1
|
Tang JCO, Chan D, Chung PY, Liu Y, Lam AKY, Law S, Huang W, Chan ASC, Lam KH, Zhou Y. Downregulation of chemokine (C‑C motif) ligand 5 induced by a novel 8‑hydroxyquinoline derivative (91b1) suppresses tumor invasiveness in esophageal carcinoma. Int J Mol Med 2024; 54:111. [PMID: 39364750 PMCID: PMC11517744 DOI: 10.3892/ijmm.2024.5435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/06/2024] [Indexed: 10/05/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a particularly aggressive form of cancer with high mortality. In the present study, a novel 8‑hydroxyquinoline derivative (91b1) was investigated for its anticancer activities in ESCC along with its associated mechanisms. The in vitro cytotoxic effect of 91b1 were evaluated across five ESCC cell lines using MTS assay, with cisplatin serving as a comparative standard. Changes in gene expression profile were identified by cDNA microarray and further validated by qualitative PCR and immunostaining. Additionally, protein levels of the most notably downregulated target in archival ESCC samples were also studied. 91b1 demonstrated comparable anticancer effect with cisplatin. Notably, chemokine ligand 5 (Ccl5) was identified as the most substantially downregulated gene, with its suppression at both mRNA and protein expression in ESCC cells, exhibiting a dose‑dependent manner. The recombinant human protein of CCL5 enhanced the invasion of ESCC cells using the Transwell assay. The upregulation of CCL5 protein was also detected in 50% of ESCC cell lines. CCL5 was also overexpressed in 76.9% of ESCC specimens. The overall results indicated that 91b1 could effectively induce anticancer effect on ESCC cells through downregulating CCL5 expression with suppression of tumor invasion. Overall, these findings suggested that 91b1 effectively inhibited ESCC cell proliferation and tumor invasion by downregulating CCL5 expression, highlighting its potential as a therapeutic agent for ESCC treatment.
Collapse
Affiliation(s)
- Johnny Cheuk-On Tang
- Jean-Marie Lehn Laboratory, Guangzhou Huashang College, Guangzhou, Guangdong 511300, P.R. China
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, SAR 999077, P.R. China
| | - Dessy Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, SAR 999077, P.R. China
| | - Po-Yee Chung
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, SAR 999077, P.R. China
| | - Yijiang Liu
- School of Biological Sciences, Nanyang Technological University, Singapore 639798, Republic of Singapore
| | - Alfred King-Yin Lam
- Griffith Medical School, Griffith University, Gold Coast, QLD 4222, Australia
| | - Simon Law
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR 999077, P.R. China
| | - Wolin Huang
- Jean-Marie Lehn Laboratory, Guangzhou Huashang College, Guangzhou, Guangdong 511300, P.R. China
| | - Albert Sun-Chi Chan
- President Office, Guangzhou Huashang College, Guangzhou, Guangzhou 511300, P.R. China
| | - Kim-Hung Lam
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, SAR 999077, P.R. China
| | - Yuanyuan Zhou
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, SAR 999077, P.R. China
- Department of Life Science and Engineering, Foshan University, Foshan, Guangdong 528000, P.R. China
| |
Collapse
|
2
|
Vásquez-Ocmín PG, Cojean S, Roumy V, Marti G, Pomel S, Gadea A, Leblanc K, Dennemont I, Ruiz-Vásquez L, Ricopa Cotrina H, Ruiz Mesia W, Bertani S, Ruiz Mesia L, Maciuk A. Deciphering anti-infectious compounds from Peruvian medicinal Cordoncillos extract library through multiplexed assays and chemical profiling. Front Pharmacol 2023; 14:1100542. [PMID: 37342590 PMCID: PMC10278888 DOI: 10.3389/fphar.2023.1100542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/04/2023] [Indexed: 06/23/2023] Open
Abstract
High prevalence of parasitic or bacterial infectious diseases in some world areas is due to multiple reasons, including a lack of an appropriate health policy, challenging logistics and poverty. The support to research and development of new medicines to fight infectious diseases is one of the sustainable development goals promoted by World Health Organization (WHO). In this sense, the traditional medicinal knowledge substantiated by ethnopharmacology is a valuable starting point for drug discovery. This work aims at the scientific validation of the traditional use of Piper species ("Cordoncillos") as firsthand anti-infectious medicines. For this purpose, we adapted a computational statistical model to correlate the LCMS chemical profiles of 54 extracts from 19 Piper species to their corresponding anti-infectious assay results based on 37 microbial or parasites strains. We mainly identified two groups of bioactive compounds (called features as they are considered at the analytical level and are not formally isolated). Group 1 is composed of 11 features being highly correlated to an inhibiting activity on 21 bacteria (principally Gram-positive strains), one fungus (C. albicans), and one parasite (Trypanosoma brucei gambiense). The group 2 is composed of 9 features having a clear selectivity on Leishmania (all strains, both axenic and intramacrophagic). Bioactive features in group 1 were identified principally in the extracts of Piper strigosum and P. xanthostachyum. In group 2, bioactive features were distributed in the extracts of 14 Piper species. This multiplexed approach provided a broad picture of the metabolome as well as a map of compounds putatively associated to bioactivity. To our knowledge, the implementation of this type of metabolomics tools aimed at identifying bioactive compounds has not been used so far.
