1
|
Shen H, Xu H, Jin W, Wu T, Hu J, Zhang C, Zhong Z, Li J, Mao R, Zhang S, Zhang X, Wu X, Smaill JB, Xu J, Zhang Y, Xu Y. Discovery of a Potent and Selective GSPT1 Molecular Glue Degrader for the Treatment of Castration-Resistant Prostate Cancer. J Med Chem 2025; 68:1553-1571. [PMID: 39746330 DOI: 10.1021/acs.jmedchem.4c02205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The treatment of castration-resistant prostate cancer (CRPC) remains a significant challenge, necessitating the development of new and promising therapeutic strategies. Utilizing molecular glue to degrade previously intractable cancer drivers represents an emerging and promising therapeutic approach to cancer treatment. In this study, we developed a novel CRBN-interacting molecular glue, 7d (XYD049), which exhibits potent and selective degradation of G1 to S phase transition 1 (GSPT1), a well-known untargetable cancer driver in diverse cancer cells. Importantly, 7d exhibits superior efficacy compared to 1 (CC-90009) in degrading GSPT1 in 22Rv1 cells with a DC50 value of 19 nM. It effectively suppresses the growth of 22Rv1 cells with an IC50 value of 0.007 ± 0.004 μM and demonstrates efficacy in inhibiting 22Rv1 tumor growth in mice. Mechanistically, via degradation of GSPT1, 7d downregulates CRPC-related oncogenes in 22Rv1 cells, including AR, AR-V7, PSA, and c-Myc. Thus, our work provides a novel GSPT1 selective degrader with potent effectiveness in targeting Myc-driven CRPC.
Collapse
Affiliation(s)
- Hui Shen
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Hongrui Xu
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Weiqin Jin
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
- Institutes of Material Science and Information Technology, Anhui University, Hefei 230601, China
| | - Tianbang Wu
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Jiankang Hu
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Cheng Zhang
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Zhixin Zhong
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Junhua Li
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Rui Mao
- Laboratory Animal Research Center, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Sheng Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Xiao Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Xishan Wu
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Jeff B Smaill
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jinxin Xu
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Yan Zhang
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Yong Xu
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| |
Collapse
|
2
|
Chen G, Zhang W, Wang C, Chen M, Hu Y, Wang Z. Identification of prognostic biomarkers of sepsis and construction of ceRNA regulatory networks. Sci Rep 2025; 15:2850. [PMID: 39843498 PMCID: PMC11754875 DOI: 10.1038/s41598-024-78502-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/31/2024] [Indexed: 01/24/2025] Open
Abstract
Sepsis is a life-threatening severe organ dysfunction, and the pathogenesis remains uncertain. Increasing evidence suggests that circRNAs, mRNAs, and microRNAs can interact to jointly regulate the development of sepsis. Identifying the interaction between ceRNA regulatory networks and sepsis may contribute to our deeper understanding of the pathogenesis of sepsis, bring new insights into early recognition and treatment of sepsis. Blood samples from sepsis patients in the Affiliated Hospital of Southwest Medical University were collected. RNA sequencing (mRNA/circRNA) was performed on Survivor group (n = 26) and Non-survivor group (n = 6), then quality control and differential expression analysis were performed. Subsequently, GO analysis was performed on the differential expression genes; Meta-analysis was used to screen for prognostic related genes; 10 × Single-cell RNA sequencing was used to annotate the cell distribution of core genes. Finally, combined with base complementary pairing and intergroup correlation analysis, a sepsis-associated circRNA-miRNA-mRNA regulatory network was constructed. Differential expression analysis screened 28 mRNAs and 16 circRNAs. GO results showed that differential expression genes were mainly involved in membrane raft, actin cytoskeleton, regulation of immune response, negative regulation of cAMP-dependent protein kinase activity, etc. Meta-analysis screened 2 core genes, GSPT1 and NPRL3, which are associated with sepsis prognosis. 10 × Single-cell RNA sequencing showed that GSPT1 and NPRL3 were widely localized in immune cells, mainly macrophages and T cells. A ceRNA network consisting of 4 circRNA, 26 miRNA, and 2 mRNA was constructed. GSPT1 and NPRL3 were lowly expressed in the sepsis Survivor group, compared with Non-survivor group, which may become novel prognostic biomarkers for sepsis. A sepsis-related ceRNA networks, which consists of 4 circRNA, 26 miRNA, and 2 core gene, may guide mechanistic studies.
Collapse
Affiliation(s)
- Guihong Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wen Zhang
- Department of Endocrinology and Metabolism, The Traditional Chinese Medicine Hospital of Luzhou City, Luzhou, Sichuan, China
| | - Chenglin Wang
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Muhu Chen
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yingchun Hu
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
3
|
Zhang S, Nie S, Ma G, Shen M, Kong L, Zuo Z, Li Y. Identification of novel GSPT1 degraders by virtual screening and bioassay. Eur J Med Chem 2024; 273:116524. [PMID: 38795517 DOI: 10.1016/j.ejmech.2024.116524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/11/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
GSPT1 plays crucial physiological functions, such as terminating protein translation, overexpressed in various tumors. It is a promising anti-tumor target, but is also considered as an "undruggable" protein. Recent studies have found that a class of small molecules can degrade GSPT1 through the "molecular glue" mechanism with strong antitumor activity, which is expected to become a new therapy for hematological malignancies. Currently available GSPT1 degraders are mostly derived from the scaffold of immunomodulatory imide drug (IMiD), thus more active compounds with novel structure remain to be found. In this work, using computer-assisted multi-round virtual screening and bioassay, we identified a non-IMiD acylhydrazone compound, AN5782, which can reduce the protein level of GPST1 and obviously inhibit the proliferation of tumor cells. Some analogs were obtained by a substructure search of AN5782. The structure-activity relationship analysis revealed possible interactions between these compounds and CRBN-GSPT1. Further biological mechanistic studies showed that AN5777 decreased GSPT1 remarkably through the ubiquitin-proteasome system, and its effective cytotoxicity was CRBN- and GSPT1-dependent. Furthermore, AN5777 displayed good antiproliferative activities against U937 and OCI-AML-2 cells, and dose-dependently induced G1 phase arrest and apoptosis. The structure found in this work could be good start for antitumor drug development.
Collapse
Affiliation(s)
- Shuqun Zhang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Shiyun Nie
- Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Ministry of Education, Yunnan University, Kunming, 650500, China
| | - Guangchao Ma
- Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Ministry of Education, Yunnan University, Kunming, 650500, China
| | - Meiling Shen
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingmei Kong
- Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Ministry of Education, Yunnan University, Kunming, 650500, China
| | - Zhili Zuo
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yan Li
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Ministry of Education, Yunnan University, Kunming, 650500, China.
| |
Collapse
|
4
|
Chang X, Qu F, Li C, Zhang J, Zhang Y, Xie Y, Fan Z, Bian J, Wang J, Li Z, Xu X. Development and therapeutic potential of GSPT1 molecular glue degraders: A medicinal chemistry perspective. Med Res Rev 2024; 44:1727-1767. [PMID: 38314926 DOI: 10.1002/med.22024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/18/2023] [Accepted: 01/21/2024] [Indexed: 02/07/2024]
Abstract
Unprecedented therapeutic targeting of previously undruggable proteins has now been achieved by molecular-glue-mediated proximity-induced degradation. As a small GTPase, G1 to S phase transition 1 (GSPT1) interacts with eRF1, the translation termination factor, to facilitate the process of translation termination. Studied demonstrated that GSPT1 plays a vital role in the acute myeloid leukemia (AML) and MYC-driven lung cancer. Thus, molecular glue (MG) degraders targeting GSPT1 is a novel and promising approach for treating AML and MYC-driven cancers. In this Perspective, we briefly summarize the structural and functional aspects of GSPT1, highlighting the latest advances and challenges in MG degraders, as well as some representative patents. The structure-activity relationships, mechanism of action and pharmacokinetic features of MG degraders are emphasized to provide a comprehensive compendium on the rational design of GSPT1 MG degraders. We hope to provide an updated overview, and design guide for strategies targeting GSPT1 for the treatment of cancer.
Collapse
Affiliation(s)
- Xiujin Chang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Fangui Qu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chunxiao Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jingtian Zhang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yanqing Zhang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuanyuan Xie
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhongpeng Fan
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jinlei Bian
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jubo Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhiyu Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xi Xu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
5
|
Yue G. Screening of lung cancer serum biomarkers based on Boruta-shap and RFC-RFECV algorithms. J Proteomics 2024; 301:105180. [PMID: 38663548 DOI: 10.1016/j.jprot.2024.105180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
OBJECTIVE This study aimed to identify a set of serum miRNAs as potential biomarkers for lung cancer diagnosis using algorithmic approaches. METHODS Serum miRNA expression data from lung cancer patients and non-tumor controls were obtained. The top six miRNAs were selected using Boruta-shap and RFC-RFECV algorithms. A Gaussian Naive Bayes (NB) classifier was trained and evaluated using cross-validation, ROC curve analysis, and evaluation metrics. RESULTS Six miRNAs (hsa-miRNA-144, hsa-miRNA-107, hsa-miRNA-484, hsa-miRNA-103, hsa-miRNA-26b, and hsa-miRNA-641) were identified as feature genes. The NB classifier achieved an area under curve (AUC) of 0.8966 and a mean AUC of 0.88 in cross-validation. Accuracy, recall, and F1 scores exhibited promising results, with an accuracy of 82%. In the validation set, the AUC values for the NB and SVC classifiers were 0.9345 and 0.9423, respectively, with a mean AUC of 0.95 in cross-validation. The classifiers demonstrated an accuracy of 89% in diagnosing lung cancer. CONCLUSION This study identified a panel of six serum miRNAs with potential as non-invasive biomarkers for lung cancer diagnosis. These miRNAs show promise in providing sensitive and specific tools for detecting lung cancer. SIGNIFICANCE Lung cancer is one of the top cancers worldwide, threatening the health and lives of tens of thousands of people. miRNA is a biomarker, which can be used as a potential clinical tool for diagnosis and prognosis of cancer patients. Therefore, the use of multiple miRNAs to construct diagnostic models may be one of the future methods of accurate diagnosis of lung cancer. In this study, we used the Boruta-shap and RFC-RFECV algorithms to automatically identify and extract characteristic miRNAs highly associated with lung cancer, thereby establishing an accurate classifier for the diagnosis of lung cancer with characteristic miRNAs.
Collapse
Affiliation(s)
- Guangcheng Yue
- Department of Thoracic Surgery, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, China.
| |
Collapse
|
6
|
Liao K, Yang Q, Xu Y, He Y, Wang J, Li Z, Wu C, Hu J, Wang X. Identification of signature of tumor-infiltrating CD8 T lymphocytes in prognosis and immunotherapy of colon cancer by machine learning. Clin Immunol 2023; 257:109811. [PMID: 37858752 DOI: 10.1016/j.clim.2023.109811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/25/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND To explore the specific marker of CD8+ T cell subsets which are closely related to the prognosis and immunotherapy of patients with colon cancer. METHODS 18 kinds of immune cell expression profile data sets were obtained from GEO database. Compared with other immune cell types, the specific markers of CD8 (+) T cells (TI-CD8) in colorectal cancer were screened. Regression analyses were used to further screen prognostic related genes and construct a prognostic evaluation model. The patients were stratified and analyzed according to the risk scores, KRAS mutation status, stage, lymphatic infiltration and other indicators. The landscape of infiltration level, mutation and copy number variation of immune subsets in high and low TI-CD8Sig score groups were compared and analyzed. The difference of drug response between high and low TI-CD8Sig score groups was analyzed. Differential expression of the model genes was verified by the HPA database. RESULTS Six prognostic-related CD8T cell-specific gene targets were further screened, and the prognostic evaluation model was constructed. The AUC value of the model is >0.75. FAT3 and UNC13C showed a high mutation state in the low-risk group, while USH2A, MUC5B et al. specifically showed a high mutation state in the high-risk group. Compared with the low-risk group, the high-risk group had lower effective rate of drug response. The expression of PD-1 gene was positively correlated with the level of TI-CD8Sig score. CONCLUSION The risk assessment model based on CD8T cell-specific marker genes can effectively predict the prognosis and the drug response of patients with CRC.
Collapse
Affiliation(s)
- Kaili Liao
- Department of Clinical Laboratory, the Second Affiliated Hospital of Nanchang University, Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, No. 1 Minde Road, Nanchang, Jiangxi 330006, China
| | - Qijun Yang
- Queen Mary College of Nanchang University, Xuefu Road, Nanchang, Jiangxi 330001, China
| | - Yuhan Xu
- Queen Mary College of Nanchang University, Xuefu Road, Nanchang, Jiangxi 330001, China
| | - Yingcheng He
- Queen Mary College of Nanchang University, Xuefu Road, Nanchang, Jiangxi 330001, China
| | - Jingyi Wang
- School of Public Health of Nanchang University, Nanchang, Jiangxi 330001, China
| | - Zimeng Li
- School of Public Health of Nanchang University, Nanchang, Jiangxi 330001, China
| | - Chengfeng Wu
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, Jiangxi 330006, China
| | - Jialing Hu
- Department of Emergency, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, Jiangxi 330006, China
| | - Xiaozhong Wang
- Department of Clinical Laboratory, the Second Affiliated Hospital of Nanchang University, Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, No. 1 Minde Road, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
7
|
GSPT1 Functions as a Tumor Promoter in Human Liver Cancer. Curr Med Sci 2023; 43:104-114. [PMID: 36459303 DOI: 10.1007/s11596-022-2665-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/20/2022] [Indexed: 12/03/2022]
Abstract
OBJECTIVE This study analyzed the role of G1 to S phase transition 1 protein (GSPT1) in promoting progression of liver cancer cells. METHODS A bioinformatics database was used to analyze the expression levels of GSPT1 in liver cancer tissues and the prognosis of patients. Subsequently, Western blotting and quantitative PCR were used to verify the expression levels of GSPT1 between normal hepatocytes and hepatoma cells. We used a CRISPR/Cas9 system to construct knockouts of GSPT1 in HepG2 and HCCLM9 liver cancer cells. The effect of GSPT1 on liver cancer cell migration and invasion was analyzed using flow cytometry, migration, and tumor formation assays. RESULTS The Cancer Genome Atlas Liver Hepatocellular Carcinoma dataset indicated that GSPT1 expression was upregulated in liver cancer cell lines, and patients with liver cancer had poor prognosis. Knockout of GSPT1 in cells significantly inhibited tumor proliferation, cell migration, and growth in vivo. CONCLUSION In this study, we found that GSPT1 promotes the migration and invasion of liver cancer cells.
