Chen YY, Li ZZ, Ye YY, Xu F, Niu RJ, Zhang HC, Zhang YJ, Liu YB, Han BS. Knockdown of SALL4 inhibits the proliferation and reverses the resistance of MCF-7/ADR cells to doxorubicin hydrochloride. BMC Mol Biol 2016; 17:6. [PMID: 26935744 PMCID: PMC4776391 DOI: 10.1186/s12867-016-0055-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/25/2016] [Indexed: 02/06/2023] Open
Abstract
Background Breast cancer is the most frequent malignancy in women and drug resistance is the major obstacle for its successful chemotherapy. In the present study, we analyzed the involvement of an oncofetal gene, sal-like 4 (SALL4), in the tumor proliferation and drug resistance of human breast cancer. Results Our study showed that SALL4 was up-regulated in the drug resistant breast cancer cell line, MCF-7/ADR, compared to the other five cell lines. We established the lentiviral system expressing short hairpin RNA to knockdown SALL4 in MCF-7/ADR cells. Down-regulation of SALL4 inhibited the proliferation of MCF-7/ADR cells and induced the G1 phase arrest in cell cycle, accompanied by an obvious reduction of the expression of cyclinD1 and CDK4. Besides, down-regulating SALL4 can re-sensitize MCF-7/ADR to doxorubicin hydrochloride (ADMh) and had potent synergy with ADMh in MCF-7/ADR cells. Depletion of SALL4 led to a decrease in IC50 for ADMh and an inhibitory effect on the ability to form colonies in MCF-7/ADR cells. With SALL4 knockdown, ADMh accumulation rate of MCF-7/ADR cells was increased, while the expression of BCRP and c-myc was significantly decreased. Furthermore, silencing SALL4 also suppressed the growth of the xenograft tumors and reversed their resistance to ADMh in vivo. Conclusion SALL4 knockdown inhibits the growth of the drug resistant breast cancer due to cell cycle arrest and reverses tumor chemo-resistance through down-regulating the membrane transporter, BCPR. Thus, SALL4 has potential as a novel target for the treatment of breast cancer.
Collapse
Affiliation(s)
- Yuan-Yuan Chen
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University, School of Medicine, No. 1665 Kong Jiang Road, 200092, Shanghai, China. .,Institute of Biliary Tract Disease, Shanghai Jiao Tong University, School of Medicine, 200092, Shanghai, China.
| | - Zhi-Zhen Li
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University, School of Medicine, No. 1665 Kong Jiang Road, 200092, Shanghai, China. .,Institute of Biliary Tract Disease, Shanghai Jiao Tong University, School of Medicine, 200092, Shanghai, China.
| | - Yuan-Yuan Ye
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University, School of Medicine, No. 1665 Kong Jiang Road, 200092, Shanghai, China. .,Institute of Biliary Tract Disease, Shanghai Jiao Tong University, School of Medicine, 200092, Shanghai, China.
| | - Feng Xu
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University, School of Medicine, No. 1665 Kong Jiang Road, 200092, Shanghai, China. .,Institute of Biliary Tract Disease, Shanghai Jiao Tong University, School of Medicine, 200092, Shanghai, China.
| | - Rui-Jie Niu
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University, School of Medicine, No. 1665 Kong Jiang Road, 200092, Shanghai, China. .,Institute of Biliary Tract Disease, Shanghai Jiao Tong University, School of Medicine, 200092, Shanghai, China.
| | - Hong-Chen Zhang
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University, School of Medicine, No. 1665 Kong Jiang Road, 200092, Shanghai, China. .,Institute of Biliary Tract Disease, Shanghai Jiao Tong University, School of Medicine, 200092, Shanghai, China.
| | - Yi-Jian Zhang
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University, School of Medicine, No. 1665 Kong Jiang Road, 200092, Shanghai, China. .,Institute of Biliary Tract Disease, Shanghai Jiao Tong University, School of Medicine, 200092, Shanghai, China.
| | - Ying-Bin Liu
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University, School of Medicine, No. 1665 Kong Jiang Road, 200092, Shanghai, China. .,Institute of Biliary Tract Disease, Shanghai Jiao Tong University, School of Medicine, 200092, Shanghai, China.
| | - Bao-San Han
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University, School of Medicine, No. 1665 Kong Jiang Road, 200092, Shanghai, China. .,Institute of Biliary Tract Disease, Shanghai Jiao Tong University, School of Medicine, 200092, Shanghai, China.
| |
Collapse
|