Collapse
Affiliation(s)
| | - Sandrine Cojean
- Université Paris-Saclay, CNRS, BioCIS, Orsay, France
- CNR Du Paludisme, AP-HP, Hôpital Bichat–Claude Bernard, Paris, France
| | - Vincent Roumy
- Joint Research Unit 1158 BioEcoAgro, University Lille, JUNIA, INRAE, University Liège, UPJV, University Artois, ULCO, VilleneuveD’Ascq, France
| | - Guillaume Marti
- Laboratoire de Recherche en Sciences Végétales (UMR 5546), CNRS, Université de Toulouse, Toulouse, France
- MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | | | - Alice Gadea
- UMR152 PHARMADEV, IRD, UPS, Université de Toulouse, Toulouse, France
| | | | | | - Liliana Ruiz-Vásquez
- Facultad de Farmacia y Bioquímica, Universidad Nacional de la Amazonía Peruana (UNAP), Iquitos, Peru
- Centro de Investigación de Recursos Naturales, Universidad Nacional de la Amazonía Peruana (UNAP), Iquitos, Peru
| | - Hivelli Ricopa Cotrina
- Centro de Investigación de Recursos Naturales, Universidad Nacional de la Amazonía Peruana (UNAP), Iquitos, Peru
| | - Wilfredo Ruiz Mesia
- Facultad de Ingeniería Química, Universidad Nacional de la Amazonía Peruana (UNAP), Iquitos, Peru
| | - Stéphane Bertani
- UMR152 PHARMADEV, IRD, UPS, Université de Toulouse, Toulouse, France
- International Joint Laboratory of Molecular Anthropological Oncology (LOAM), National Cancer Institute, Lima, Perú
| | - Lastenia Ruiz Mesia
- Centro de Investigación de Recursos Naturales, Universidad Nacional de la Amazonía Peruana (UNAP), Iquitos, Peru
- Facultad de Ingeniería Química, Universidad Nacional de la Amazonía Peruana (UNAP), Iquitos, Peru
| | | |
Collapse
|
3
|
Seck I, Ciss I, Diédhiou A, Baldé M, Ka S, Ba LA, Ndoye SF, Figadère B, Seon-Meniel B, Gomez G, Cojean S, Pomel S, Loiseau PM, Fall Y, Seck M. 1,2,3-triazenes and 1,2,3-triazoles as antileishmanial, antitrypanosomal, and antiplasmodial agents. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02994-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Lipa Castro A, Pomel S, Cailleau C, Fournier N, Dennemont I, Loiseau PM, Barratt G. Pharmacokinetics, biodistribution, and activity of Amphotericin B-loaded nanocochleates on the Leishmania donovani murine visceral leishmaniasis model. Int J Pharm 2022; 624:121985. [PMID: 35820519 DOI: 10.1016/j.ijpharm.2022.121985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/15/2022] [Accepted: 07/02/2022] [Indexed: 12/11/2022]
Abstract
Amphotericin B (AmB) is an effective drug to treat visceral leishmaniasis but its use is limited by its poor oral bioavailability. This article describes the in-vivo evaluation of AmB-loaded, lipid-based cochleate systems designed for the oral route. Two different cochleate formulations were studied: one based on the synthetic phospholipid dioleoylphosphatidylserine (DOPS) and another optimized formulation based on a naturally occurring phosphatidylserine (Lipoid PSP70) that would render the formulation more affordable in developing countries. Their antiparasitic activity was evaluated in a mouse model of visceral leishmaniasis. Limited efficacy was observed for the DOPS-based cochleates after three doses of AmB at 1 mg/kg. The Lipoid PSP70-based cochleates were administered either as a buffered suspension or in enteric-coated capsules. AmB-loaded cochleates administered as a suspension at a high dose (3 × 20 mg/kg) exhibited significant antiparasitic activity while AmB-loaded cochleates in enteric-coated capsules at a lower dose (3 × 5 mg/kg) presented a slightly higher significant activity. A pharmacokinetic and biodistribution study in rats was performed with the Lipoid PSP70-based cochleates, with a single oral dose of 7.5 mg AmB/kg. Cochleates in both administration forms led to lower concentrations of Amphotericin B in the plasma than intravenous AmBisome®. However, more accumulation in the organs of interest (liver, spleen) was observed for both presentations of cochleates than for AmBisome® by the oral route. Therefore, cochleate formulations of AmB that could be produced at a cost accessible for developing countries show promise for the treatment of visceral leishmaniasis.
Collapse
Affiliation(s)
- Antonio Lipa Castro
- Institut Galien Paris-Saclay, UMR CNRS 8612, Faculty of Pharmacy, Univ. Paris-Saclay, Bâtiment Henri MOISSAN, 17 avenue des Sciences, 91400 Orsay, France
| | - Sébastien Pomel
- BioCIS, UMR CNRS 8076, Faculty of Pharmacy, Univ. Paris-Saclay, Bâtiment Henri MOISSAN, 17 avenue des Sciences, 91400 Orsay, France
| | - Catherine Cailleau
- Institut Galien Paris-Saclay, UMR CNRS 8612, Faculty of Pharmacy, Univ. Paris-Saclay, Bâtiment Henri MOISSAN, 17 avenue des Sciences, 91400 Orsay, France
| | - Natalie Fournier
- Biochemistry Laboratory, Georges Pompidou European Hospital, AP-HP, Paris, France; Lip(Sys)2-EA7357, Atherosclerosis and Macrophages: Impact of Phospholipids and Mitochondrial Function on Cellular Cholesterol Efflux, Faculty of Pharmacy, Univ. Paris-Saclay, Bâtiment Henri MOISSAN, 17 avenue des Sciences, 91400 Orsay, France
| | - Indira Dennemont
- BioCIS, UMR CNRS 8076, Faculty of Pharmacy, Univ. Paris-Saclay, Bâtiment Henri MOISSAN, 17 avenue des Sciences, 91400 Orsay, France
| | - Philippe M Loiseau
- BioCIS, UMR CNRS 8076, Faculty of Pharmacy, Univ. Paris-Saclay, Bâtiment Henri MOISSAN, 17 avenue des Sciences, 91400 Orsay, France
| | - Gillian Barratt
- Institut Galien Paris-Saclay, UMR CNRS 8612, Faculty of Pharmacy, Univ. Paris-Saclay, Bâtiment Henri MOISSAN, 17 avenue des Sciences, 91400 Orsay, France
| |
Collapse
|
5
|
Rincón-López J, Martínez-Aguilera M, Guadarrama P, Juarez-Moreno K, Rojas-Aguirre Y. Exploring In Vitro Biological Cellular Responses of Pegylated β-Cyclodextrins. Molecules 2022; 27:molecules27093026. [PMID: 35566378 PMCID: PMC9101635 DOI: 10.3390/molecules27093026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 02/05/2023] Open
Abstract
βCDPEG5 and βCDPEG2 are two derivatives comprising seven PEG linear chains of 5 and 2 kDa, respectively, conjugated to βCD. As βCDPEGs display different physicochemical properties than their precursors, they could also trigger distinct cellular responses. To investigate the biological behavior of βCDPEGs in comparison to their parent compounds, we performed broad toxicological assays on RAW 264.7 macrophages, MC3T3-E1 osteoblasts, and MDCK cells. By analyzing ROS and NO2− overproduction in macrophages, we found that βCDPEGs induced a moderate stress response without affecting cell viability. Although MC3T3-E1 osteoblasts were more sensitive than MDCK cells to βCDPEGs and the parent compounds, a similar pattern was observed: the effect of βCDPEG5 on cell viability and cell cycle progression was larger than that of βCDPEG2; PEG2 affected cell viability and cell cycle more than βCDPEG2; cell post-treatment recovery was favorable in all cases, and the compounds had similar behaviors regarding ROS generation. The effect on MDCK cell migration followed a similar pattern. In contrast, for osteoblasts, the interference of βCDPEG5 with cell migration was smaller than that of βCDPEG2; likewise, the effect of PEG2 was shorter than its conjugate. Overall, the covalent conjugation of βCD and PEGs, particularly to yield βCDPEG2, improved the biocompatibility profile, evidencing that a favorable biological response can be tuned through a thoughtful combination of materials. Moreover, this is the first time that an in vitro evaluation of βCD and PEG has been presented for MC3T3-E1 and MDCK cells, thus providing valuable knowledge for designing biocompatible nanomaterials constructed from βCD and PEGs.