Collapse
|
8
|
Zhou Z, Cao Q, Diao Y, Wang Y, Long L, Wang S, Li P. Non-coding RNA-related antitumor mechanisms of marine-derived agents. Front Pharmacol 2022; 13:1053556. [PMID: 36532760 PMCID: PMC9752855 DOI: 10.3389/fphar.2022.1053556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/21/2022] [Indexed: 09/26/2023] Open
Abstract
In the last two decades, natural active substances have attracted great attention in developing new antitumor drugs, especially in the marine environment. A series of marine-derived compounds or derivatives with potential antitumor effects have been discovered and developed, but their mechanisms of action are not well understood. Emerging studies have found that several tumor-related signaling pathways and molecules are involved in the antitumor mechanisms of marine-derived agents, including noncoding RNAs (ncRNAs). In this review, we provide an update on the regulation of marine-derived agents associated with ncRNAs on tumor cell proliferation, apoptosis, cell cycle, invasion, migration, drug sensitivity and resistance. Herein, we also describe recent advances in marine food-derived ncRNAs as antitumor agents that modulate cross-species gene expression. A better understanding of the antitumor mechanisms of marine-derived agents mediated, regulated, or sourced by ncRNAs will provide new biomarkers or targets for potential antitumor drugs from preclinical discovery and development to clinical application.
Collapse
Affiliation(s)
- Zhixia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Qianqian Cao
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - Yujing Diao
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Linhai Long
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Shoushi Wang
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
9
|
Shu S, Fu M, Chen X, Zhang N, Zhao R, Chang Y, Cui H, Liu Z, Wang X, Hua X, Li Y, Wang X, Wang X, Feng W, Song J. Cellular Landscapes of Nondiseased Human Cardiac Valves From End-Stage Heart Failure-Explanted Heart. Arterioscler Thromb Vasc Biol 2022; 42:1429-1446. [PMID: 36200446 DOI: 10.1161/atvbaha.122.318314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Exploring the mechanisms of valvular heart disease at the cellular level may be useful to identify new therapeutic targets; however, the comprehensive cellular landscape of nondiseased human cardiac valve leaflets remains unclear. METHODS The cellular landscapes of nondiseased human cardiac valve leaflets (5 aortic valves, 5 pulmonary valves, 5 tricuspid valves, and 3 mitral valves) from end-stage heart failure patients undergoing heart transplantation were explored using single-cell RNA sequencing. Bioinformatics was used to identify the cell types, describe the cell functions, and investigate cellular developmental trajectories and interactions. Differences among the 4 types of cardiac valves at the cellular level were summarized. Pathological staining was performed to validate the key findings of single-cell RNA sequencing. An integrative analysis of our single-cell data and published genome-wide association study-based and bulk RNA sequencing-based data provided insights into the cell-specific contributions to calcific aortic valve diseases. RESULTS Six cell types were identified among 128 412 cells from nondiseased human cardiac valve leaflets. Valvular interstitial cells were the largest population, followed by myeloid cells, lymphocytes, valvular endothelial cells, mast cells, and myofibroblasts. The 4 types of cardiac valve had distinct cellular compositions. The intercellular communication analysis revealed that valvular interstitial cells were at the center of the communication network. The integrative analysis of our single-cell RNA sequencing data revealed key cellular subpopulations involved in the pathogenesis of calcific aortic valve diseases. CONCLUSIONS The cellular landscape differed among the 4 types of nondiseased cardiac valve, which might explain their differences in susceptibility to pathological remodeling and valvular heart disease.
Collapse
Affiliation(s)
- Songren Shu
- State Key Laboratory of Cardiovascular Disease (S.S., M.F., X.C., N.Z., R.Z., Y.C., H.C., Z.L., Xiaohu Wang, X.H., Xin Wang, Xianqiang Wang, W.F., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,The Cardiomyopathy Research Group (S.S., M.F., X.C., Y.C., H.C., Z.L., X.H., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengxia Fu
- State Key Laboratory of Cardiovascular Disease (S.S., M.F., X.C., N.Z., R.Z., Y.C., H.C., Z.L., Xiaohu Wang, X.H., Xin Wang, Xianqiang Wang, W.F., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,The Cardiomyopathy Research Group (S.S., M.F., X.C., Y.C., H.C., Z.L., X.H., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao Chen
- State Key Laboratory of Cardiovascular Disease (S.S., M.F., X.C., N.Z., R.Z., Y.C., H.C., Z.L., Xiaohu Wang, X.H., Xin Wang, Xianqiang Wang, W.F., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,The Cardiomyopathy Research Group (S.S., M.F., X.C., Y.C., H.C., Z.L., X.H., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ningning Zhang
- State Key Laboratory of Cardiovascular Disease (S.S., M.F., X.C., N.Z., R.Z., Y.C., H.C., Z.L., Xiaohu Wang, X.H., Xin Wang, Xianqiang Wang, W.F., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruojin Zhao
- State Key Laboratory of Cardiovascular Disease (S.S., M.F., X.C., N.Z., R.Z., Y.C., H.C., Z.L., Xiaohu Wang, X.H., Xin Wang, Xianqiang Wang, W.F., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Chang
- State Key Laboratory of Cardiovascular Disease (S.S., M.F., X.C., N.Z., R.Z., Y.C., H.C., Z.L., Xiaohu Wang, X.H., Xin Wang, Xianqiang Wang, W.F., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,The Cardiomyopathy Research Group (S.S., M.F., X.C., Y.C., H.C., Z.L., X.H., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Cui
- State Key Laboratory of Cardiovascular Disease (S.S., M.F., X.C., N.Z., R.Z., Y.C., H.C., Z.L., Xiaohu Wang, X.H., Xin Wang, Xianqiang Wang, W.F., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,The Cardiomyopathy Research Group (S.S., M.F., X.C., Y.C., H.C., Z.L., X.H., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zirui Liu
- State Key Laboratory of Cardiovascular Disease (S.S., M.F., X.C., N.Z., R.Z., Y.C., H.C., Z.L., Xiaohu Wang, X.H., Xin Wang, Xianqiang Wang, W.F., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,The Cardiomyopathy Research Group (S.S., M.F., X.C., Y.C., H.C., Z.L., X.H., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaohu Wang
- State Key Laboratory of Cardiovascular Disease (S.S., M.F., X.C., N.Z., R.Z., Y.C., H.C., Z.L., Xiaohu Wang, X.H., Xin Wang, Xianqiang Wang, W.F., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiumeng Hua
- State Key Laboratory of Cardiovascular Disease (S.S., M.F., X.C., N.Z., R.Z., Y.C., H.C., Z.L., Xiaohu Wang, X.H., Xin Wang, Xianqiang Wang, W.F., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,The Cardiomyopathy Research Group (S.S., M.F., X.C., Y.C., H.C., Z.L., X.H., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Li
- Department of Cardiovascular Surgery (Y.L., Xin Wang, Xianqiang Wang, W.F., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Wang
- State Key Laboratory of Cardiovascular Disease (S.S., M.F., X.C., N.Z., R.Z., Y.C., H.C., Z.L., Xiaohu Wang, X.H., Xin Wang, Xianqiang Wang, W.F., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Cardiovascular Surgery (Y.L., Xin Wang, Xianqiang Wang, W.F., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianqiang Wang
- State Key Laboratory of Cardiovascular Disease (S.S., M.F., X.C., N.Z., R.Z., Y.C., H.C., Z.L., Xiaohu Wang, X.H., Xin Wang, Xianqiang Wang, W.F., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Cardiovascular Surgery (Y.L., Xin Wang, Xianqiang Wang, W.F., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Feng
- State Key Laboratory of Cardiovascular Disease (S.S., M.F., X.C., N.Z., R.Z., Y.C., H.C., Z.L., Xiaohu Wang, X.H., Xin Wang, Xianqiang Wang, W.F., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Cardiovascular Surgery (Y.L., Xin Wang, Xianqiang Wang, W.F., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease (S.S., M.F., X.C., N.Z., R.Z., Y.C., H.C., Z.L., Xiaohu Wang, X.H., Xin Wang, Xianqiang Wang, W.F., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,The Cardiomyopathy Research Group (S.S., M.F., X.C., Y.C., H.C., Z.L., X.H., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Cardiovascular Surgery (Y.L., Xin Wang, Xianqiang Wang, W.F., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen' China (J.S.)
| |
Collapse
|
10
|
Jia CY, He Y, Wu SN, He YT, Wang Y. Prognostic potential of miR-144 in various cancers: A meta-analysis. Medicine (Baltimore) 2022; 101:e31728. [PMID: 36401491 PMCID: PMC9678549 DOI: 10.1097/md.0000000000031728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND MicrorNA-144 (MiR-144) has been shown to be an attractive prognostic tumor biomarker and play a fundamental role in various cancers, However, the conclusion was inconsistency. The aim of this study was to identify the prognostic role of miR-144 in cancers. METHODS Relevant studies were searched in PubMed, EMBASE and Web of Science up to April 20, 2022. Hazard ratios (HR), odds ratio (OR) and 95% confidence intervals were pooled from the selected studies. RESULTS A total of 15 articles involving 1846 participants fulfilled the inclusion criteria. The results revealed that low miR-144 expression was significantly associated with favorable overall survival (HR: 0.68, 95% confidence interval [CI]: 0.53-0.88) in various cancers. Low miR-144 expression had better predictive value in patients with urinary system cancer (HR: 0.48, 95% CI: 0.35-0.64). In addition, low miR-144 expression was associated with tumor diameter (big vs small) (OR: 1.69, 95% CI: 1.08-2.75), tumor stage (III-IV vs I-II) (OR: 2.52, 95% CI: 3.76-8.14) and invasion depth (T3 + T4 vs T2 + T1) (OR: 3.24, 95% CI: 1.72-4.89). CONCLUSION miR-144 may serve as a prognostic biomarker in cancers.
Collapse
Affiliation(s)
- Chong-Yang Jia
- Department of General Surgery, the Second Hospital of Lanzhou, Lanzhou, China
| | - Yan He
- Department of General Surgery, the Second Hospital of Lanzhou, Lanzhou, China
| | - Shi-Nan Wu
- Department of Clinical Medicine, The First Clinical Medical College of Nanchang University, Nanchang, China
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yan-Ting He
- School of Pharmacy, Nanchang University, Nanchang, Jiangxi Province, China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
- * Correspondence: Yan-Ting He, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China (e-mail: )
| | - Ying Wang
- Department of Clinical laboratory, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
11
|
Palihaderu PADS, Mendis BILM, Premarathne JMKJK, Dias WKRR, Yeap SK, Ho WY, Dissanayake AS, Rajapakse IH, Karunanayake P, Senarath U, Satharasinghe DA. Therapeutic Potential of miRNAs for Type 2 Diabetes Mellitus: An Overview. Epigenet Insights 2022; 15:25168657221130041. [PMID: 36262691 PMCID: PMC9575458 DOI: 10.1177/25168657221130041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/14/2022] [Indexed: 11/05/2022] Open
Abstract
MicroRNA(miRNA)s have been identified as an emerging class for therapeutic
interventions mainly due to their extracellularly stable presence in humans and
animals and their potential for horizontal transmission and action. However,
treating Type 2 diabetes mellitus using this technology has yet been in a
nascent state. MiRNAs play a significant role in the pathogenesis of Type 2
diabetes mellitus establishing the potential for utilizing miRNA-based
therapeutic interventions to treat the disease. Recently, the administration of
miRNA mimics or antimiRs in-vivo has resulted in positive modulation of glucose
and lipid metabolism. Further, several cell culture-based interventions have
suggested beta cell regeneration potential in miRNAs. Nevertheless, few such
miRNA-based therapeutic approaches have reached the clinical phase. Therefore,
future research contributions would identify the possibility of miRNA
therapeutics for tackling T2DM. This article briefly reported recent
developments on miRNA-based therapeutics for treating Type 2 Diabetes mellitus,
associated implications, gaps, and recommendations for future studies.
Collapse
Affiliation(s)
- PADS Palihaderu
- Department of Basic Veterinary
Sciences, Faculty of Veterinary Medicine and Animal Science, University of
Peradeniya, Peradeniya, Sri Lanka
| | - BILM Mendis
- Department of Basic Veterinary
Sciences, Faculty of Veterinary Medicine and Animal Science, University of
Peradeniya, Peradeniya, Sri Lanka
| | - JMKJK Premarathne
- Department of Livestock and Avian
Sciences, Faculty of Livestock, Fisheries, and Nutrition, Wayamba University of Sri
Lanka, Makandura, Gonawila (NWP), Sri Lanka
| | - WKRR Dias
- Department of North Indian Music,
Faculty of Music, University of the Visual and Performing Arts, Colombo, Sri
Lanka
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences,
Xiamen University Malaysia Campus, Jalan Sunsuria, Bandar Sunsuria, Sepang,
Selangor, Malaysia
| | - Wan Yong Ho
- Division of Biomedical Sciences,
Faculty of Medicine and Health Sciences, University of Nottingham (Malaysia Campus),
Semenyih, Malaysia
| | - AS Dissanayake
- Department of Clinical Medicine,
Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka
| | - IH Rajapakse
- Department of Psychiatry, Faculty of
Medicine, University of Ruhuna, Galle, Sri Lanka
| | - P Karunanayake
- Department of Clinical Medicine,
Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - U Senarath
- Department of Community Medicine,
Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - DA Satharasinghe
- Department of Basic Veterinary
Sciences, Faculty of Veterinary Medicine and Animal Science, University of
Peradeniya, Peradeniya, Sri Lanka,DA Satharasinghe, Department of Basic
Veterinary Sciences, Faculty of Veterinary Medicine and Animal Science,
University of Peradeniya, Peradeniya, 20400, Sri Lanka.
| |
Collapse
|
12
|
Gong SX, Yang FS, Qiu DD. CircPTK2 accelerates tumorigenesis of colorectal cancer by upregulating AKT2 expression via miR-506-3p. Kaohsiung J Med Sci 2022; 38:1060-1069. [PMID: 36156852 DOI: 10.1002/kjm2.12589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/03/2022] [Accepted: 08/18/2022] [Indexed: 12/24/2022] Open
Abstract
With the rapid increase in its incidence in the last decade, colorectal cancer (CRC) is becoming one of the most life-threatening cancers. Circular RNA PTK2 (circPTK2) has multiple functions in oncogenesis, including in CRC. However, it remains elusive if circPTK2 also plays an important role in CRC malignancy. The levels of circPTK2, miR-506-3p, and AKT serine/threonine kinase 2 (AKT2) were measured by qPCR. The protein level of AKT2 was evaluated by western blotting assay. The proliferation, migration, and invasion of CRC cancer cells were evaluated by MTT, colony formation, wound-healing, and transwell assays. The interaction between circPTK2 and miR-506-3p and between miR-506-3p and AKT2 mRNA were verified by dual-luciferase reporter assay. The expressions of circPTK2 and AKT2 were elevated in CRC cells, with a concomitant reduction of miR-506-3p. The knockdown of circPTK2 suppressed the proliferation, migration, and invasion of CRC cells. CircPTK2 targeted miR-506-3p and negatively regulated its expression. Furthermore, miR-506-3p overexpression suppressed the CRC progression by downregulating the AKT2 expression. AKT2 overexpression or miR-506-3p inhibition restored the suppression of growth and invasiveness of CRC cancer cells caused by circPTK2 silencing. The circPTK2/miR-506-3p/AKT2 axis plays a novel and essential role in promoting CRC progression, providing potential targets for CRC therapeutic modality.