Collapse
Affiliation(s)
- Juliana Rincón-López
- Laboratorio de Materiales Supramoleculares (SupraMatLab), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Coyoacán 04510, Mexico; (J.R.-L.); (M.M.-A.); (P.G.)
| | - Miguelina Martínez-Aguilera
- Laboratorio de Materiales Supramoleculares (SupraMatLab), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Coyoacán 04510, Mexico; (J.R.-L.); (M.M.-A.); (P.G.)
| | - Patricia Guadarrama
- Laboratorio de Materiales Supramoleculares (SupraMatLab), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Coyoacán 04510, Mexico; (J.R.-L.); (M.M.-A.); (P.G.)
| | - Karla Juarez-Moreno
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, (CFATA-UNAM), Blvd. Juriquilla #3001 Col. Jurica La Mesa CP, Querétaro 76230, Mexico
- Correspondence: (K.J.-M.); (Y.R.-A.); Tel.: +52-(442)-192-6128 (ext. 140) (K.J.-M.); +52-5556-2266-66 (ext. 45675) (Y.R.-A.)
| | - Yareli Rojas-Aguirre
- Laboratorio de Materiales Supramoleculares (SupraMatLab), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Coyoacán 04510, Mexico; (J.R.-L.); (M.M.-A.); (P.G.)
- Correspondence: (K.J.-M.); (Y.R.-A.); Tel.: +52-(442)-192-6128 (ext. 140) (K.J.-M.); +52-5556-2266-66 (ext. 45675) (Y.R.-A.)
| |
Collapse
|
6
|
Loiseau PM, Balaraman K, Barratt G, Pomel S, Durand R, Frézard F, Figadère B. The Potential of 2-Substituted Quinolines as Antileishmanial Drug Candidates. Molecules 2022; 27:molecules27072313. [PMID: 35408712 PMCID: PMC9000572 DOI: 10.3390/molecules27072313] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 01/27/2023] Open
Abstract
There is a need for new, cost-effective drugs to treat leishmaniasis. A strategy based on traditional medicine practiced in Bolivia led to the discovery of the 2-substituted quinoline series as a source of molecules with antileishmanial activity and low toxicity. This review documents the development of the series from the first isolated natural compounds through several hundred synthetized molecules to an optimized compound exhibiting an in vitro IC50 value of 0.2 µM against Leishmania donovani, and a selectivity index value of 187, together with in vivo activity on the L. donovani/hamster model. Attempts to establish structure–activity relationships are described, as well as studies that have attempted to determine the mechanism of action. For the latter, it appears that molecules of this series act on multiple targets, possibly including the immune system, which could explain the observed lack of drug resistance after in vitro drug pressure. We also show how nanotechnology strategies could valorize these drugs through adapted formulations and how a mechanistic targeting approach could generate new compounds with increased activity.
Collapse
Affiliation(s)
- Philippe M. Loiseau
- Antiparasite Chemotherapy, CNRS, BioCIS, Université Paris-Saclay, 92290 Chatenay-Malabry, France; (S.P.); (R.D.)
- Correspondence:
| | - Kaluvu Balaraman
- Chemistry Department, Georgetown University, 37th and O Streets, Washington, DC 20057, USA;
| | - Gillian Barratt
- Institute Galien Paris-Saclay, CNRS, Université Paris-Saclay, 92290 Chatenay-Malabry, France;
| | - Sébastien Pomel
- Antiparasite Chemotherapy, CNRS, BioCIS, Université Paris-Saclay, 92290 Chatenay-Malabry, France; (S.P.); (R.D.)
| | - Rémy Durand
- Antiparasite Chemotherapy, CNRS, BioCIS, Université Paris-Saclay, 92290 Chatenay-Malabry, France; (S.P.); (R.D.)
| | - Frédéric Frézard
- Department of Physiology and Biophysics-ICB, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Bruno Figadère
- Chimie des Substances Naturelles, CNRS, BioCIS, Université Paris-Saclay, 92290 Chatenay-Malabry, France;
| |
Collapse
|
7
|
Glanzmann N, Antinarelli LMR, da Costa Nunes IK, Pereira HMG, Coelho EAF, Coimbra ES, da Silva AD. Synthesis and biological activity of novel 4-aminoquinoline/1,2,3-triazole hybrids against Leishmania amazonensis. Biomed Pharmacother 2021; 141:111857. [PMID: 34323702 DOI: 10.1016/j.biopha.2021.111857] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 01/07/2023] Open
Abstract
Quinoline and 1,2,3-triazoles are well-known nitrogen-based heterocycles presenting diverse pharmacological properties, although their antileishmanial activity is still poorly exploited. As an effort to contribute with studies involving these interesting chemical groups, in the present study, a series of compounds derived from 4-aminoquinoline and 1,2,3-triazole were synthetized and biological studies using L. amazonensis species were performed. The results pointed that the derivative 4, a hybrid of 4-aminoquinoline/1,2,3-triazole exhibited the best antileishmanial action, with inhibitory concentration (IC50) values of ~1 µM against intramacrophage amastigotes of L. amazonensis , and being 16-fold more active to parasites than to the host cell. The mechanism of action of derivative 4 suggest a multi-target action on Leishmania parasites, since the treatment of L. amazonensis promastigotes caused mitochondrial membrane depolarization, accumulation of ROS products, plasma membrane permeabilization, increase in neutral lipids, exposure of phosphatidylserine to the cell surface, changes in the cell cycle and DNA fragmentation. The results suggest that the antileishmanial effect of this compound is primarily altering critical biochemical processes for the correct functioning of organelles and macromolecules of parasites, with consequent cell death by processes related to apoptosis-like and necrosis. No up-regulation of reactive oxygen and nitrogen intermediates was promoted by derivative 4 on L. amazonensis -infected macrophages, suggesting a mechanism of action independent from the activation of the host cell. In conclusion, data suggest that derivative 4 presents selective antileishmanial effect, which is associated with multi-target action, and can be considered for future studies for the treatment against disease.
Collapse
Affiliation(s)
- Nícolas Glanzmann
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais 36.036-900, Brazil
| | - Luciana Maria Ribeiro Antinarelli
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais 36.036-900, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30.130-100, Brazil
| | - Isabelle Karine da Costa Nunes
- Laboratório de Apoio ao Desenvolvimento Tecnológico, Polo de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária Ilha do Fundão, Rio de Janeiro 21.941-598, Brazil
| | - Henrique Marcelo Gualberto Pereira
- Laboratório de Apoio ao Desenvolvimento Tecnológico, Polo de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária Ilha do Fundão, Rio de Janeiro 21.941-598, Brazil
| | - Eduardo Antonio Ferraz Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30.130-100, Brazil; Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Elaine Soares Coimbra
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais 36.036-900, Brazil
| | - Adilson David da Silva
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais 36.036-900, Brazil.
| |
Collapse
|
8
|
Carvalho SG, Cipriano DF, de Freitas JCC, Junior MÂS, Ocaris ERY, Teles CBG, de Jesus Gouveia A, Rodrigues RP, Zanini MS, Villanova JCO. Physicochemical characterization and in vitro biological evaluation of solid compounds from furazolidone-based cyclodextrins for use as leishmanicidal agents. Drug Deliv Transl Res 2020; 10:1788-1809. [PMID: 32803562 DOI: 10.1007/s13346-020-00841-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The discovery of new drugs and dosage forms for the treatment of neglected tropical diseases, such as human and animal leishmaniasis, is gaining interest in the chemical, biological, pharmaceutical, and medical fields. Many pharmaceutical companies are exploring the use of old drugs to establishing new drug dosage forms and drug delivery systems, in particular for use in neglected diseases. The formation of complexes with cyclodextrins is widely used to improve the stability, solubility, and bioavailability of pharmaceutical drugs, as well as reduce both the toxicity and side effects of many of these drugs. The aim of this study was to characterize solid compounds obtained from the association between furazolidone (FZD) and β-cyclodextrin (β-CD) or hydroxypropyl-β-cyclodextrin (HP-β-CD). The solid compounds were prepared in molar ratios of 1:1 and 1:2 (drug:CD) by kneading and lyophilization. Molecular docking was used to predict the preferred relative orientation of FZD when bound in both studied cyclodextrins. The resulting solid compounds were qualitatively characterized by scanning electron microscopy (SEM), thermal analysis (DSC and TG/DTG), X-ray diffraction (XRD), Raman spectroscopy with image mapping (Raman mapping), and 13C nuclear magnetic resonance spectroscopy (13C NMR) in the solid state. The cytotoxicity of the compounds against THP-1 macrophages and the 50% growth inhibition (IC50) against Leishmania amazonensis promastigote forms were subsequently investigated using in vitro techniques. For all of the solid compounds obtained, the existence of an association between FZD and CD were confirmed by one or more characterization techniques (TG/DTG, DSC, SEM, XRD, RAMAN, and 13C NMR), particularly by a significant decrease in the crystallinity of these materials and a reduction in the melting enthalpy associated with furazolidone thermal events. The formation of more effective interactions occurred in the compounds prepared by lyophilization, in a 1:2 molar ratio of the two CDs studied. However, the formation of an inclusion complex was confirmed only for the solid compound obtained from HP-β-CD prepared by lyophilization (LHFZD1:2). The absence of cytotoxicity on the THP-1 macrophage lineages and the leishmanicidal activity were confirmed for all compounds. MHFZD1:2 and LHFZD1:2 were found to be very active against promastigote forms of L. amazonensis, while all others were considered only active. These results are in line with the literature, demonstrating the existence of biological activity for associations between drugs and CDs in the form of complexes and non-complexes. All solid compounds obtained were found to be promising for use as leishmanicidal agents against promastigote forms of L. amazonensis.
Collapse
Affiliation(s)
- Suzana Gonçalves Carvalho
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, 14800-903, Brazil.
- Postgraduate Program in Veterinary Sciences, Department of Veterinary Sciences, Federal University of Espírito Santo (UFES), Alegre, ES, 29500-000, Brazil.
| | - Daniel Fernandes Cipriano
- Laboratory of Carbon and Ceramic Materials, Department of Physics, Federal University of Espírito Santo (UFES), Vitória, ES, 29075-910, Brazil
| | - Jair Carlos Checon de Freitas
- Laboratory of Carbon and Ceramic Materials, Department of Physics, Federal University of Espírito Santo (UFES), Vitória, ES, 29075-910, Brazil
| | - Miguel Ângelo Schettino Junior
- Laboratory of Carbon and Ceramic Materials, Department of Physics, Federal University of Espírito Santo (UFES), Vitória, ES, 29075-910, Brazil
| | - Enrique Ronald Yapuchura Ocaris
- Laboratory of Carbon and Ceramic Materials, Department of Physics, Federal University of Espírito Santo (UFES), Vitória, ES, 29075-910, Brazil
| | - Carolina Bioni Garcia Teles
- Malaria and Leishmaniasis Bioassay Platform (PBML), Oswaldo Cruz Foundation Rondônia (FIOCRUZ), Porto Velho, Rondônia, Brazil
- Biodiversity and Biotechnology - Bionorte Network, Porto Velho, Rondônia, Brazil
- National Institute of Science and Technology in Epidemiology of the Western Amazonia (INCT-EpiAmO), Porto Velho, Rondônia, Brazil
| | - Aurileya de Jesus Gouveia
- Malaria and Leishmaniasis Bioassay Platform (PBML), Oswaldo Cruz Foundation Rondônia (FIOCRUZ), Porto Velho, Rondônia, Brazil
| | - Ricardo Pereira Rodrigues
- Graduate Program in Pharmaceutical Sciences, Federal University of Espírito Santo (UFES), Vitória, ES, 29043-900, Brazil
| | - Marcos Santos Zanini
- Postgraduate Program in Veterinary Sciences, Department of Veterinary Sciences, Federal University of Espírito Santo (UFES), Alegre, ES, 29500-000, Brazil
| | - Janaína Cecília Oliveira Villanova
- Postgraduate Program in Veterinary Sciences, Department of Veterinary Sciences, Federal University of Espírito Santo (UFES), Alegre, ES, 29500-000, Brazil
- Laboratory of Pharmaceutical Production, Department of Pharmacy and Nutrition, Federal University of Espírito Santo (UFES), Alegre, ES, 29500-000, Brazil
| |
Collapse
|
9
|
Lanza JS, Vucen S, Flynn O, Donadei A, Cojean S, Loiseau PM, Fernandes APSM, Frézard F, Moore AC. A TLR9-adjuvanted vaccine formulated into dissolvable microneedle patches or cationic liposomes protects against leishmaniasis after skin or subcutaneous immunization. Int J Pharm 2020; 586:119390. [PMID: 32540349 DOI: 10.1016/j.ijpharm.2020.119390] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/11/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022]
Abstract
Re-emergence and geographic expansion of leishmaniasis is accelerating efforts to develop a safe and effective Leshmania vaccine. Vaccines using Leishmania recombinant antigens, such as LiHyp1, which is mostly present in the amastigote parasite form, are being developed as a next generation to crude killed parasite-based vaccines. The main objective of this work was to develop a LiHyp1-based vaccine and determine if it can induce protective immunity in BALB/c mice when administered using a dissolvable microneedle (DMN) patch by the skin route. The LiHyp1 antigen was incorporated into cationic liposomes (CL), with or without the TLR9 agonist, CpG. The LiHyp1-liposomal vaccines were characterized with respect to size, protein encapsulation rates and retention of their physical characteristics after incorporation into the DMN patch. DMN mechanical strength and skin penetration ability were tested. A vaccine composed of LiHyp1, CpG and liposomes and subcutaneously injected or a vaccine containing antigen and CpG in DMN patches, without liposomes, induced high antibody responses and significant levels of protection against L. donovani parasite infection. This study progresses the development of an efficacious leishmania vaccine by detailing promising vaccine formulations and skin delivery technologies and it addresses protective efficacy of a liposome-based dissolvable microneedle patch vaccine system.