Collapse
Affiliation(s)
- Shuang-Xi Gong
- Department of Gastrointestinal Surgery, The First Hospital of Changsha, Changsha, China
| | - Feng-Shuai Yang
- Department of Gastrointestinal Surgery, The First Hospital of Changsha, Changsha, China
| | - Dong-Da Qiu
- Department of Gastrointestinal Surgery, The First Hospital of Changsha, Changsha, China
| |
Collapse
|
13
|
Sialana F, Roumeliotis TI, Bouguenina H, Chan Wah Hak L, Wang H, Caldwell J, Collins I, Chopra R, Choudhary JS. SimPLIT: Simplified Sample Preparation for Large-Scale Isobaric Tagging Proteomics. J Proteome Res 2022; 21:1842-1856. [PMID: 35848491 PMCID: PMC9361352 DOI: 10.1021/acs.jproteome.2c00092] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Large scale proteomic profiling of cell lines can reveal molecular signatures attributed to variable genotypes or induced perturbations, enabling proteogenomic associations and elucidation of pharmacological mechanisms of action. Although isobaric labeling has increased the throughput of proteomic analysis, the commonly used sample preparation workflows often require time-consuming steps and costly consumables, limiting their suitability for large scale studies. Here, we present a simplified and cost-effective one-pot reaction workflow in a 96-well plate format (SimPLIT) that minimizes processing steps and demonstrates improved reproducibility compared to alternative approaches. The workflow is based on a sodium deoxycholate lysis buffer and a single detergent cleanup step after peptide labeling, followed by quick off-line fractionation and MS2 analysis. We showcase the applicability of the workflow in a panel of colorectal cancer cell lines and by performing target discovery for a set of molecular glue degraders in different cell lines, in a 96-sample assay. Using this workflow, we report frequently dysregulated proteins in colorectal cancer cells and uncover cell-dependent protein degradation profiles of seven cereblon E3 ligase modulators (CRL4CRBN). Overall, SimPLIT is a robust method that can be easily implemented in any proteomics laboratory for medium-to-large scale TMT-based studies for deep profiling of cell lines.
Collapse
Affiliation(s)
- Fernando
J. Sialana
- Functional
Proteomics Group, The Institute of Cancer Research, Chester Beatty Laboratories, London SW3 6JB, U.K.
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Theodoros I. Roumeliotis
- Functional
Proteomics Group, The Institute of Cancer Research, Chester Beatty Laboratories, London SW3 6JB, U.K.
| | - Habib Bouguenina
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Laura Chan Wah Hak
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Hannah Wang
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - John Caldwell
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Ian Collins
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Rajesh Chopra
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Jyoti S. Choudhary
- Functional
Proteomics Group, The Institute of Cancer Research, Chester Beatty Laboratories, London SW3 6JB, U.K.
| |
Collapse
|
14
|
Ouyang C, Fu Q, Xie Y, Xie J. Forkhead box A2 transcriptionally activates hsa-let-7 g to inhibit hypoxia-induced epithelial-mesenchymal transition by targeting c14orf28 in colorectal cancer. Arab J Gastroenterol 2022; 23:188-194. [PMID: 35514011 DOI: 10.1016/j.ajg.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/28/2022] [Accepted: 04/13/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND STUDY AIMS This study aimed to investigate the effect of Forkhead Box A2 (FOXA2) on migration, invasion, and epithelial-mesenchymal transition (EMT) of colorectal cancer (CRC) cells in hypoxia and explore its related molecular mechanisms. PATIENTS AND METHODS A cellular hypoxia model was established, and the FOXA2 overexpression vector was transfected into SW480 and HCT116 cells. Cell apoptosis, migration, and invasion were examined by flow cytometry, scratch test, and transwell-invasion assay. Next, the hsa-let-7 g gene expression was detected by quantitative reverse transcription-polymerase chain reaction. Relative protein levels of HIF-1, FOXA2, c14orf28, E-cadherin, N-cadherin, and Vimentin were detected by western blot. RESULTS Hypoxia-exposed CRC cells showed a significantly increased cell apoptosis rate, as well as enhanced cell invasion and migration abilities compared with the cells in normoxia. FOXA2 overexpression induced apoptosis and inhibited hypoxia-exposed CRC cell migration and invasion. Additionally, FOXA2 overexpression led to the significantly increased hsa-let-7 g and E-cadherin expression, as well as the decreased c14orf28, N-cadherin, and Vimentin expression in hypoxic CRC cells. CONCLUSIONS This study demonstrated that FOXA2 could affect the apoptosis, migration, invasion, and EMT of CRC cells under hypoxia conditions. FOXA2 transcriptionally activates hsa-let-7 g to inhibit hypoxia-induced EMT by targeting c14orf28.
Collapse
Affiliation(s)
- Canhui Ouyang
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Qubo Fu
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Yun Xie
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Jun Xie
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, China.
| |
Collapse
|
15
|
Almatroudi A. Non-Coding RNAs in Tuberculosis Epidemiology: Platforms and Approaches for Investigating the Genome's Dark Matter. Int J Mol Sci 2022; 23:4430. [PMID: 35457250 PMCID: PMC9024992 DOI: 10.3390/ijms23084430] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/05/2022] [Accepted: 04/14/2022] [Indexed: 02/07/2023] Open
Abstract
A growing amount of information about the different types, functions, and roles played by non-coding RNAs (ncRNAs) is becoming available, as more and more research is done. ncRNAs have been identified as potential therapeutic targets in the treatment of tuberculosis (TB), because they may be essential regulators of the gene network. ncRNA profiling and sequencing has recently revealed significant dysregulation in tuberculosis, primarily due to aberrant processes of ncRNA synthesis, including amplification, deletion, improper epigenetic regulation, or abnormal transcription. Despite the fact that ncRNAs may have a role in TB characteristics, the detailed mechanisms behind these occurrences are still unknown. The dark matter of the genome can only be explored through the development of cutting-edge bioinformatics and molecular technologies. In this review, ncRNAs' synthesis and functions are discussed in detail, with an emphasis on the potential role of ncRNAs in tuberculosis. We also focus on current platforms, experimental strategies, and computational analyses to explore ncRNAs in TB. Finally, a viewpoint is presented on the key challenges and novel techniques for the future and for a wide-ranging therapeutic application of ncRNAs.
Collapse
Affiliation(s)
- Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
16
|
Li Y, Wang W, Wu M, Zhu P, Zhou Z, Gong Y, Gu Y. LncRNA LINC01315 silencing modulates cancer stem cell properties and epithelial-to-mesenchymal transition in colorectal cancer via miR-484/DLK1 axis. Cell Cycle 2022; 21:851-873. [PMID: 35156543 PMCID: PMC8973332 DOI: 10.1080/15384101.2022.2033415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNA long intergenic non-protein coding RNA 01315 (LncRNA LINC01315) has been found to be implicated in various cancers, but its role and functions in colorectal cancer (CRC) remain to be addressed. Data on LINC01315 expression in CRC were gathered using bioinformatics analysis, and cancer stem cells (CSCs) were sorted by aldehyde dehydrogenase (ALDH) assay and flow cytometry. Migration, invasion, and stemness of CSCs isolated from CRC cells after transfection were determined by scratch, Transwell, and sphere-formation assays, respectively. Tumor xenograft model was constructed. Target genes and potential-binding sites were predicted using online databases and further confirmed via dual-luciferase reporter assay. Relative factors expressions were determined via quantitative real-time polymerase-chain reaction and Western blot as needed. LINC01315 was high-expressed in CRC and ALDH+ cells. LINC01315 silencing suppressed the migration, invasion, and sphere formation of CRC cells and tumor growth, and downregulated expressions of CSC molecules (ALDH, cluster of difference 44 (CD44), Prominin, and sex determining region Y-box 2 (SOX2)), Zinc Finger E-Box Binding Homeobox 1 (ZEB1) and Vimentin but upregulated E-Cadherin expression. MiR-484 could competitively bind with LINC01315, and LINC01315 silencing promoted miR-484 expression. The level of Delta Like Non-Canonical Notch Ligand 1 (DLK1), the target gene of miR-484, was enhanced by overexpressed LINC01315 yet was suppressed by LINC01315 silencing. Also, DLK1 silencing reversed the effects of downregulated miR-484 on migration, invasion, sphere formation, and CSC molecules expressions in CRC cells. LINC01315 silencing modulated CSC properties and epithelial-to-mesenchymal transition via miR-484/DLK1 axis.
Collapse
Affiliation(s)
- Youran Li
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing City, China
| | - Wei Wang
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing City, China
| | - Minna Wu
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing City, China
| | - Ping Zhu
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing City, China
| | - Zailong Zhou
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing City, China
| | - Yuxia Gong
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing City, China
| | - Yunfei Gu
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing City, China,CONTACT Yunfei GuJiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Qinhuai District, Nanjing City, Jiangsu Province210029, China. +86-02586617141-71116
| |
Collapse
|
17
|
Cheng Y, Wang S, Mu X. Long non-coding RNA LINC00511 promotes proliferation, invasion, and migration of non-small cell lung cancer cells by targeting miR-625-5p/GSPT1. Transl Cancer Res 2022; 10:5159-5173. [PMID: 35116366 PMCID: PMC8798158 DOI: 10.21037/tcr-21-1468] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/16/2021] [Indexed: 11/10/2022]
Abstract
Background Lung cancer is a malignant tumor with a high rate of mortality and metastasis. Recently, extensive research has shown that long non-coding RNAs (lncRNAs) play a crucial role in the development and progression of non-small cell lung cancer (NSCLC). In this paper, we aimed to explore the impact of long intergenic non-coding RNA 00511 (LINC00511) on the development and metastasis of NSCLC. Methods A dataset containing 501 lung squamous cell carcinoma (LUSC) samples and 49 normal samples was downloaded from The Cancer Genome Atlas (TCGA). The differential gene expression and prognostic potential of LINC00511 in LUSC were analyzed by “limma” in R software. Samples of tumor tissues and normal tissues from 67 patients with NSCLC were obtained, along with clinical features. NSCLC cell proliferation, cell cycle, migration, and invasion were detected by LINC00511 knockdown with Cell Counting Kit-8 (CCK-8), flow cytometry, wound-healing assay, and Transwell experiment. The regulatory relationship between LINC00511 and microRNA (miR)-625-5p, or between miR-625-5p and G1 to S phase transition 1 (GSPT1), was detected by luciferase reporter gene assay. LINC00511, miR-625-5p, and GSPT1 expression in tumor and normal tissues and cells was determined by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot. A xenograft experiment in nude mice was performed. Ki67 and GSPT1 expression in the tumor tissues of the nude mice was assessed by immunohistochemistry. Results LINC00511 expression was clearly higher in the tumor tissues of the NSCLC patients than in normal tissues (P<0.001). High LINC00511 expression was related to larger tumor size, positive lymph node metastasis, advanced TNM stage, and a lower 5-year survival rate. Compared with those of the shNC group, the NSCLC cells of the shLINC00511 group had a prominently lower optical density (OD) 450 value at 72 h, a lower percentage of cells in S phase, a higher relative wound width, and a lower invasive cell number (P<0.01 or P<0.001). LINC00511 promoted GSPT1 expression via suppressing miR-625-5p. Compared with those of the shNC group, the nude mice of the shLINC00511 group had a much lower subcutaneous tumor volume and weight (P<0.05 or P<0.001). Conclusions lncRNA LINC00511 promotes proliferation, invasion, and migration of NSCLC cells by targeting miR-625-5p/GSPT. LINC00511 may be a potential diagnostic marker and therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Yue Cheng
- General Department, Chongqing University Cancer Hospital, Chongqing, China
| | - Shiqiang Wang
- Department of Neuro Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiaosong Mu
- General Department, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
18
|
Xi YQ, Xu LH, Yang LJ, Wang HQ, Yang TC, Li Z, Xie W, Zhang JW, Li XF, Feng MH. Overexpression of eRF3a Promotes Cell Proliferation and Migration in Liver Cancer. Curr Med Sci 2022; 42:100-107. [PMID: 34985612 DOI: 10.1007/s11596-021-2463-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/26/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The eukaryotic release factor 3a (eRF3a), a member of the eukaryotic peptide chain release factor family, is overexpressed in several types of cancer. This study aims to investigate the biological role and mechanism of eRF3a in the progression of liver cancer. METHODS Western blotting and RT-qPCR were used to detect the expression level of eRF3a in normal liver cells and liver cancer cells. The cell transfection experiments were performed to overexpress eRF3a levels in liver cancer cells HCCLM9 and Huh7, and then cell cycle and apoptosis experiments, Cell Counting Kit-8 (CCK8), plate cloning, and Transwell experiments were done to evaluate the function of eRF3a in the progression of liver cancer. The Western blotting was done to explore the mechanism of eRF3a promoting the development of liver cancer. Western blotting and RT-qPCR were used to detect the expression level of eRF3a in normal liver cells and liver cancer cells. The cell transfection experiments were performed to overexpress eRF3a levels in liver cancer cells HCCLM9 and Huh7, and then cell cycle and apoptosis experiments, Cell Counting Kit-8 (CCK8), plate cloning, and Transwell experiments were done to evaluate the function of eRF3a in the progression of liver cancer. The Western blotting was done to explore the mechanism of eRF3a promoting the development of liver cancer. RESULTS eRF3a was significantly highly expressed in liver cancer cells, and its expression level was negatively correlated with the clinical prognosis of patients. In addition, in vitro experiments showed that eRF3a could promote the proliferation and migration of liver cancer cells through the ERK and JNK signaling pathways. CONCLUSION This study suggests that eRF3a may be a potential prognostic marker for liver cancer and act as an oncogene by activating JNK and ERK signaling; therefore, eRF3a may be a new target for the treatment of liver cancer.