Collapse
Affiliation(s)
- Juliane S Lanza
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Antiparasite Chemotherapy, UMR 8076 CNRS BioCIS, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay, Chatenay-Malabry, France
| | - Sonja Vucen
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Olivia Flynn
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Agnese Donadei
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Sandrine Cojean
- Antiparasite Chemotherapy, UMR 8076 CNRS BioCIS, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay, Chatenay-Malabry, France
| | - Philippe M Loiseau
- Antiparasite Chemotherapy, UMR 8076 CNRS BioCIS, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay, Chatenay-Malabry, France
| | - Ana Paula S M Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Frédéric Frézard
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anne C Moore
- School of Pharmacy, University College Cork, Cork, Ireland; School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.
| |
Collapse
|
10
|
Orozco D, Kouznetsov VV, Bermúdez A, Vargas Méndez LY, Mendoza Salgado AR, Meléndez Gómez CM. Recent synthetic efforts in the preparation of 2-(3,4)-alkenyl (aryl) quinoline molecules towards anti-kinetoplastid agents. RSC Adv 2020; 10:4876-4898. [PMID: 35498276 PMCID: PMC9049580 DOI: 10.1039/c9ra09905k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 12/19/2019] [Indexed: 01/23/2023] Open
Abstract
Leishmaniasis, Chagas disease and African sleeping sickness have been considered some of the most important tropical protozoan afflictions. As the number of drugs currently available to treat these human illnesses is severely limited and the majority has poor safety profiles and complicated administration schedules, actually there is an urgent need to develop new effective, safe and cost-effective drugs. Because quinoline alkaloids with antiprotozoal activity (quinine, chimanine, cryptolepine or huperzine groups) were historically and are still essential models for drug research to combat these parasitic infections, synthetic or semi-synthetic quinoline-based molecules are important for anti-kinetoplastid drug design approaches and synthetic methods of their preparation become a key task that is the central subject of this review. Its goal is to highlight the advances in the conventional and current syntheses of new 2-(3,4)-alkenyl (aryl) quinoline derivatives, which kill the most important kinetoplastid protozoa, - Leishmania and Trypanosoma and could be useful models for antileishmanial and antitrypanosomal research. An attempt has been made to present and discuss the more recent contributions in this field over the period 2015-2019, paying special attention to molecular design, synthetic efforts to new green reaction conditions for classical methods such as Skraup synthesis, Friedländer synthesis, Conrad-Limpach, Doebner-Miller, as well as contemporary methods like Gould-Jacobs, Meth-Cohn and Povarov reactions. This review includes brief general information on these neglected tropical diseases, their current chemotherapies, and primary natural models (quinoline alkaloids), suitable for development of anti-kinetoplastid quinoline-based agents. The main part of the review comprises critical discussion on the synthesis and chemistry of new quinolines diversely substituted by alkyl (alkenyl, aryl) fragments on the pyridine part of the quinoline skeleton, which could be considered interesting analogues of chimanine alkaloids. The methods described in this review were developed with the aim of overcoming the drawbacks of the traditional protocols using revolutionary precursors and strategies.
Collapse
Affiliation(s)
- Dayana Orozco
- Grupo de Investigación en Química Orgánica y Biomédica, Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico A.A.1890 Barranquilla Colombia
- Laboratorio de Química Orgánica y Biomolecular, CMN, Parque Tecnológico Guatiguara, Universidad Industrial de Santander Km 2 Vía Refugio, A.A. 681011 Bucaramanga Colombia
| | - Vladimir V Kouznetsov
- Laboratorio de Química Orgánica y Biomolecular, CMN, Parque Tecnológico Guatiguara, Universidad Industrial de Santander Km 2 Vía Refugio, A.A. 681011 Bucaramanga Colombia
| | - Armando Bermúdez
- Grupo de Investigación en Química Orgánica y Biomédica, Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico A.A.1890 Barranquilla Colombia
| | - Leonor Y Vargas Méndez
- Grupo de Investigaciones Ambientales para el Desarrollo Sostenible, Facultad de Química Ambiental, Universidad Santo Tomás A. A. 1076 Bucaramanga Colombia
| | - Arturo René Mendoza Salgado
- Grupo de Investigación en Química Orgánica y Biomédica, Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico A.A.1890 Barranquilla Colombia
- Laboratorio de Química Orgánica y Biomolecular, CMN, Parque Tecnológico Guatiguara, Universidad Industrial de Santander Km 2 Vía Refugio, A.A. 681011 Bucaramanga Colombia
| | - Carlos Mario Meléndez Gómez
- Grupo de Investigación en Química Orgánica y Biomédica, Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico A.A.1890 Barranquilla Colombia
| |
Collapse
|
11
|
Synthesis and Antileishmanial Activity of 1,2,4,5-Tetraoxanes against Leishmania donovani. Molecules 2020; 25:molecules25030465. [PMID: 31979089 PMCID: PMC7038143 DOI: 10.3390/molecules25030465] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 12/14/2022] Open
Abstract
A chemically diverse range of novel tetraoxanes was synthesized and evaluated in vitro against intramacrophage amastigote forms of Leishmania donovani. All 15 tested tetraoxanes displayed activity, with IC50 values ranging from 2 to 45 µm. The most active tetraoxane, compound LC140, exhibited an IC50 value of 2.52 ± 0.65 µm on L. donovani intramacrophage amastigotes, with a selectivity index of 13.5. This compound reduced the liver parasite burden of L. donovani-infected mice by 37% after an intraperitoneal treatment at 10 mg/kg/day for five consecutive days, whereas miltefosine, an antileishmanial drug in use, reduced it by 66%. These results provide a relevant basis for the development of further tetraoxanes as effective, safe, and cheap drugs against leishmaniasis.
Collapse
|
12
|
Sousa JKT, Antinarelli LMR, Mendonça DVC, Lage DP, Tavares GSV, Dias DS, Ribeiro PAF, Ludolf F, Coelho VTS, Oliveira-da-Silva JA, Perin L, Oliveira BA, Alvarenga DF, Chávez-Fumagalli MA, Brandão GC, Nobre V, Pereira GR, Coimbra ES, Coelho EAF. A chloroquinoline derivate presents effective in vitro and in vivo antileishmanial activity against Leishmania species that cause tegumentary and visceral leishmaniasis. Parasitol Int 2019; 73:101966. [PMID: 31362122 DOI: 10.1016/j.parint.2019.101966] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 06/27/2019] [Accepted: 07/26/2019] [Indexed: 02/06/2023]
Abstract
The identification of new therapeutics to treat leishmaniasis is desirable, since available drugs are toxic and present high cost and/or poor availability. Therefore, the discovery of safer, more effective and selective pharmaceutical options is of utmost importance. Efforts towards the development of new candidates based on molecule analogs with known biological functions have been an interesting and cost-effective strategy. In this context, quinoline derivatives have proven to be effective biological activities against distinct diseases. In the present study, a new chloroquinoline derivate, AM1009, was in vitro tested against two Leishmania species that cause leishmaniasis. The present study analyzed the necessary inhibitory concentration to preclude 50% of the Leishmania promastigotes and axenic amastigotes (EC50 value), as well as the inhibitory concentrations to preclude 50% of the murine macrophages and human red blood cells (CC50 and RBC50 values, respectively). In addition, the treatment of infected macrophages and the inhibition of infection using pre-treated parasites were also investigated, as was the mechanism of action of the molecule in L. amazonensis. To investigate the in vivo therapeutic effect, BALB/c mice were infected with L. amazonensis and later treated with AM1009. Parasitological and immunological parameters were also evaluated. Clioquinol, a known antileishmanial quinoline derivate, and amphotericin B (AmpB), were used as molecule and drug controls, respectively. Results in both in vitro and in vivo experiments showed a better and more selective action of AM1009 to kill the in vitro parasites, as well as in treating infected mice, when compared to results obtained using clioquinol or AmpB. AM1009-treated animals presented significantly lower average lesion diameter and parasite burden in the infected tissue and organs evaluated in this study, as well as a more polarized antileishmanial Th1 immune response and low renal and hepatic toxicity. This result suggests that AM1009 should be considered a possible therapeutic target to be evaluated in future studies for treatment against leishmaniasis.
Collapse
Affiliation(s)
- Jessica K T Sousa
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Luciana M R Antinarelli
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Débora V C Mendonça
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Daniela P Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Grasiele S V Tavares
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Daniel S Dias
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Patrícia A F Ribeiro
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Ludolf
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Vinicio T S Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - João A Oliveira-da-Silva
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Luísa Perin
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Bianka A Oliveira
- Pontifícia Universidade Católica de Minas Gerais, Departamento de Física e Química, Instituto de Ciências Exatas e Informática, 30535-901 Belo Horizonte, Minas Gerais, Brazil
| | - Denis F Alvarenga
- Pontifícia Universidade Católica de Minas Gerais, Departamento de Física e Química, Instituto de Ciências Exatas e Informática, 30535-901 Belo Horizonte, Minas Gerais, Brazil
| | - Miguel A Chávez-Fumagalli
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Geraldo C Brandão
- Escola de Farmácia, Universidade Federal de Ouro Preto, 35400-000 Ouro Preto, Minas Gerais, Brazil
| | - Vandack Nobre
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Guilherme R Pereira
- Pontifícia Universidade Católica de Minas Gerais, Departamento de Física e Química, Instituto de Ciências Exatas e Informática, 30535-901 Belo Horizonte, Minas Gerais, Brazil
| | - Elaine S Coimbra
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, 36036-900 Juiz de Fora, Minas Gerais, Brazil
| | - Eduardo A F Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, 30130-100 Belo Horizonte, Minas Gerais, Brazil; Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
13
|
Stevanovic S, Sencanski M, Danel M, Menendez C, Belguedj R, Bouraiou A, Nikolic K, Cojean S, Loiseau PM, Glisic S, Baltas M, García-Sosa AT. Synthesis, In Silico, and In Vitro Evaluation of Anti-Leishmanial Activity of Oxadiazoles and Indolizine Containing Compounds Flagged against Anti-Targets. Molecules 2019; 24:molecules24071282. [PMID: 30986947 PMCID: PMC6480966 DOI: 10.3390/molecules24071282] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/20/2019] [Accepted: 03/28/2019] [Indexed: 11/24/2022] Open
Abstract
Due to the lack of approved vaccines against human leishmaniasis and the limitations of the current chemotherapy inducing side effects and drug resistance, development of new, effective chemotherapeutic agents is essential. This study describes the synthesis of a series of novel oxadiazoles and indolizine-containing compounds. The compounds were screened in silico using an EIIP/AQVN filter followed by ligand-based virtual screening and molecular docking to parasite arginase. Top hits were further screened versus human arginase and finally against an anti-target battery to tag their possible interactions with proteins essential for the metabolism and clearance of many substances. Eight candidate compounds were selected for further experimental testing. The results show measurable in vitro anti-leishmanial activity for three compounds. One compound with an IC50 value of 2.18 µM on Leishmania donovani intramacrophage amastigotes is clearly better positioned than the others as an interesting molecular template for further development of new anti-leishmanial agents.
Collapse
Affiliation(s)
- Strahinja Stevanovic
- Laboratory for Bioinformatics and Computational Chemistry, Institute of Nuclear Sciences VINCA, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia.
| | - Milan Sencanski
- Laboratory for Bioinformatics and Computational Chemistry, Institute of Nuclear Sciences VINCA, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia.
| | - Mathieu Danel
- ITAV, Université de Toulouse, CNRS, 31062 Toulouse, France.
| | - Christophe Menendez
- Department of Chemistry, Université de Toulouse, UPS, CNRS UMR 5068, LSPCMIB, 118 Route de Narbonne, 31062 Toulouse, France.
- CNRS, Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, LSPCMIB, UMR-5068, 118 Route de Narbonne, 31062 Toulouse, France.
| | - Roumaissa Belguedj
- Department of Chemistry, Université de Toulouse, UPS, CNRS UMR 5068, LSPCMIB, 118 Route de Narbonne, 31062 Toulouse, France.
- CNRS, Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, LSPCMIB, UMR-5068, 118 Route de Narbonne, 31062 Toulouse, France.
- Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, Université Frères Mentouri, Route de Ain El Bey, 25000 Constantine, Algeria.
| | - Abdelmalek Bouraiou
- Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, Université Frères Mentouri, Route de Ain El Bey, 25000 Constantine, Algeria.
| | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia.
| | - Sandrine Cojean
- Antiparasitic Chemotherapy, UMR 8076 CNRS BioCIS, Faculty of Pharmacy Université Paris-Sud, Rue Jean-Baptiste Clément, F 92290 Chatenay-Malabry, France.
| | - Philippe M Loiseau
- Antiparasitic Chemotherapy, UMR 8076 CNRS BioCIS, Faculty of Pharmacy Université Paris-Sud, Rue Jean-Baptiste Clément, F 92290 Chatenay-Malabry, France.
| | - Sanja Glisic
- Laboratory for Bioinformatics and Computational Chemistry, Institute of Nuclear Sciences VINCA, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia.
| | - Michel Baltas
- Department of Chemistry, Université de Toulouse, UPS, CNRS UMR 5068, LSPCMIB, 118 Route de Narbonne, 31062 Toulouse, France.
- CNRS, Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, LSPCMIB, UMR-5068, 118 Route de Narbonne, 31062 Toulouse, France.
| | | |
Collapse
|
14
|
Treating an old disease with new tricks: strategies based on host–guest chemistry for leishmaniasis therapy. J INCL PHENOM MACRO 2019. [DOI: 10.1007/s10847-019-00885-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
15
|
El Ghozlani M, Bouissane L, Berkani M, Mojahidi S, Allam A, Menendez C, Cojean S, Loiseau PM, Baltas M, Rakib EM. Synthesis and biological evaluation against Leishmania donovani of novel hybrid molecules containing indazole-based 2-pyrone scaffolds. MEDCHEMCOMM 2019; 10:120-127. [PMID: 30774860 PMCID: PMC6350763 DOI: 10.1039/c8md00475g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/15/2018] [Indexed: 11/21/2022]
Abstract
A series of novel indazole-pyrone hybrids were synthesized by a one pot reaction between N-alkyl-6(5)-nitroindazoles and 2-pyrone (4-hydroxy-6-methyl-2H-pyran-2-one) using indium or stannous chloride as the reducing system in the presence of acetic acid in tetrahydrofuran. The hybrid molecules were obtained in good to excellent yields (72-92%) and characterized by NMR and single crystal X-ray diffraction. Nineteen compounds were tested in vitro against both Leishmania donovani (MHOM/ET/67/HU3, also called LV9) axenic and intramacrophage amastigotes. Among all, five compounds showed anti-leishmanial activity against intracellular L. donovani with an IC50 in the range of 2.25 to 62.56 μM. 3-(1-(3-Chloro-2-ethyl-2H-indazol-6-ylamino)ethylidene)-6-methyl-3H-pyran-2,4-dione 6f was found to be the most active compound for axenic amastigotes and intramacrophage amastigotes of L. donovani with IC50 values of 2.48 ± 1.02 μM and 2.25 ± 1.89 μM, respectively. However, the cytotoxicity of the most promising compound justifies further pharmacomodulations.