Collapse
Affiliation(s)
- Yi-Qing Xi
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Li-Hua Xu
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Li-Jie Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hua-Qiao Wang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Wuhan, 430071, China.,Clinical Cancer Study Center of Hubei Province, Wuhan, 430071, China
| | - Tie-Cheng Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Wuhan, 430071, China.,Clinical Cancer Study Center of Hubei Province, Wuhan, 430071, China
| | - Zhi Li
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Wei Xie
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Wuhan, 430071, China
| | - Jing-Wei Zhang
- Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Wuhan, 430071, China.,Clinical Cancer Study Center of Hubei Province, Wuhan, 430071, China
| | - Xuan-Fei Li
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China. .,Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Wuhan, 430071, China. .,Clinical Cancer Study Center of Hubei Province, Wuhan, 430071, China. .,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, 430071, China.
| | - Mao-Hui Feng
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China. .,Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Wuhan, 430071, China. .,Clinical Cancer Study Center of Hubei Province, Wuhan, 430071, China. .,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, 430071, China.
| |
Collapse
|
19
|
Bioinformatic Analysis Identified Potentially Prognostic Long Noncoding RNAs and MicroRNAs for Gastric Cancer. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6683136. [PMID: 34926687 PMCID: PMC8683174 DOI: 10.1155/2021/6683136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 07/24/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022]
Abstract
Gastric cancer (GC) is the fifth most common malignant tumor in the world. The present study was performed to discover the potential diagnostic and therapeutic long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) of GC. Data used in this study to identify differentially expressed lncRNAs (DElncRNAs) and miRNAs (DEmiRNAs) were obtained from 187 GC tissues and 32 adjacent nontumor tissues. The total clinical data on GC included 187 cases. The above data were from the TCGA database. RStudio/Bioconductor software was used to conduct univariate analysis, the least absolute shrinkage and selection operator (LASSO) Cox, and multivariate Cox proportional risk regression for the DElncRNAs and DEmiRNAs. Clinical information was analyzed through univariate and multivariate Cox analysis. Results: five lncRNAs (AC007785.3, AC079385.3, LINC00392, LINC01729, and U95743.1) and two miRNAs (hsa-miR-3174, hsa-miR-605) were proven to be independent prognostic indicators of GC. Results of the Kaplan-Meier survival analysis showed that AC007785.3, AC079385.3, LINC01729, miR-3174, and miR-605 were significantly correlated with OS of GC. The target genes of AC079385.3, miR-3174, and miR-605 were obtained and clustered mainly on MAPK and cGMP-PKG signaling pathways. The clinical data showed that age and clinicopathologic stage were correlated with the prognosis of GC. Furthermore, AC007785.3 was associated with metastasis of GC, and miR-3174 was associated with the primary tumor condition of GC. We identified three lncRNAs (AC007785.3, AC079385.3, LINC01729), two miRNAs (miR-3174, miR-605), and clinical factors related to the pathogenesis and prognosis of GC. Our predicted results provide a possible entry point for the study of prognostic markers for GC.
Collapse
|
20
|
Song H, Ruan C, Xu Y, Xu T, Fan R, Jiang T, Cao M, Song J. Survival stratification for colorectal cancer via multi-omics integration using an autoencoder-based model. Exp Biol Med (Maywood) 2021; 247:898-909. [PMID: 34904882 DOI: 10.1177/15353702211065010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Prognosis stratification in colorectal cancer helps to address cancer heterogeneity and contributes to the improvement of tailored treatments for colorectal cancer patients. In this study, an autoencoder-based model was implemented to predict the prognosis of colorectal cancer via the integration of multi-omics data. DNA methylation, RNA-seq, and miRNA-seq data from The Cancer Genome Atlas (TCGA) database were integrated as input for the autoencoder, and 175 transformed features were produced. The survival-related features were used to cluster the samples using k-means clustering. The autoencoder-based strategy was compared to the principal component analysis (PCA)-, t-distributed random neighbor embedded (t-SNE)-, non-negative matrix factorization (NMF)-, or individual Cox proportional hazards (Cox-PH)-based strategies. Using the 175 transformed features, tumor samples were clustered into two groups (G1 and G2) with significantly different survival rates. The autoencoder-based strategy performed better at identifying survival-related features than the other transformation strategies. Further, the two survival groups were robustly validated using "hold-out" validation and five validation cohorts. Gene expression profiles, miRNA profiles, DNA methylation, and signaling pathway profiles varied from the poor prognosis group (G2) to the good prognosis group (G1). miRNA-mRNA networks were constructed using six differentially expressed miRNAs (let-7c, mir-34c, mir-133b, let-7e, mir-144, and mir-106a) and 19 predicted target genes. The autoencoder-based computational framework could distinguish good prognosis samples from bad prognosis samples and facilitate a better understanding of the molecular biology of colorectal cancer.
Collapse
Affiliation(s)
- Hu Song
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Chengwei Ruan
- Department of Anorectal Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Yixin Xu
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Teng Xu
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Ruizhi Fan
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Tao Jiang
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Meng Cao
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Jun Song
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| |
Collapse
|
21
|
Chen L, Wang Y, Lu X, Zhang L, Wang Z. miRNA-7062-5p Promoting Bone Resorption After Bone Metastasis of Colorectal Cancer Through Inhibiting GPR65. Front Cell Dev Biol 2021; 9:681968. [PMID: 34485279 PMCID: PMC8416178 DOI: 10.3389/fcell.2021.681968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
Bone metastasis is positively associated with a poor prognosis in patients with colorectal cancer (CRC). CRC always leads to osteolytic change, which is regulated by aberrant activation of osteoclasts. MicroRNAs are remarkedly involved in metastasis of CRC; however, their role in bone metastasis of CRC is still unclear. The aim of this study is to find key microRNAs that are critical to bone resorption in bone metastasis of CRC. In this study, bone metastasis model was established through intratibially injecting CT-26 cells or MC-38 cells. Tartrate-resistant acid phosphatase (TRAP) staining was performed to explore the osteoclastogenesis of primary early osteoclast precursors (OCPs) after stimulation by CT-26 conditioned medium (CM). Then, microarray assay was performed to find differentially expressed miRNAs and mRNAs. The target gene of miRNA was confirmed by dual-luciferase analysis. The effect of miRNA, its target gene on osteoclastogenesis, and involved pathways were explored by Western blot, immunofluorescence analysis, and TRAP staining. Finally, the effect of miRNA on bone resorption in vivo was observed. miRNA-7062-5p was upregulated in early OCPs cultured in CT-26 CM or MC-38 CM. GPR65 was proven to be the target gene of miRNA-7062-5p. Overexpression of GPR65 can rescue the osteoclastogenesis caused by miRNA-7062-5p through activation of AMPK pathway. Local injection of miRNA-7062-5p inhibitors efficiently improved the bone resorption. Our study found the role of miRNA-7062-5p in regulating osteoclast formation, and our findings provided a potential therapeutic target in treatment of bone metastasis of CRC.
Collapse
Affiliation(s)
- Liang Chen
- Department of Orthopedics, Army Medical Center, Army Medical University, Chongqing, China
| | - Yu Wang
- Department of Orthopedics, Army Medical Center, Army Medical University, Chongqing, China
| | - Xingchen Lu
- Department of Orthopedics, Army Medical Center, Army Medical University, Chongqing, China
| | - Lili Zhang
- Department of Military Psychology, College of Psychology, Army Medical University, Chongqing, China
| | - Ziming Wang
- Department of Orthopedics, Army Medical Center, Army Medical University, Chongqing, China
| |
Collapse
|
22
|
Fan X, Huang J, Xu C, Bao M, Xia W, Zhu C. Differential expression of microRNAs in human endometrium after implantation of an intrauterine contraceptive device containing copper. Mol Hum Reprod 2021; 27:6357049. [PMID: 34427668 DOI: 10.1093/molehr/gaab052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
Intrauterine devices containing copper placement will release a large amount of Cu2+ into the uterine fluid, leading to local endometrial damage and inflammation, which is considered to be one of the causes of abnormal uterine bleeding. Studies have shown that the metabolism and function of metal ions are related to the regulation of microRNA. The aims of this study were to investigate changes in endometrial microRNA levels after implantation of an intrauterine device containing copper and to preliminarily explore the signalling pathways involved in abnormal uterine bleeding. The subjects were fertile women, aged 25-35, without major obstetrics and gynaecology diseases. Human endometrial tissues were collected before implantation or removal of the intrauterine device containing copper. High-throughput microRNA sequencing was performed on human endometrial tissues, and real-time quantitative PCR, western blotting and immunohistochemistry were used to detect the expression of relevant genes. MicroRNA sequencing results showed that 72 miRNAs were differentially expressed in the endometrial tissue after the insertion of the intrauterine device containing copper. Implantation of an intrauterine device containing copper implantation can up-regulate the expression of miR-144-3p in endometrial tissue, and therefore, decreases the mRNA and protein expression levels of genes related to endometrial injury and tissue repair, including the MT/NF-κB/MMP damage pathway and the THBS-1/TGF-β/SMAD3 repair pathway. In this study, the molecular mechanisms of abnormal uterine bleeding due to an intrauterine device containing copper were preliminarily investigated. The information will be beneficial for the clinical treatment of abnormal uterine bleeding caused by intrauterine device.
Collapse
Affiliation(s)
- Xiaorong Fan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Huang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengcheng Xu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Bao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Xia
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changhong Zhu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
He Q, Li Z, Lei X, Zou Q, Yu H, Ding Y, Xu G, Zhu W. The underlying molecular mechanisms and prognostic factors of RNA binding protein in colorectal cancer: a study based on multiple online databases. Cancer Cell Int 2021; 21:325. [PMID: 34193169 PMCID: PMC8244213 DOI: 10.1186/s12935-021-02031-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/19/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND RNA binding protein (RBP) is an active factor involved in the occurrence and development of colorectal cancer (CRC). Therefore, the potential mechanism of RBP in CRC needs to be clarified by dry-lab analyses or wet-lab experiments. METHODS The differential RBP gene obtained from the GEPIA 2 (Gene Expression Profiling Interactive Analysis 2) were performed functional enrichment analysis. Then, the alternative splicing (AS) events related to survival were acquired by univariate regression analysis, and the correlation between RBP and AS was analyzed by R software. The online databases were conducted to analyze the mutation and methylation of RBPs in CRC. Moreover, 5 key RBP signatures were obtained through univariate and multivariate Cox regression analysis and established as RBP prognosis model. Subsequently, the above model was verified through another randomized group of TCGA CRC cohorts. Finally, multiple online databases and qRT-PCR analysis were carried to further confirm the expression of the above 5 RBP signatures in CRC. RESULTS Through a comprehensive bioinformatics analysis, it was revealed that RBPs had genetic and epigenetic changes in CRC. We obtained 300 differentially expressed RBPs in CRC samples. The functional analysis suggested that they mainly participated in spliceosome. Then, a regulatory network for RBP was established to participate in AS and DDX39B was detected to act as a potentially essential factor in the regulation of AS in CRC. Our analysis discovered that 11 differentially expressed RBPs with a mutation frequency higher than 5%. Furthermore, we found that 10 differentially expressed RBPs had methylation sites related to the prognosis of CRC, and a prognostic model was constructed by the 5 RBP signatures. In another randomized group of TCGA CRC cohorts, the prognostic performance of the 5 RBP signatures was verified. CONCLUSION The potential mechanisms that regulate the aberrant expression of RBPs in the development of CRC was explored, a network that regulated AS was established, and the RBP-related prognosis model was constructed and verified, which could improve the individualized prognosis prediction of CRC.
Collapse
Affiliation(s)
- Qinglian He
- Department of Pathology, Guangdong Medical University, No.1 Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Ziqi Li
- Department of Pathology, Guangdong Medical University, No.1 Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Xue Lei
- Department of Pathology, Guangdong Medical University, No.1 Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Qian Zou
- Department of Pathology, Guangdong Medical University, No.1 Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Haibing Yu
- School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong Province, China
| | - Yuanlin Ding
- School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong Province, China
| | - Guangxian Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Institute of Clinical Laboratory, Guangdong Medical University, Dongguan, 523808, Guangdong Province, China
| | - Wei Zhu
- Department of Pathology, Guangdong Medical University, No.1 Xincheng Road, Dongguan, 523808, Guangdong Province, China.
| |
Collapse
|
24
|
miR-5000-3p confers oxaliplatin resistance by targeting ubiquitin-specific peptidase 49 in colorectal cancer. Cell Death Discov 2021; 7:129. [PMID: 34075026 PMCID: PMC8169888 DOI: 10.1038/s41420-021-00494-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/07/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the most common form of gastrointestinal malignancies. A growing number of reports focusing on oxaliplatin (OXA) resistance in CRC treatment have revealed that drug resistance is an urgent issue in clinical applications, especially for finding effective therapeutic targets. Recently, microRNAs (miRNAs) are reported to play a critical role in tumor progressions and multi-drug resistance. The main aim of this study is to establish whether miR-5000-3p is an oncogene that is resistant to OXA and further confirm its underlying regulatory role in CRC. The OXA-associated gene expression dataset in CRC cells was downloaded from Gene Expression Omnibus (GEO) database. Statistical software R was used for significance analysis of differentially expressed genes (DEGs) between OXA-resistant (OR)-CRC cells and CRC cells, and results indicated ubiquitin-specific peptidase 49 (USP49) was upregulated in OR-CRC cells. Luciferase reporter assay showed that USP49 was verified to act as a downstream target gene of miR-5000-3p. From the results of TCGA database, miR-5000-3p expression was upregulated and USP49 was downregulated in patients with CRC. The function of miR-5000-3p was detected using MTT assay, wound healing, Transwell, and flow cytometry assays. Moreover, through in vitro and in vivo experiments, miR-5000-3p expression was confirmed to be upregulated in CRC cells or OR-CRC cells comparing to normal cell lines. Molecular mechanism assays revealed that USP49 binds to the miR-5000-3p promoter to increase the expression of miR-5000-3p, resulting in cancer cells sensitized to OXA. To sum up, these results suggest that miR-5000-3p may be a novel biomarker involved in drug-resistance progression of CRC. Moreover, the drug-resistance mechanism of miR-5000-3p/USP49 axis provides new treatment strategies for CRC in clinical trials.
Collapse
|
25
|
Bisht V, Nash K, Xu Y, Agarwal P, Bosch S, Gkoutos GV, Acharjee A. Integration of the Microbiome, Metabolome and Transcriptomics Data Identified Novel Metabolic Pathway Regulation in Colorectal Cancer. Int J Mol Sci 2021; 22:5763. [PMID: 34071236 PMCID: PMC8198673 DOI: 10.3390/ijms22115763] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
Integrative multiomics data analysis provides a unique opportunity for the mechanistic understanding of colorectal cancer (CRC) in addition to the identification of potential novel therapeutic targets. In this study, we used public omics data sets to investigate potential associations between microbiome, metabolome, bulk transcriptomics and single cell RNA sequencing datasets. We identified multiple potential interactions, for example 5-aminovalerate interacting with Adlercreutzia; cholesteryl ester interacting with bacterial genera Staphylococcus, Blautia and Roseburia. Using public single cell and bulk RNA sequencing, we identified 17 overlapping genes involved in epithelial cell pathways, with particular significance of the oxidative phosphorylation pathway and the ACAT1 gene that indirectly regulates the esterification of cholesterol. These findings demonstrate that the integration of multiomics data sets from diverse populations can help us in untangling the colorectal cancer pathogenesis as well as postulate the disease pathology mechanisms and therapeutic targets.