Collapse
Affiliation(s)
- M El Ghozlani
- Laboratoire de Chimie Organique et Analytiques , Faculté des Sciences et Techniques , Université Sultan Moulay Slimane , B.P. 523, Béni-Mellal , Morocco .
| | - L Bouissane
- Laboratoire de Chimie Organique et Analytiques , Faculté des Sciences et Techniques , Université Sultan Moulay Slimane , B.P. 523, Béni-Mellal , Morocco .
| | - M Berkani
- Laboratoire de Chimie Organique et Analytiques , Faculté des Sciences et Techniques , Université Sultan Moulay Slimane , B.P. 523, Béni-Mellal , Morocco .
| | - S Mojahidi
- Laboratoire de Chimie Organique et Analytiques , Faculté des Sciences et Techniques , Université Sultan Moulay Slimane , B.P. 523, Béni-Mellal , Morocco .
| | - A Allam
- Laboratoire de Chimie Organique et Analytiques , Faculté des Sciences et Techniques , Université Sultan Moulay Slimane , B.P. 523, Béni-Mellal , Morocco .
| | - C Menendez
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique , Université Paul Sabatier , UMR-CNRS 5068, 118 route de Narbonne , 31062 Toulouse cedex 9 , France
| | - S Cojean
- Chimiothérapie Antiparasitaire , UMR 8076 CNRS Faculté de Pharmacie , Université Paris-Saclay , Rue Jean-Baptiste Clément , F-92290 Chatenay-Malabry , France
| | - P M Loiseau
- Chimiothérapie Antiparasitaire , UMR 8076 CNRS Faculté de Pharmacie , Université Paris-Saclay , Rue Jean-Baptiste Clément , F-92290 Chatenay-Malabry , France
| | - M Baltas
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique , Université Paul Sabatier , UMR-CNRS 5068, 118 route de Narbonne , 31062 Toulouse cedex 9 , France
| | - E M Rakib
- Laboratoire de Chimie Organique et Analytiques , Faculté des Sciences et Techniques , Université Sultan Moulay Slimane , B.P. 523, Béni-Mellal , Morocco .
| |
Collapse
|
16
|
Ravichandran V, Mekarnia N, Pomel S, Cojean S, Ferrié L, Figadère B, Kesavan V, Loiseau PM, Jayakrishnan A. New Water-Soluble Polymeric Prodrugs of 2-n-propylquinoline: Synthesis and Evaluation of In Vitro and In Vivo Activities Against Leishmania donovani. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2018. [DOI: 10.1007/s40883-018-0045-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Vásquez-Ocmín P, Cojean S, Rengifo E, Suyyagh-Albouz S, Amasifuen Guerra CA, Pomel S, Cabanillas B, Mejía K, Loiseau PM, Figadère B, Maciuk A. Antiprotozoal activity of medicinal plants used by Iquitos-Nauta road communities in Loreto (Peru). JOURNAL OF ETHNOPHARMACOLOGY 2018; 210:372-385. [PMID: 28887215 DOI: 10.1016/j.jep.2017.08.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/17/2017] [Accepted: 08/29/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In the Peruvian Amazon, the use of medicinal plants is a common practice. However, there is few documented information about the practical aspects of their use and few scientific validation. The starting point for this work was a set of interviews of people living in rural communities from the Peruvian Amazon about their uses of plants. Protozoan diseases are a public health issue in the Amazonian communities, who partly cope with it by using traditional remedies. Validation of these traditional practices contributes to public health care efficiency and may help identify new antiprotozoal compounds. AIMS OF STUDY to inventory and validate the use of medicinal plants by rural people of Loreto region. MATERIALS AND METHODS Rural mestizos were interviewed about traditional medication of parasite infections with medicinal plants. Ethnopharmacological surveys were undertaken in two villages along Iquitos-Nauta road (Loreto region, Peru), namely 13 de Febrero and El Dorado communities. Forty-six plants were collected according to their traditional use for the treatment of parasitic diseases, 50 ethanolic extracts (different parts for some of the plants) were tested in vitro on Plasmodium falciparum (3D7 sensitive strain and W2 chloroquine resistant strain), Leishmania donovani LV9 strain and Trypanosoma brucei gambiense. Cytotoxic assessment (HUVEC cells) of the active extracts was performed. Two of the most active plants were submitted to preliminary bioguided fractionation to ascertain and explore their activities. RESULTS From the initial plants list, 10 were found to be active on P. falciparum, 15 on L. donovani and 2 on the three parasites. The ethanolic extract from Costus curvibracteatus (Costaceae) leaves and Grias neuberthii (Lecythidaceae) bark showed strong in vitro activity on P. falciparum (sensitive and resistant strain) and L. donovani and moderate activity on T. brucei gambiense. CONCLUSIONS The Amazonian forest communities in Peru represents a source of knowledge on the use of medicinal plants. In this work, several extracts with antiprotozoal activity were identified. This work contributes to validate some traditional uses and opens subsequent investigations on active compounds isolation and identification.
Collapse
Affiliation(s)
- Pedro Vásquez-Ocmín
- Equipe "Chimie des substances naturelles" BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France.
| | - Sandrine Cojean
- Equipe "Chimiothérapie antiparasitaire" BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Elsa Rengifo
- Instituto de Investigaciones de la Amazonía Peruana, Avenida Abelardo Quiñonez Km. 4.5, Iquitos, Peru
| | - Soulaf Suyyagh-Albouz
- Equipe "Chimiothérapie antiparasitaire" BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Carlos A Amasifuen Guerra
- Universidad Nacional de la Amazonía Peruana, Facultad de Ciencias Forestales, Calle Pevas 5ta cuadra, Iquitos, Peru
| | - Sébastien Pomel
- Equipe "Chimiothérapie antiparasitaire" BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Billy Cabanillas
- Instituto de Investigaciones de la Amazonía Peruana, Avenida Abelardo Quiñonez Km. 4.5, Iquitos, Peru
| | - Kember Mejía
- Instituto de Investigaciones de la Amazonía Peruana, Avenida Abelardo Quiñonez Km. 4.5, Iquitos, Peru
| | - Philippe M Loiseau
- Equipe "Chimiothérapie antiparasitaire" BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Bruno Figadère
- Equipe "Chimie des substances naturelles" BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Alexandre Maciuk
- Equipe "Chimie des substances naturelles" BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France.