Collapse
Affiliation(s)
- Vartika Bisht
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TH, UK; (V.B.); (Y.X.); (G.V.G.)
- MRC Health Data Research UK (HDR UK), Midlands B15 2TT, UK
| | - Katrina Nash
- College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| | - Yuanwei Xu
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TH, UK; (V.B.); (Y.X.); (G.V.G.)
- MRC Health Data Research UK (HDR UK), Midlands B15 2TT, UK
- Institute of Translational Medicine, University Hospitals Birmingham NHS, Foundation Trust, Birmingham B15 2TT, UK
| | - Prasoon Agarwal
- KTH Royal Institute of Technology, School of Electrical Engineering and Computer Science, 100 44 Stockholm, Sweden;
- Science for Life Laboratory, 171 65 Solna, Sweden
| | - Sofie Bosch
- Department of Gastroenterology and Hepatology, AG&M research institute, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands;
| | - Georgios V. Gkoutos
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TH, UK; (V.B.); (Y.X.); (G.V.G.)
- MRC Health Data Research UK (HDR UK), Midlands B15 2TT, UK
- Institute of Translational Medicine, University Hospitals Birmingham NHS, Foundation Trust, Birmingham B15 2TT, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham, Birmingham B15 2WB, UK
- NIHR Experimental Cancer Medicine Centre, Birmingham B15 2TT, UK
- NIHR Biomedical Research Centre, University Hospital Birmingham, Birmingham B15 2TT, UK
| | - Animesh Acharjee
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TH, UK; (V.B.); (Y.X.); (G.V.G.)
- MRC Health Data Research UK (HDR UK), Midlands B15 2TT, UK
- Institute of Translational Medicine, University Hospitals Birmingham NHS, Foundation Trust, Birmingham B15 2TT, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham, Birmingham B15 2WB, UK
| |
Collapse
|
26
|
Nishiguchi G, Keramatnia F, Min J, Chang Y, Jonchere B, Das S, Actis M, Price J, Chepyala D, Young B, McGowan K, Slavish PJ, Mayasundari A, Jarusiewicz JA, Yang L, Li Y, Fu X, Garrett SH, Papizan JB, Kodali K, Peng J, Pruett Miller SM, Roussel MF, Mullighan C, Fischer M, Rankovic Z. Identification of Potent, Selective, and Orally Bioavailable Small-Molecule GSPT1/2 Degraders from a Focused Library of Cereblon Modulators. J Med Chem 2021; 64:7296-7311. [PMID: 34042448 PMCID: PMC8201443 DOI: 10.1021/acs.jmedchem.0c01313] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Whereas the PROTAC approach to target protein degradation greatly benefits from rational design, the discovery of small-molecule degraders relies mostly on phenotypic screening and retrospective target identification efforts. Here, we describe the design, synthesis, and screening of a large diverse library of thalidomide analogues against a panel of patient-derived leukemia and medulloblastoma cell lines. These efforts led to the discovery of potent and novel GSPT1/2 degraders displaying selectivity over classical IMiD neosubstrates, such as IKZF1/3, and high oral bioavailability in mice. Taken together, this study offers compound 6 (SJ6986) as a valuable chemical probe for studying the role of GSPT1/2 in vitro and in vivo, and it supports the utility of a diverse library of CRBN binders in the pursuit of targeting undruggable oncoproteins.
Collapse
Affiliation(s)
- Gisele Nishiguchi
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Fatemeh Keramatnia
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States.,Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Jaeki Min
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Yunchao Chang
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Barbara Jonchere
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Sourav Das
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Marisa Actis
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Jeanine Price
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Divyabharathi Chepyala
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Brandon Young
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Kevin McGowan
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - P Jake Slavish
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Anand Mayasundari
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Jamie A Jarusiewicz
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Lei Yang
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Yong Li
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Xiang Fu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Shalandus H Garrett
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - James B Papizan
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Kiran Kodali
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Junmin Peng
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States.,Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States.,Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Shondra M Pruett Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Martine F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Charles Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Marcus Fischer
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States.,Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States.,Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Zoran Rankovic
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| |
Collapse
|
27
|
Sun R, Liu J, Nie S, Li S, Yang J, Jiang Y, Cheng W. Construction of miRNA-mRNA Regulatory Network and Prognostic Signature in Endometrial Cancer. Onco Targets Ther 2021; 14:2363-2378. [PMID: 33854334 PMCID: PMC8039850 DOI: 10.2147/ott.s272222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 03/10/2021] [Indexed: 01/04/2023] Open
Abstract
Introduction This bioinformatic study confirmed a new miRNA-mRNA regulatory network and a prognostic signature in endometrial cancer (EC). Materials and Methods We downloaded RNA-seq and miRNA-seq data of EC from the TCGA database, then used EdegR package to screen differentially expressed miRNAs and mRNAs (DE-miRNAs and DE-mRNAs). Then, we constructed a regulatory network of EC-associated miRNAs and hub genes by Cytoscape, and determined the expression of unexplored miRNAs in EC tissues and normal adjacent tissues by quantitative Real-Time PCR (qRT-PCR). A prognostic signature model and a predictive nomogram were constructed. Finally, we explored the association between the prognostic model and the immune cell infiltration. Results A total of 11,531 DE-mRNAs and 236 DE-miRNAs, as well as 275 and 118 candidate DEGs for upregulated and downregulated DE-miRNAs were screened out. The miRNA-mRNA network included 5 downregulated and 13 upregulated DE-miRNAs. qRT-PCR proved that the expression levels of miRNA-18a-5p, miRNA-18b-5p, miRNA-449c-5p and miRNA-1224-5p and their target genes (NR3C1, CTGF, MYC, and TNS1) were consistent with our predictions. Univariate and multivariate Cox proportional hazards regression analyses of the hub genes revealed a significant prognostic value of NR3C1, EZH2, AND GATA4, and these genes were closely related to eight types of immune infiltration cells. Conclusion We identified three genes as candidate biomarkers for EC, which may provide a theoretical basis for targeted therapy.
Collapse
Affiliation(s)
- Rui Sun
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Sipei Nie
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Siyue Li
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Jing Yang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Yi Jiang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Wenjun Cheng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
28
|
Lu W, Huang Z, Wang J, Liu H. Long non-coding RNA DANCR accelerates colorectal cancer progression via regulating the miR-185-5p/HMGA2 axis. J Biochem 2021; 171:389-398. [PMID: 33481014 DOI: 10.1093/jb/mvab011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 01/07/2021] [Indexed: 11/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are crucial players in tumor progression. Herein, this work was designated to decipher the clinical significance, function and molecular mechanism of an lncRNA, differentiation antagonizing non-coding RNA (DANCR) in colorectal cancer (CRC). Quantitative real-time PCR (qRT-PCR) was adopted to examine DANCR, miR-185-5p and HMGA2 mRNA expressions in CRC tissues and cells. Both gain-of-function and loss-of-function cell models for DANCR were established, and then MTT, wound healing and Transwell, flow cytometry assays were carried out to detect the proliferation, migration, invasion, cell cycle and apoptosis of CRC cells. Dual luciferase reporter gene assay and RIP assay were utilized to validate the targeting relationships between DANCR and miR-185-5p. Western blot was employed for detecting high mobility group A2 (HMGA2) expressions in CRC cells. In this study, we demonstrated that the expression of DANCR was elevated in CRC tissues and cell lines, and its high expression was significantly associated with increased TNM stage and positive lymph node metastasis. DANCR overexpression promoted CRC cell proliferation, migration, invasion and cell cycle progression, but inhibited apoptosis; while knocking down DANCR caused the opposite effects. DANCR was further identified as a molecular sponge for miR-185-5p, and DANCR could indirectly increase the expression of HMGA2 via repressing miR-185-5p. In conclusion, DANCR/miR-185-5p/HMGA2 axis participated in the progression of CRC.
Collapse
Affiliation(s)
- Weiqun Lu
- Department of Gastrointestinal Surgical Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, P.R. China
| | - Zhiliang Huang
- Department of Gastrointestinal Surgical Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, P.R. China
| | - Jia Wang
- Department of Gastrointestinal Surgical Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, P.R. China
| | - Haiying Liu
- Department of Gastrointestinal Surgical Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, P.R. China
| |
Collapse
|
29
|
Pourhanifeh MH, Vosough M, Mahjoubin-Tehran M, Hashemipour M, Nejati M, Abbasi-Kolli M, Sahebkar A, Mirzaei H. Autophagy-related microRNAs: Possible regulatory roles and therapeutic potential in and gastrointestinal cancers. Pharmacol Res 2020; 161:105133. [DOI: 10.1016/j.phrs.2020.105133] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/23/2020] [Accepted: 08/07/2020] [Indexed: 02/08/2023]
|
30
|
Guo K, Gong W, Wang Q, Gu G, Zheng T, Li Y, Li W, Fang M, Xie H, Yue C, Yang J, Zhu Z. LINC01106 drives colorectal cancer growth and stemness through a positive feedback loop to regulate the Gli family factors. Cell Death Dis 2020; 11:869. [PMID: 33067422 PMCID: PMC7567881 DOI: 10.1038/s41419-020-03026-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 08/23/2020] [Accepted: 08/26/2020] [Indexed: 02/08/2023]
Abstract
Long non-coding RNAs (lncRNAs) are essential contributors to the progression of various human cancers. Long intergenic non-protein coding RNA 1106 is a member of lncRNAs family. Until now, the specific role of LINC01106 in CRC remains undefined. The aim the current study was to unveil the functions of LINC01106 and explore its potential molecular mechanism in CRC. Based on the data of online database GEPIA, we determined that LINC01106 was expressed at a high level in colon adenocarcinoma (COAD) tissues compared to normal colon tissues. More importantly, high level of LINC01106 had negative correlation with the overall survival of COAD patients. Additionally, we also determined the low level of LINC01106 in normal colon tissues based on UCSC database. Through qRT-PCR, we identified that LINC01106 was highly expressed in CRC tissues compared to adjacent normal ones. Similarly, we detected the expression of LINC01106 and confirmed that LINC01106 was expressed higher in CRC cells than that in normal cells. Subsequently, LINC01106 was mainly distributed in the cytoplasm. LINC01106 induced the proliferation, migration, and stem-like phenotype of CRC cells. Mechanistically, cytoplasmic LINC01106 positively modulated Gli4 in CRC cells by serving as a miR-449b-5p sponge. Furthermore, nuclear LINC01106 could activate the transcription of Gli1 and Gli2 through recruiting FUS to Gli1 and Gli2 promoters. Mechanism of investigation unveiled that Gli2 was a transcription activator of LINC01106. In conclusion, Gli2-induced upregulation of LINC01106 aggravates CRC progression through upregulating Gli2, Gli2, and Gli4.
Collapse
Affiliation(s)
- Kun Guo
- Department of General Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui Province, P. R. China
| | - Wenbin Gong
- Department of General Surgery, Jinling Hospital, School of Medicine, Southeast University, 210009, Nanjing, Jiangsu Province, P. R. China
| | - Qin Wang
- Institute of Clinical Physiology, Jiangsu Health Vocational College, 211800, Nanjing, Jiangsu Province, P. R. China
| | - Guosheng Gu
- Department of General Surgery, Jinling Hospital, Nanjing Medical University, 210002, Nanjing, Jiangsu Province, P. R. China
| | - Tao Zheng
- Department of General Surgery, Jinling Hospital, Nanjing Medical University, 210002, Nanjing, Jiangsu Province, P. R. China
| | - Ying Li
- Institute of Clinical Pharmacology, Anhui Medical University, 230032, Hefei, Anhui Province, P. R. China
| | - Weijie Li
- Department of General Surgery, Jinling Hospital, Nanjing Medical University, 210002, Nanjing, Jiangsu Province, P. R. China
| | - Miao Fang
- Department of General Surgery, Jinling Hospital, Nanjing Medical University, 210002, Nanjing, Jiangsu Province, P. R. China
| | - Haohao Xie
- Department of General Surgery, Jinling Hospital, Nanjing Medical University, 210002, Nanjing, Jiangsu Province, P. R. China
| | - Chao Yue
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 210009, Nanjing, Jiangsu Province, P. R. China.
| | - Jianbo Yang
- Department of General Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui Province, P. R. China.
| | - Zhiqiang Zhu
- Department of General Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui Province, P. R. China.
| |
Collapse
|
31
|
Abstract
Herein, we report the development of a highly sensitive nanotechnology-based system—silicon-on-insulator nanowire biosensor for the revelation of microRNAs (miRNAs), associated with the development of glioma in the human. In this system, a sensor chip, bearing an array of silicon nanowire structures, is employed. The sensor chip is fabricated using a top-down technology. In our experiments reported herein, we demonstrated the detection of DNA oligonucleotide (oDNA), which represents a synthetic analogue of microRNA-363 associated with the development of glioma. To provide biospecific detection of the target oligonucleotides, the surface of the nanowire structures is modified with oligonucleotide probes; the latter are complementary to the target ones. The concentration limit of the target oligonucleotide detection, attained using our nanowire biosensor, is at the level of DL~10−17 M. The revelation of the elevated level of glioma-associated miRNA in plasma is also demonstrated.
Collapse
|
32
|
Zhou M, Wu Y, Li H, Zha X. MicroRNA-144: A novel biological marker and potential therapeutic target in human solid cancers. J Cancer 2020; 11:6716-6726. [PMID: 33046994 PMCID: PMC7545670 DOI: 10.7150/jca.46293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. It has been reported that microRNA-144 (miR-144) is highly conserved and can combine complementarily with the 3'-UTRs of target gene mRNAs to inhibit mRNA translation or promote targeted mRNA degradation. MiR-144 is abnormally expressed and has been identified as a tumor suppressor in many types of solid tumors. Increasing evidence supports a crucial role for miR-144 in modulating physiopathologic processes, such as proliferation, apoptosis, invasion, migration and angiogenesis in different tumor cells. Apart from these functions, miR-144 can also affect drug sensitivity, cancer treatment and patient prognosis. In this review, we summarize the biological functions of miR-144, its direct targets and the important signal pathways through which it acts in relation to various tumors. We also discuss the role of miR-144 in tumor biology and its clinical significance in detail and offer novel insights into molecular targeting therapy for human cancers.