| |
Collapse
|
18
|
Direct C2-arylation of quinoline N-oxides by boronic esters; a molecular approach on the efficient metal-free method in C–C cross-coupling reactions. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-017-3126-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Jagu E, Pomel S, Diez-Martinez A, Ramiandrasoa F, Krauth-Siegel RL, Pethe S, Blonski C, Labruère R, Loiseau PM. Synthesis and in vitro antikinetoplastid activity of polyamine–hydroxybenzotriazole conjugates. Bioorg Med Chem 2017; 25:84-90. [DOI: 10.1016/j.bmc.2016.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/20/2016] [Accepted: 10/10/2016] [Indexed: 11/29/2022]
|
20
|
Gupta N, Noël R, Goudet A, Hinsinger K, Michau A, Pons V, Abdelkafi H, Secher T, Shima A, Shtanko O, Sakurai Y, Cojean S, Pomel S, Liévin-Le Moal V, Leignel V, Herweg JA, Fischer A, Johannes L, Harrison K, Beard PM, Clayette P, Le Grand R, Rayner JO, Rudel T, Vacus J, Loiseau PM, Davey RA, Oswald E, Cintrat JC, Barbier J, Gillet D. Inhibitors of retrograde trafficking active against ricin and Shiga toxins also protect cells from several viruses, Leishmania and Chlamydiales. Chem Biol Interact 2016; 267:96-103. [PMID: 27712998 DOI: 10.1016/j.cbi.2016.10.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 08/09/2016] [Accepted: 10/03/2016] [Indexed: 11/25/2022]
Abstract
Medical countermeasures to treat biothreat agent infections require broad-spectrum therapeutics that do not induce agent resistance. A cell-based high-throughput screen (HTS) against ricin toxin combined with hit optimization allowed selection of a family of compounds that meet these requirements. The hit compound Retro-2 and its derivatives have been demonstrated to be safe in vivo in mice even at high doses. Moreover, Retro-2 is an inhibitor of retrograde transport that affects syntaxin-5-dependent toxins and pathogens. As a consequence, it has a broad-spectrum activity that has been demonstrated both in vitro and in vivo against ricin, Shiga toxin-producing O104:H4 entero-hemorrhagic E. coli and Leishmania sp. and in vitro against Ebola, Marburg and poxviruses and Chlamydiales. An effect is anticipated on other toxins or pathogens that use retrograde trafficking and syntaxin-5. Since Retro-2 targets cell components of the host and not directly the pathogen, no selection of resistant pathogens is expected. These lead compounds need now to be developed as drugs for human use.
Collapse
Affiliation(s)
- Neetu Gupta
- Institute of Biology and Technology of Saclay (IBITECS), CEA, LabEx LERMIT, Université Paris-Saclay, F-91191, Gif Sur Yvette, France
| | - Romain Noël
- Institute of Biology and Technology of Saclay (IBITECS), CEA, LabEx LERMIT, Université Paris-Saclay, F-91191, Gif Sur Yvette, France
| | - Amélie Goudet
- Institute of Biology and Technology of Saclay (IBITECS), CEA, LabEx LERMIT, Université Paris-Saclay, F-91191, Gif Sur Yvette, France
| | - Karen Hinsinger
- Institute of Biology and Technology of Saclay (IBITECS), CEA, LabEx LERMIT, Université Paris-Saclay, F-91191, Gif Sur Yvette, France
| | - Aurélien Michau
- Institute of Biology and Technology of Saclay (IBITECS), CEA, LabEx LERMIT, Université Paris-Saclay, F-91191, Gif Sur Yvette, France
| | - Valérie Pons
- Institute of Biology and Technology of Saclay (IBITECS), CEA, LabEx LERMIT, Université Paris-Saclay, F-91191, Gif Sur Yvette, France
| | - Hajer Abdelkafi
- Institute of Biology and Technology of Saclay (IBITECS), CEA, LabEx LERMIT, Université Paris-Saclay, F-91191, Gif Sur Yvette, France
| | | | | | - Olena Shtanko
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | - Sandrine Cojean
- Antiparasitic Chemotherapy, UMR 8076, CNRS BioCIS, LabEx LERMIT, Université Paris-Sud, Université Paris-Saclay, F-92290, Chatenay-Malabry, France
| | - Sébastien Pomel
- Antiparasitic Chemotherapy, UMR 8076, CNRS BioCIS, LabEx LERMIT, Université Paris-Sud, Université Paris-Saclay, F-92290, Chatenay-Malabry, France
| | - Vanessa Liévin-Le Moal
- Antiparasitic Chemotherapy, UMR 8076, CNRS BioCIS, LabEx LERMIT, Université Paris-Sud, Université Paris-Saclay, F-92290, Chatenay-Malabry, France
| | - Véronique Leignel
- DRUGABILIS (French Research Performer SME), F-92290, Chatenay-Malabry, France
| | - Jo-Ana Herweg
- University of Würzburg, Biocenter, Chair of Microbiology, Am Hubland, D-97074, Würzburg, Germany
| | - Annette Fischer
- University of Würzburg, Biocenter, Chair of Microbiology, Am Hubland, D-97074, Würzburg, Germany
| | - Ludger Johannes
- Institut Curie, PSL Research University, Endocytic Trafficking and Therapeutic Delivery Group, 26 rue d'Ulm, F-75248, Paris Cedex 05, France; CNRS, UMR3666, F-75005, Paris, France; INSERM, U1143, F-75005, Paris, France
| | - Kate Harrison
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian, EH25 9RG, United Kingdom
| | - Philippa M Beard
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian, EH25 9RG, United Kingdom; The Pirbright Institute, Ash Rd, Pirbright, Surrey GH24 0NF, United Kingdom
| | - Pascal Clayette
- ImmunoPharmacology and Biosafety Laboratory, BERTIN Pharma, CEA, F-92265, Fontenay-aux-Roses, France
| | - Roger Le Grand
- Institute of Emerging Diseases and Innovative Therapies, CEA, U1184, Immunology of Viral Infections and Autoimmune Diseases, Infectious Disease Models and Innovative Therapies Infrastructure, F-92265, Fontenay-aux-Roses, France; INSERM, U1184, F-94276, Le Kremlin-Bicêtre, France; University of Paris South, U1184, F-92265, Fontenay-aux-Roses, France; Vaccine Research Institute, Henri Mondor Hospital, F-94010, Créteil, France
| | - Jonathan O Rayner
- Infectious Disease Research, Southern Research, 2000 Ninth Avenue South, Birmingham, AL 35205, USA
| | - Thomas Rudel
- University of Würzburg, Biocenter, Chair of Microbiology, Am Hubland, D-97074, Würzburg, Germany
| | - Joël Vacus
- DRUGABILIS (French Research Performer SME), F-92290, Chatenay-Malabry, France
| | - Philippe M Loiseau
- Antiparasitic Chemotherapy, UMR 8076, CNRS BioCIS, LabEx LERMIT, Université Paris-Sud, Université Paris-Saclay, F-92290, Chatenay-Malabry, France
| | - Robert A Davey
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | - Jean-Christophe Cintrat
- Institute of Biology and Technology of Saclay (IBITECS), CEA, LabEx LERMIT, Université Paris-Saclay, F-91191, Gif Sur Yvette, France
| | - Julien Barbier
- Institute of Biology and Technology of Saclay (IBITECS), CEA, LabEx LERMIT, Université Paris-Saclay, F-91191, Gif Sur Yvette, France
| | - Daniel Gillet
- Institute of Biology and Technology of Saclay (IBITECS), CEA, LabEx LERMIT, Université Paris-Saclay, F-91191, Gif Sur Yvette, France.
| |
Collapse
|