Collapse
Affiliation(s)
- Meng Zhou
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Yuncui Wu
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Hongwu Li
- Department of Otorhinolaryngology, Head & Neck Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230000, China
| | - Xiaojun Zha
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
33
|
Wang WY, Lu WC. Reduced Expression of hsa-miR-338-3p Contributes to the Development of Glioma Cells by Targeting Mitochondrial 3-Oxoacyl-ACP Synthase (OXSM) in Glioblastoma (GBM). Onco Targets Ther 2020; 13:9513-9523. [PMID: 33061435 PMCID: PMC7522303 DOI: 10.2147/ott.s262873] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/22/2020] [Indexed: 12/19/2022] Open
Abstract
Background MicroRNAs have been identified as major regulators and therapeutic targets of glioblastoma (GBM). It is thus meaningful to study the miRNAs differentially expressed (DE-miRNAs) in GBM. Materials and Methods We performed a meta-analysis of previously published microarray data using the R-based “metaMA” package to identify DE-miRNAs.The biological processes of the DE-miRNAs were then analyzed using FunRich. KEGG pathways of the DE-miRNAs gene targets were analyzed by mirPath V.3. Luciferase activity assay was performed to validate that OXSM is a direct target of hsa-miR338-3p. Flow cytometry was used to detect the effects of miR-338-3p on GBM cell proliferation, apoptosis and cell cycle. Results DE-miRNAs in blood and brain tissue from GBM were identified. “Type I interferon signaling pathway” and “VEGF and VEGFR signaling network” were the most significantly enriched biological processes shared by all GBM types. In KEGG pathway analysis, DE-miRNAs both in blood and tissue show altered fatty acid biosynthesis. Further validation shows hsa-miR-338-3p regulates fatty acid metabolism by directly targeting OXSM gene. In addition, our data revealed an accelerated cell cycle and an anti-apoptotic role for OXSM in glioma cells, which has not been reported. Finally, we confirmed that hsa-miR-338-3p inhibitor antagonized the effect of downregulation of OXSM on cell cycle and apoptosis of GBM cells. Conclusion We revealed that hsa-miR-338-3p, down-regulated in GBM, may affect the biogenesis and rapid proliferation of glioma cells by regulating the level of OXSM, providing new insights into understanding the pathogenesis of GBM and developing strategies to improve GBM prognosis.
Collapse
Affiliation(s)
- Wen-Yi Wang
- Department of Neurosurgery, Dafeng People's Hospital of Yancheng City, Yancheng City, Jiangsu Province, People's Republic of China
| | - Wei-Cheng Lu
- Department of Neurosurgery, First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
34
|
Loeffler MA, Hu J, Kirchner M, Wei X, Xiao Y, Albrecht T, De La Torre C, Sticht C, Banales JM, Vogel MN, Pathil-Warth A, Mehrabi A, Hoffmann K, Rupp C, Köhler B, Springfeld C, Schirmacher P, Ji J, Roessler S, Goeppert B. miRNA profiling of biliary intraepithelial neoplasia reveals stepwise tumorigenesis in distal cholangiocarcinoma via the miR-451a/ATF2 axis. J Pathol 2020; 252:239-251. [PMID: 32710569 DOI: 10.1002/path.5514] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/30/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022]
Abstract
Distal cholangiocarcinoma (dCCA) is a biliary tract cancer with a dismal prognosis and is often preceded by biliary intraepithelial neoplasia (BilIN), representing the most common biliary non-invasive precursor lesion. BilIN are histologically well defined but have not so far been characterised systematically at the molecular level. The aim of this study was to determine miRNA-regulated genes in cholangiocarcinogenesis via BilIN. We used a clinicopathologically well-characterised cohort of 12 dCCA patients. Matched samples of non-neoplastic biliary epithelia, BilIN and invasive tumour epithelia of each patient were isolated from formalin-fixed paraffin-embedded tissue sections by laser microdissection. The resulting 36 samples were subjected to total RNA extraction and the expression of 798 miRNAs was assessed using the Nanostring® technology. Candidate miRNAs were validated by RT-qPCR and functionally investigated following lentiviral overexpression in dCCA-derived cell lines. Potential direct miRNA target genes were identified by microarray and prediction algorithms and were confirmed by luciferase assay. We identified 49 deregulated miRNAs comparing non-neoplastic and tumour tissue. Clustering of these miRNAs corresponded to the three stages of cholangiocarcinogenesis, supporting the concept of BilIN as a tumour precursor. Two downregulated miRNAs, i.e. miR-451a (-10.9-fold down) and miR-144-3p (-6.3-fold down), stood out by relative decrease. Functional analyses of these candidates revealed a migration inhibitory effect in dCCA cell lines. Activating transcription factor 2 (ATF2) and A disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) were identified as direct miR-451a target genes. Specific ATF2 inhibition by pooled siRNAs reproduced the inhibitory impact of miR-451a on cancer cell migration. Thus, our data support the concept of BilIN as a direct precursor of invasive dCCA at the molecular level. In addition, we identified miR-451a and miR-144-3p as putative tumour suppressors attenuating cell migration by inhibiting ATF2 in the process of dCCA tumorigenesis. © The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Moritz A Loeffler
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jun Hu
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Martina Kirchner
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Xiyang Wei
- Life Sciences Institute, Zhejiang University, Hangzhou, PR China
| | - Yi Xiao
- Life Sciences Institute, Zhejiang University, Hangzhou, PR China
| | - Thomas Albrecht
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Carsten Sticht
- Medical Research Centre, University of Heidelberg, Mannheim, Germany
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, San Sebastian, Spain
| | - Monika N Vogel
- Diagnostic and Interventional Radiology, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Anita Pathil-Warth
- Department of Internal Medicine IV, Gastroenterology and Hepatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Arianeb Mehrabi
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany.,Liver Cancer Center Heidelberg (LCCH), Heidelberg, Germany
| | - Katrin Hoffmann
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany.,Liver Cancer Center Heidelberg (LCCH), Heidelberg, Germany
| | - Christian Rupp
- Department of Internal Medicine IV, Gastroenterology and Hepatology, University Hospital Heidelberg, Heidelberg, Germany.,Liver Cancer Center Heidelberg (LCCH), Heidelberg, Germany
| | - Bruno Köhler
- Liver Cancer Center Heidelberg (LCCH), Heidelberg, Germany.,Department of Medical Oncology, University Hospital Heidelberg, National Center for Tumor Diseases, Heidelberg, Germany
| | - Christoph Springfeld
- Liver Cancer Center Heidelberg (LCCH), Heidelberg, Germany.,Department of Medical Oncology, University Hospital Heidelberg, National Center for Tumor Diseases, Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Liver Cancer Center Heidelberg (LCCH), Heidelberg, Germany
| | - Junfang Ji
- Life Sciences Institute, Zhejiang University, Hangzhou, PR China
| | - Stephanie Roessler
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Liver Cancer Center Heidelberg (LCCH), Heidelberg, Germany
| | - Benjamin Goeppert
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Liver Cancer Center Heidelberg (LCCH), Heidelberg, Germany
| |
Collapse
|
35
|
Yu Y, Yan R, Chen X, Sun T, Yan J. Paeonol suppresses the effect of ox-LDL on mice vascular endothelial cells by regulating miR-338-3p/TET2 axis in atherosclerosis. Mol Cell Biochem 2020; 475:127-135. [PMID: 32770325 DOI: 10.1007/s11010-020-03865-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/28/2020] [Indexed: 10/23/2022]
Abstract
Atherosclerosis is the common vascular disease. Vascular smooth muscle cell proliferation and vascular endothelial cell (VEC) dysfunction are involved in the causes of atherosclerosis. And oxidized low-density lipoprotein (ox-LDL)-induced vascular endothelial cells (VECs) are suitable models for studying atherosclerosis development. Paeonol was reported to repress ox-LDL-induced VEC progression. However, its detailed mechanism was not fully reported. MicroRNAs (miRNAs) acted as regulators in multiple diseases. Previous findings found that microRNA-338-3p (miR-338-3p) was overexpressed in Atherosclerosis process. However, the function and underlying mechanism of miR-338-3p in ox-LDL-treated VECs needed to be elucidated. The purpose of this research was to reveal the role of miR-338-3p in paeonol-regulated ox-LDL-induced VEC progression. Cell counting kit-8 (CCK-8) and flow cytometry were employed to determine cell viability and apoptosis, respectively. Moreover, the levels of IL-6 and IL-1β were analyzed using enzyme-linked immunosorbent assay, as well as the contents of reactive oxygen species, lactate dehydrogenase, and malonic dialdehyde were investigated using related kits. Furthermore, quantitative real-time polymerase chain reaction was carried out to determine the expression of miR-338-3p. Western blot assay was conducted to detect the level of tet methylcytosine dioxygenase 2 (TET2). Besides, the interaction between miR-338-3p and TET2 was predicted by DIANA, and then confirmed by the dual-luciferase reporter assay and RNA immunoprecipitation assay. Ox-LDL repressed mice VEC viability, and promoted apoptosis, inflammatory response, and oxidative injury. Paeonol inhibited the effect of ox-LDL on the growth of the VECs. Furthermore, paeonol regulated VEC development via downregulating miR-338-3p expression. Interestingly, miR-338-3p targeted TET2 and inhibited TET2 expression. MiR-338-3p modulated ox-LDL-treated VEC growth through suppressing TET2 expression. We demonstrated that paeonol attenuated the effect of ox-LDL on the development of mice VECs via modulating miR-338-3p/TET2 axis, providing a theoretical basis for the treatment of AS.
Collapse
Affiliation(s)
- Yunfu Yu
- Department of Cardiology, Central China Fuwai Hospital, Heart Center of Henan Provincial People's Hospital, No. 1 Yuwai Street, Zhengdong New District, Zhengzhou, 450000, Henan Province, China
| | - Rui Yan
- Department of Cardiology, Central China Fuwai Hospital, Heart Center of Henan Provincial People's Hospital, No. 1 Yuwai Street, Zhengdong New District, Zhengzhou, 450000, Henan Province, China
| | - Xiaozhen Chen
- Department of Cardiology, Central China Fuwai Hospital, Heart Center of Henan Provincial People's Hospital, No. 1 Yuwai Street, Zhengdong New District, Zhengzhou, 450000, Henan Province, China
| | - Tao Sun
- Department of Cardiology, Central China Fuwai Hospital, Heart Center of Henan Provincial People's Hospital, No. 1 Yuwai Street, Zhengdong New District, Zhengzhou, 450000, Henan Province, China
| | - Jifeng Yan
- Department of Cardiology, Central China Fuwai Hospital, Heart Center of Henan Provincial People's Hospital, No. 1 Yuwai Street, Zhengdong New District, Zhengzhou, 450000, Henan Province, China.
| |
Collapse
|
36
|
Wu X, Cui F, Chen Y, Zhu Y, Liu F. Long Non-Coding RNA LOXL1-AS1 Enhances Colorectal Cancer Proliferation, Migration and Invasion Through miR-708-5p/CD44-EGFR Axis. Onco Targets Ther 2020; 13:7615-7627. [PMID: 32821123 PMCID: PMC7423350 DOI: 10.2147/ott.s258935] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/13/2020] [Indexed: 12/28/2022] Open
Abstract
Introduction Colorectal cancer (CRC), the third most common cancer worldwide, involves a physiological and pathological long non-coding RNA (lncRNA) paradigm shift. It has been reported that the lncRNA LOXL1-AS1 affects tumor development for many kinds of cancers, but its functions and mechanisms in CRC remain unknown. Methods Expression levels of LOXL1-AS1 and miR-708-5p within CRC tissues and cell lines were measured using qRT-PCR. The performance of gain-of-function and loss-of-function assays was aimed at examining the effects of LOXL1-AS1 and miR-708-5p; colony formation and cell viability assays were carried out to measure cell multiplication; and Transwell migration and wound-healing assays were carried out for the measurement of cell migration and invasion. Luciferase reporter assay was used to verify the interactions between LOXL1-AS1 and miR-708-5p and between miR-708-5p and the CD44-EGFR signaling pathway. Finally, expression of CD44 and EGFR proteins was measured by Western blot and immunofluorescence assays. Results In this study, we reveal that the regulation of lncRNA LOXL1-AS1 occurs within CRC based on the correlation with poor clinical outcomes. LOXL1-AS1 knockdown along with miR-708-5p overpresentation in CRC cell lines inhibited cell multiplication, migration, and invasion. The inhibiting effect of LOXL1-AS1 knockdown on CRC was reversed by upregulating the CD44-EGFR signal pathway. From the perspective of mechanism, LOXL1-AS1 imposes sponging upon miR-708-5p and thereby promotes the CD44-EGFR signal pathway in CRC cells. Discussion This study demonstrated that lncRNA LOXL1-AS1 enhances multiplication, migration, invasion, and progression of CRC by sponging miR-708-5p to regulate the CD44-EGFR signal pathway.
Collapse
Affiliation(s)
- Xiaoyu Wu
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Facai Cui
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yu Chen
- Department of Pathology, Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Ya Zhu
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Fengzhen Liu
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
37
|
MicroRNA-100 functions as a tumor suppressor in cervical cancer via downregulating the SATB1 expression and regulating AKT/mTOR signaling pathway and epithelial-to-mesenchymal transition. Oncol Lett 2020; 20:1336-1344. [PMID: 32724376 PMCID: PMC7377180 DOI: 10.3892/ol.2020.11686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 03/03/2020] [Indexed: 12/13/2022] Open
Abstract
Cervical cancer (CC) is a common malignant tumor among women worldwide, remaining the fourth most frequent cause of cancer death in women. Currently, microRNA (miRNA) is a prevalent topic in tumor-related research. The present study focused on the mechanisms of miR-100 in CC progression. qRT-PCR analysis revealed that the miR-100 expression was notably decreased in CC tissues. In addition, miR-100 downregulation was confirmed to be significantly related to the malignant clinicopathologic features of CC patients. Furthermore, miR-100 overexpression was also verified to significantly repress CC cell proliferation, migration and invasion abilities through modulating the AKT/mTOR signaling pathway and epithelial-to-mesenchymal transition. Bioinformatics analysis and luciferase reporter assay identified that special AT-rich sequence-binding protein 1 was a functional target for miR-100 in CC cells. Moreover, miR-100 overexpression was found to markedly repress the CC tumor growth in vivo. In conclusion, the above results revealed that miR-100 functioned as a cancer suppressor in CC progression and may provide insights into the novel therapeutic target for CC treatment.
Collapse
|
38
|
Liu XH, Wu XR, Lan N, Zheng XB, Zhou C, Hu T, Chen YF, Cai ZR, Chen ZX, Lan P, Wu XJ. CD73 promotes colitis-associated tumorigenesis in mice. Oncol Lett 2020; 20:1221-1230. [PMID: 32724362 PMCID: PMC7377052 DOI: 10.3892/ol.2020.11670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 04/29/2020] [Indexed: 12/26/2022] Open
Abstract
Patients with inflammatory bowel disease (IBD) are at a higher risk of developing colitis-associated colorectal cancer. The aim of the present study was to investigate the role of CD73 in IBD-associated tumorigenesis. A mouse model of colitis-associated tumorigenesis (CAT) induced by azoxymethane and dextran sulfate sodium was successfully constructed. Model mice were injected with CD73 inhibitor or adenosine receptor agonist. Colon length, body weight loss and tumor formation were assessed macroscopically. Inflammatory cytokine measurement and RNA sequencing on colon tissues were performed. Inhibition of CD73 by adenosine 5′-(α,β-methylene) diphosphate (APCP) suppressed the severity of CAT with attenuated weight loss, longer colons, lower tumor number and smaller tumor size compared with the model group. Activation of adenosine receptors using 1-(6-amino-9H-purin-9-yl)-1-deoxy-N-ethyl-β-D-ribofuranuronamide (NECA) exacerbated CAT. Histological assessment indicated that inhibition of CD73 reduced, while activation of adenosine receptors exacerbated, the histological damage of the colon. Increased expression of pro-inflammatory cytokines (tumor necrosis factor-α and interleukin-6) in colonic tissue was detected in the NECA group. According to RNA sequencing results, potential oncogenes such as arachidonate 15-lipoxygenase (ALOX15), Bcl-2-like protein 15 (Bcl2l15) and N-acetylaspartate synthetase (Nat8l) were downregulated in the APCP group and upregulated in the NECA group compared with the model group. Therefore, inhibition of CD73 attenuated IBD-associated tumorigenesis, while activation of adenosine receptors exacerbated tumorigenesis in a C57BL/6J mouse model. This effect may be associated with the expression of pro-inflammatory cytokines and the regulation of ALOX15, Bcl2l15 and Nat8l.
Collapse
Affiliation(s)
- Xuan-Hui Liu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China.,Department of Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xian-Rui Wu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China.,Department of Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong 510655, P.R. China
| | - Nan Lan
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China.,Department of Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xiao-Bin Zheng
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China.,Department of Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Chi Zhou
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China.,Department of Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Tuo Hu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China.,Department of Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Yu-Feng Chen
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China.,Department of Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Ze-Rong Cai
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China.,Department of Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Ze-Xian Chen
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China.,Department of Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Ping Lan
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China.,Department of Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xiao-Jian Wu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China.,Department of Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| |
Collapse
|
39
|
Zhu Y, Wang Q, Xia Y, Xiong X, Weng S, Ni H, Ye Y, Chen L, Lin J, Chen Y, Niu H, Chen X, Lin Y. Evaluation of MiR-1908-3p as a novel serum biomarker for breast cancer and analysis its oncogenic function and target genes. BMC Cancer 2020; 20:644. [PMID: 32650755 PMCID: PMC7350204 DOI: 10.1186/s12885-020-07125-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023] Open
Abstract
Background Breast cancer is one of the most common tumors for women globally. Various miRNAs have been reported to play a crucial role in breast cancer, however the clinical significance of miR-1908-3p in breast cancer remains unclear. The present study aimed to explore the role of miR-1908-3p in breast cancer. Methods The expression of miR-1908-3p was detected in 50 pairs of breast cancer tissues and adjacent normal tissues, 60 breast cancer patient serum and 60 healthy volunteer serum. The functional roles of miR-1908-3p in breast cancer cells such as proliferation, migration and invasion were evaluated using CCK8, SRB, wound healing and transwell chambers. In addition, bioinformatics tools were used to identify potential targets of miR-1908-3p. Results The results showed that the expression of miR-1908-3p were increased in breast cancer tissues and serum compared with normal breast tissues and serum of healthy volunteers respectively. Furthermore, the young breast cancer patients and HER2-positive patients had a higher level of tissues’ miR-1908-3p than elder breast cancer patients and HER2-negative patients, respectively. The young breast cancer patients had a higher level of serum miR-1908-3p than elder breast cancer patients, ROC analysis suggested that miR-1908-3p had the potential as a promising serum diagnostic biomarker of breast cancer. Up-regulation of miR-1908-3p promoted the cells proliferation, migration and invasion while knockdown of miR-1908-3p inhibited these processes in breast cancer cell MCF-7 and MDA-MB-231. The potential target genes of miR-1908-3p in breast cancer included ID4, LTBP4, GPM6B, RGMA, EFCAB1, ALX4, OSR1 and PPARA. Higher expression of these eight genes correlated with a better prognosis for breast cancer patients. Conclusions These results suggest that miR-1908-3p may exert its oncogenic functions via suppression of these eight genes in breast cancer.
Collapse
Affiliation(s)
- Youzhi Zhu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Qingshui Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China.,The Engineering Technology Research Center of Characteristic Medicinal Plants of Fujian, Ningde Normal University, Ningde, China
| | - Yun Xia
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Xiaoxue Xiong
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Shuyun Weng
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Huizhen Ni
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yan Ye
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Ling Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Junyu Lin
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yajuan Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Haitao Niu
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Xiangjin Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
| | - Yao Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China.
| |
Collapse
|
40
|
Yin W, Xu J, Li C, Dai X, Wu T, Wen J. Circular RNA circ_0007142 Facilitates Colorectal Cancer Progression by Modulating CDC25A Expression via miR-122-5p. Onco Targets Ther 2020; 13:3689-3701. [PMID: 32431519 PMCID: PMC7200250 DOI: 10.2147/ott.s238338] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/03/2020] [Indexed: 12/15/2022] Open
Abstract
Background Colorectal cancer (CRC) is a common malignant tumor in digestive system. Circular RNA (circRNA) circ_0007142 has been identified as an oncogene in CRC. However, the mechanism of circ_0007142 in CRC was rarely reported. Materials and Methods The levels of circ_0007142, dedicator of cytokinesis 1 (DOCK1), microRNA-122-5p (miR-122-5p), and cell division cycle 25A (CDC25A) in CRC tissues (n=31) and cells were examined by quantitative real-time polymerase chain reaction (qRT-PCR). The cell viability and colony-forming ability were evaluated via 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay and colony-formation assay, respectively. The migrated and invaded abilities were monitored by Transwell assay. The dual-luciferase reporter assay was performed to validate the interactions between miR-122-5p and circ_0007142 or CDC25A. The protein level of CDC25A was detected via Western blot assay. The biological role of circ_0007142 was examined by xenograft tumor model in vivo. Results The levels of circ_0007142 and CDC25A were enhanced and the level of miR-122-5p was declined in CRC tissues and cells, while the level of DOCK1 had no fluctuation. Circ_0007142 sponged miR-122-5p and CDC25A was a target of miR-122-5p. Circ_0007142 knockdown impeded cell proliferation, colony formation, migration, and invasion in CRC cells by regulating miR-122-5p. Besides, miR-122-5p inhibitor promoted cell proliferation, colony formation, migration, and invasion in CRC cells by modulating CDC25A. Circ_0007142 regulated CDC25A expression in CRC cells by sponging miR-122-5p. Moreover, circ_0007142 knockdown blocked CRC tumor growth in vivo. Conclusion Circ_0007142 modulated CDC25A expression to promote CRC progression by sponging miR-122-5p.
Collapse
Affiliation(s)
- Wenzhe Yin
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, People's Republic of China
| | - Jun Xu
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, People's Republic of China
| | - Chao Li
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, People's Republic of China
| | - Xiankui Dai
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, People's Republic of China
| | - Tong Wu
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, People's Republic of China
| | - Jifeng Wen
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, People's Republic of China
| |
Collapse
|
41
|
Zhou H, Rao Y, Sun Q, Liu Y, Zhou X, Chen Y, Chen J. MiR-4458/human antigen R (HuR) modulates PBX3 mRNA stability in melanoma tumorigenesis. Arch Dermatol Res 2020; 312:665-673. [PMID: 32157373 DOI: 10.1007/s00403-020-02051-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/18/2022]
Abstract
Melanoma, a malignancy of the melanocyte, is characterized as the most fatal skin cancer with an increasing incidence. Of note, in spite of great attempts made for better treatment, the therapeutic outcome is barely satisfactory. Abnormal expression of microRNAs (miRNAs) acting as oncogenes or tumor suppressor genes, is frequently implicated in multiple human cancers, including melanoma. Here, we found that miRNA-4458, a reportedly tumor-suppressive miRNA in several cancers, was downregulated in melanoma cells. Besides, our findings indicated that microRNA-4458 (miR-4458) hindered cell proliferation and migration, yet induced apoptosis in melanoma. Mechanical interaction of miR-4458 and PBX3 mRNA, thereby inhibiting PBX3 expression in melanoma cells, was also presented in this work. Human antigen R (HuR) was reported to be greatly upregulated in diverse cancers and HuR-dependent stabilization of target gene contributed a lot to tumor progression. In this study, it revealed the stabilization of PBX3 mRNA by HuR, thereby boosting PBX3 expression. Lastly, we concluded that miR-4458 and HuR modulated the expression of PBX3 in a competitive manner in melanoma tumorigenesis, which might yield a novel insight into the molecular pathogenesis of melanoma.
Collapse
Affiliation(s)
- Henghua Zhou
- Department of Pathology, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Center for Specialty Strategy Research of Shanghai JiaoTong University China Hospital Development Institute, Shanghai, 200011, China
| | - Yamin Rao
- Department of Pathology, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Center for Specialty Strategy Research of Shanghai JiaoTong University China Hospital Development Institute, Shanghai, 200011, China
| | - Qilin Sun
- Department of Dermatology and Dermatologic Surgery, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Center for Specialty Strategy Research of Shanghai JiaoTong University China Hospital Development Institute, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Yang Liu
- Department of Dermatology and Dermatologic Surgery, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Center for Specialty Strategy Research of Shanghai JiaoTong University China Hospital Development Institute, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Xiaobo Zhou
- Department of Dermatology and Dermatologic Surgery, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Center for Specialty Strategy Research of Shanghai JiaoTong University China Hospital Development Institute, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Ying Chen
- Department of Pathology, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Center for Specialty Strategy Research of Shanghai JiaoTong University China Hospital Development Institute, Shanghai, 200011, China.
| | - Jun Chen
- Department of Dermatology and Dermatologic Surgery, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Center for Specialty Strategy Research of Shanghai JiaoTong University China Hospital Development Institute, No. 639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
42
|
Wu W, Guo L, Liang Z, Liu Y, Yao Z. Lnc-SNHG16/miR-128 axis modulates malignant phenotype through WNT/β-catenin pathway in cervical cancer cells. J Cancer 2020; 11:2201-2212. [PMID: 32127947 PMCID: PMC7052928 DOI: 10.7150/jca.40319] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 01/04/2020] [Indexed: 12/19/2022] Open
Abstract
Background: The lnc-SNHG16 serves as an oncogene and miR-128 acts as a tumor suppressor in various cancers. However, the functional role of lnc-SNHG16 and miR-128 in CC still remain unknown. This study aims to explore the expression level of lnc-SNHG16 and miR-128 and its biological roles in CC. Methods: lnc-SNHG16, miR-128, GSPT1 and WNT3A expression were analyzed using quantitative real-time PCR and bioinformatics in cervical cancer tissues and cells. Cell Counting Kit-8, EdU staining, colony formation assay, western blot, Transwell, immunofluorescence, immunohistochemical staining, luciferase reporter assay, electrophoretic mobility shift, tumor xenograft, and flow cytometry assays were employed to investigate the mechanisms underlying the effect of Lnc-SNHG16/miR-128 axis on cervical cancer. Results: lnc-SNHG16 was up-regulated in CC cell lines and tissues. lnc-SNHG16 knockdown inhibited proliferation, restrained the epithelial-mesenchymal transition (EMT) process by regulating cell apoptosis and cell cycle. The next study indicated that lnc-SNHG16 knockdown markedly increased miR-128 level which is down-regulated in CC. Moreover, miR-128 overexpression significantly inhibited proliferation, EMT process and tumor growth by directly targeting GSPT1 and WNT3A. Finally, lnc-SNHG16 activates but miR-128 inactivates the WNT/β-catenin pathways in CC cells. Conclusion: Our data suggest that lnc-SNHG16/miR-128 axis modulates malignant phenotype of CC cells through WNT/β-catenin pathway.
Collapse
Affiliation(s)
- Wu Wu
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin 300051, China
| | - Li Guo
- Department of Clinical Laboratory, Laigang Hospital, Jinan 271103, China
| | - Zhenlong Liang
- Department of Clinical Laboratory, Chinese PLA General Hospital, Beijing 100853, China
| | - Yuanbin Liu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250002, China
| | - Zhi Yao
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin 300051, China
| |
Collapse
|
43
|
Shakib H, Rajabi S, Dehghan MH, Mashayekhi FJ, Safari-Alighiarloo N, Hedayati M. Epithelial-to-mesenchymal transition in thyroid cancer: a comprehensive review. Endocrine 2019; 66:435-455. [PMID: 31378850 DOI: 10.1007/s12020-019-02030-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022]
Abstract
The Metastatic progression of solid tumors, such as thyroid cancer is a complex process which involves various factors. Current understanding on the role of epithelial-mesenchymal transition (EMT) in thyroid carcinomas suggests that EMT is implicated in the progression from follicular thyroid cancer (FTC) and papillary thyroid cancer (PTC) to poorly differentiated thyroid carcinoma (PDTC) and anaplastic thyroid cancer (ATC). According to the literature, the initiation of the EMT program in thyroid epithelial cells elevates the number of stem cells, which contribute to recurrent and metastatic diseases. The EMT process is orchestrated by a complex network of transcription factors, growth factors, signaling cascades, epigenetic modulations, and the tumor milieu. These factors have been shown to be dysregulated in thyroid carcinomas. Therefore, molecular interferences restoring the expression of tumor suppressors, or thwarting overexpressed oncogenes is a hopeful therapeutic method to improve the treatment of progressive diseases. In this review, we summarize the recent findings on EMT in thyroid cancer focusing on the main role-players and regulators of this process in thyroid tumors.
Collapse
Affiliation(s)
- Heewa Shakib
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sadegh Rajabi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Nahid Safari-Alighiarloo
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
44
|
Lin Y, Chen Z, Zheng Y, Liu Y, Gao J, Lin S, Chen S. MiR-506 Targets UHRF1 to Inhibit Colorectal Cancer Proliferation and Invasion via the KISS1/PI3K/NF-κ B Signaling Axis. Front Cell Dev Biol 2019; 7:266. [PMID: 31803739 PMCID: PMC6873823 DOI: 10.3389/fcell.2019.00266] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/18/2019] [Indexed: 12/24/2022] Open
Abstract
Background The UHRF1 gene is an epigenetic modification factor that mediates tumor suppressor gene silencing in a variety of cancers. Related studies have reported that UHRF1 can inhibit the expression of the KISS1 gene. However, the regulatory mechanism underlying UHRF1 expression in colorectal cancer (CRC) is still unclear. The aim of this study was to gain a better understanding of the regulation of UHRF1 expression in CRC and to determine whether it regulates the mechanism by which KISS1 promotes CRC metastasis. Methods In the present study, the levels of miR-506, UHRF1 and KISS1 expression in CRC tissues and in human CRC cell lines were studied using quantitative real-time PCR (qRT-PCR) and Western blotting. Cell proliferation, migration, and invasion assays are used to detect cell proliferation, migration, and invasion. A dual-luciferase reporter system was used to confirm the target gene of miR-506. Results This study found that UHRF1 protein is highly expressed in CRC tissues and negatively correlated with KISS1 protein expression. UHRF1 overexpression activates the PI3K/NF-κB signaling pathway by inhibiting the mRNA expression levels of pathway mediators. Bioinformatics analysis and luciferase reporter gene assays confirmed that miR-506 targets UHRF1. Conclusion This study identified the regulation of UHRF1 expression in CRC and the mechanism of CRC metastasis. UHRF1 may be a new potential target molecule for future CRC metastasis treatment.
Collapse
Affiliation(s)
- Yilin Lin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Zhihua Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yan Zheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yisu Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ji Gao
- School of Nursing, Fujian Medical University, Fuzhou, China
| | - Suyong Lin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Shaoqin Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
45
|
Zhang C, Zou Y, Dai DQ. Downregulation of microRNA-27b-3p via aberrant DNA methylation contributes to malignant behavior of gastric cancer cells by targeting GSPT1. Biomed Pharmacother 2019; 119:109417. [PMID: 31539861 DOI: 10.1016/j.biopha.2019.109417] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/20/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Epigenetics play a vital role in the initiation and development of cancers, including gastric cancer (GC). In the present study, we aimed to explore potential up- and downstream mechanisms of miR-27b-3p in GC. METHODS The expression level of miR-27b-3p in GC cells and tissues (n = 80) was measured by quantitative RT-PCR. The mimics, inhibitors, and negative controls of miR-27b-3p were transfected into cell lines to perform the gain and loss of function study. Cell proliferation, migration, and invasion assays were utilized to assess biological behaviors caused by miR-27b-3p in vitro. Common target genes were predicted using four biological software programs and used for gene functional enrichment analysis. GSPT1 was selected for target gene verification using dual luciferase assays and its expression level was detected by western blot. The MKN-45 cell line was treated with 5-aza-2'-deoxycytidine (5-Aza-dC) and the methylation level was measured by methylation-specific PCR (MSP). RESULTS miR-27b-3p was significantly downregulated in the GC cell lines and tissues compared with the normal group. The expression of miR-27b-3p was determined to be negatively associated with TNM stage and tumor size using statistical analysis. Overexpression of miR-27b-3p inhibited MKN-45 and SGC-7901 cell proliferation, invasion, and migration. Gene functional enrichment analysis indicated that the target genes were involved in several signaling pathways. Dual luciferase assays showed that miR-27b-3p combined with the 3'-untranslated region of GSPT1 mRNA. MSP demonstrated that miR-27b-3p promoter CpG island was hyper-methylated and 5-Aza-dC was able to partially reverse the methylation. CONCLUSIONS Our study data indicated that miR-27b-3p is downregulated by aberrant DNA methylation in GC. In addition, miR-27b-3p suppresses GC cell proliferation, invasion, and migration via negative expression regulation of GSPT1, which could be a potential therapeutic target.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Gastroenterological Surgery, the Fourth Affiliated Hospital of China Medical University, 4 Chongshan Road, Shenyang, 110032, China
| | - Ying Zou
- Department of Gastroenterological Surgery, the Fourth Affiliated Hospital of China Medical University, 4 Chongshan Road, Shenyang, 110032, China
| | - Dong-Qiu Dai
- Department of Gastroenterological Surgery, the Fourth Affiliated Hospital of China Medical University, 4 Chongshan Road, Shenyang, 110032, China.
| |
Collapse
|
46
|
Tokuhara CK, Santesso MR, Oliveira GSND, Ventura TMDS, Doyama JT, Zambuzzi WF, Oliveira RCD. Updating the role of matrix metalloproteinases in mineralized tissue and related diseases. J Appl Oral Sci 2019; 27:e20180596. [PMID: 31508793 DOI: 10.1590/1678-7757-2018-0596] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 05/30/2019] [Indexed: 02/22/2023] Open
Abstract
Bone development and healing processes involve a complex cascade of biological events requiring well-orchestrated synergism with bone cells, growth factors, and other trophic signaling molecules and cellular structures. Beyond health processes, MMPs play several key roles in the installation of heart and blood vessel related diseases and cancer, ranging from accelerating metastatic cells to ectopic vascular mineralization by smooth muscle cells in complementary manner. The tissue inhibitors of MMPs (TIMPs) have an important role in controlling proteolysis. Paired with the post-transcriptional efficiency of specific miRNAs, they modulate MMP performance. If druggable, these molecules are suggested to be a platform for development of "smart" medications and further clinical trials. Thus, considering the pleiotropic effect of MMPs on mammals, the purpose of this review is to update the role of those multifaceted proteases in mineralized tissues in health, such as bone, and pathophysiological disorders, such as ectopic vascular calcification and cancer.
Collapse
Affiliation(s)
- Cintia Kazuko Tokuhara
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Bauru, São Paulo, Brasil
| | - Mariana Rodrigues Santesso
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Bauru, São Paulo, Brasil
| | - Gabriela Silva Neubern de Oliveira
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Bauru, São Paulo, Brasil
| | - Talita Mendes da Silva Ventura
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Bauru, São Paulo, Brasil
| | - Julio Toshimi Doyama
- Universidade Estadual Paulista Júlio de Mesquita Filho, Campus Botucatu, Rubião Jr, São Paulo, Brasil
| | - Willian Fernando Zambuzzi
- Universidade Estadual Paulista Júlio de Mesquita Filho, Campus Botucatu, Rubião Jr, São Paulo, Brasil
| | - Rodrigo Cardoso de Oliveira
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Bauru, São Paulo, Brasil
| |
Collapse
|
47
|
Circular RNA hsa_circRNA_0007334 is Predicted to Promote MMP7 and COL1A1 Expression by Functioning as a miRNA Sponge in Pancreatic Ductal Adenocarcinoma. JOURNAL OF ONCOLOGY 2019; 2019:7630894. [PMID: 31428151 PMCID: PMC6681607 DOI: 10.1155/2019/7630894] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 01/03/2023]
Abstract
Pancreatic cancer remains one of the leading causes of cancer-related deaths worldwide. Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic tumor. Many circular RNAs (circRNAs) have proven to play vital roles in the physiological and pathological processes of tumorigenesis; however, their biogenesis in PDAC remains unclear. In this study, the expression profiles of circRNAs from 10 PDAC tissues and their paired adjacent nontumor tissues were analyzed through RNA sequencing analysis. An enrichment analysis was employed to predict the functions of the differentially expressed circRNAs. Sequence alignment information and mRNA microarray projects were used to predict the RNA regulatory network. The knockdown of circRNAs by small interfering RNAs followed by wound healing and western blot assays was used to confirm their functions in a PDAC cell line. A total of 278 circRNAs were identified as differentially expressed in PDAC tissue. Of these, we found that hsa_circRNA_0007334 was significantly upregulated and may serve as a competing endogenous RNA to regulate matrix metallopeptidase 7 (MMP7) and collagen type I alpha 1 chain (COL1A1) by the competitive adsorption of hsa-miR-144-3p and hsa-miR-577 to enhance the expression and functions of MMP7 and COL1A1 in PDAC. In vitro experiments confirmed these results. The present study is the first to propose two regulatory pathways in PDAC: hsa_circRNA_0007334–hsa-miR-144-3p–MMP7 and hsa_circRNA_0007334–hsa-miR-577–COL1A1.
Collapse
|
48
|
Zhao W, Zheng J, Wei G, Yang K, Wang G, Sun X. miR-148a inhibits cell proliferation and migration through targeting ErbB3 in colorectal cancer. Oncol Lett 2019; 18:2530-2536. [PMID: 31402949 PMCID: PMC6676750 DOI: 10.3892/ol.2019.10581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/15/2019] [Indexed: 11/06/2022] Open
Abstract
Colorectal cancer is a common gastrointestinal cancer ranking in third place of all cancers. Downregulation of miR-148a has been observed in many tumors, and miR-148a was found to be an oncogene in colorectal cancer. The aim of our study was to investigate the molecular mechanisms by which miR-148a and ErbB3 proliferate and migrate in colorectal cancer. The expression of miR-148a and ErbB3 were measured by western blot analysis and RT-qPCR. MTT and transwell assays were performed to analyze the proliferative and migratory abilities. The dual luciferase reporter assay was employed to confirm miR-148a regulated the expression of ErbB3 in colorectal cancer. It was discovered that miR-148a was overexpressed while ErbB3 expression was low in colorectal cancer, and the mRNA level of miR-148a had a negative correlation with the expression of ErbB3. Upregulation of miR-148a suppressed the proliferation and migration in colorectal cancer cells. Furthermore, ErbB3 was identified as a direct target of miR-148a, which suppressed the proliferation and migration through directly binding to the 3′UTR of ErbB3 mRNA. This study established that miR-148a inhibited the proliferative and migratory abilities through mediating the expression of ErbB3. The newly identified miR-148a/ErbB3 axis provides novel insight into the pathogenesis of colorectal cancer, and represents a potential target for treatment of colorectal cancer.
Collapse
Affiliation(s)
- Wei Zhao
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jianbao Zheng
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Guangbing Wei
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Kui Yang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Guanghui Wang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xuejun Sun
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
49
|
He PY, Yip WK, Jabar MF, Mohtarrudin N, Dusa NM, Seow HF. Effect of the miR-96-5p inhibitor and mimic on the migration and invasion of the SW480-7 colorectal cancer cell line. Oncol Lett 2019; 18:1949-1960. [PMID: 31423265 DOI: 10.3892/ol.2019.10492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 11/02/2018] [Indexed: 12/11/2022] Open
Abstract
The objectives of the present study were to identify the aberrant expression of microRNA (miRNA) in colorectal carcinoma (CRC) tissues from published miRNA profiling studies and to investigate the effects of the identified miRNA inhibitor and mimic miR-96-5p on CRC cell migration and invasion. The altered expression of the regulators of cytoskeleton mRNA in miR-96-5p inhibitor-transfected cells was determined. The miR-96-5p expression level in five CRC cell lines, HCT11, CaCo2, HT29, SW480 and SW620, and 26 archived paraffin-embedded CRC tissues were also investigated by reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR). Cell viability in response to the miR-96-5p inhibitor and mimic transfections was determined by an MTT assay. A Matrigel invasion assay was conducted to select the invasive subpopulation designated SW480-7, by using the parental cell line SW480. The effects of miR-96-5p mimic- or inhibitor-transfected SW480-7 cells on cell migration and invasion were evaluated using the Transwell and Matrigel assays, and the change in expression of the regulators of cytoskeleton mRNAs was identified by Cytoskeleton Regulators RT2-Profiler PCR array followed by validation with RT-qPCR. CRC tissues exhibited a significant increase in miR-96-5p expression, compared with their matched normal adjacent tissues, indicating an oncogenic role for miR-96-5p. The results demonstrated that the miR-96-5p inhibitor decreased the migration of SW480-7 cells, but had no effect on invasion. This may be due to the promotion of cell invasion by Matrigel, which counteracts the blockade of cell invasion by the miR-96-5p inhibitor. The miR-96-5p mimic enhanced SW480-7 cell migration and invasion, as expected. It was determined that there was a >2.5 fold increase in the expression of genes involved in cytoskeleton regulation, myosin light chain kinase 2, pleckstrin homology like domain family B member 2, cyclin A1, IQ motif containing GTPase activating protein 2, Brain-specific angiogenesisinhibitor 1-associated protein 2 and microtubule-actin crosslinking factor 1, in miR-96-5p inhibitor-transfected cells, indicating that they are negative regulators of cell migration. In conclusion, the miR-96-5p inhibitor blocked cell migration but not invasion, and the latter may be due to the counteraction of Matrigel, which has been demonstrated to stimulate cell invasion.
Collapse
Affiliation(s)
- Pei Yuan He
- Department of Gastroenterology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Wai Kien Yip
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Mohd Faisal Jabar
- Department of Surgery, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Norhafizah Mohtarrudin
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Noraini Mohd Dusa
- Department of Pathology, Hospital Kuala Lumpur Jalan Pahang, Kuala Lumpur 50586, Malaysia
| | - Heng Fong Seow
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| |
Collapse
|
50
|
Wang Y, Zhang S, Dang S, Fang X, Liu M. Overexpression of microRNA-216a inhibits autophagy by targeting regulated MAP1S in colorectal cancer. Onco Targets Ther 2019; 12:4621-4629. [PMID: 31354295 PMCID: PMC6580140 DOI: 10.2147/ott.s196992] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/27/2019] [Indexed: 11/23/2022] Open
Abstract
Background: Autophagy executes the rapid degradation of unneeded proteins and organelles through the lysosomal pathway, and is a crucial catabolic process widely conserved among eukaryotes. miRNAs can modulate autophagy by targeting genes encoding proteins involved in the process. A great deal of researchhas indicated that miR-216a was a functional miRNA related to tumorigenesis. However, the contribution of miR-216a to autophagy in colorectal cancer (CRC) remains unclear. The purpose of this study was to investigate the role of miR-216a in autophagy in CRC cells. Methods: The expression levels of miR-216a in 67 paired CRC patients were evaluated by qRT-PCR. Direct gene targeting predicted by TargetScan and miRanda was confirmed by luciferase activity. Western blot and flow cytometry were used to identify the regulatory mechanism of miR-216a on autophagy in CRC cells. Results: We determined that miR-216a is downregulated in CRC by screening its expression in 67 CRC tissue samples. Dual luciferase reporter assays showed that miR-216a binds the 3'-UTR of MAP1S, suggesting that MAP1S is a direct target of miR-216a. miR-216a could inhibit autophagy in HCT-116 and HT-29 CRC cells through downregulating MAP1S expression. Flow cytometry and Western blot analysis demonstrated that overexpression of miR-216a reduced MAP1S mRNA and protein levels. Moreover, we determined that miR-216a-regulated inhibition of autophagy via MAP1S regulation involves the TGF-β pathway. Conclusion: Taken together, our findings indicate that miR-216a was a tumor-suppressor miRNA in human CRC, which can inhibit autophagy via the TGF-β/MAP1S pathway.
Collapse
Affiliation(s)
- Yunfeng Wang
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Songyan Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Shuwei Dang
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Xuan Fang
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Ming Liu
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| |
Collapse
|