1
|
da Silva Honorio M, Alves Sartori A, Ripari N, Basso Santiago K, Maurício Sforcin J. Anti-inflammatory action of geopropolis produced by stingless bees on human peripheral blood mononuclear cells. Hum Immunol 2024; 85:110825. [PMID: 38795676 DOI: 10.1016/j.humimm.2024.110825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Natural products have been used to treat inflammatory reactions and led to the discovery of new anti-inflammatory drugs. Geopropolis (GEO) is produced by stingless bees and has been used by indigenous people to improve the immune functions. Here, a possible synergism between GEO and dexamethasone (DEX) was assessed on human peripheral blood mononuclear cells (PBMC) stimulated by lipopolysaccharide (LPS). PBMC viability was evaluated by the MTT, apoptosis/necrosis by flow cytometry, cytokine and eicosanoids production by ELISA, and intracellular pathways by polymerase chain reaction. GEO and DEX alone or in combination did not affect cell viability. GEO in combination with lower concentrations of DEX inhibited cytokine production (TNF-α, IL-1β, and IL-10). No effects were seen on eicosanoids nor in intracellular pathways. Despite not always being more efficient than the isolated treatments, GEO + DEX seemed to be promising and allow the use of DEX in lower concentrations, reducing adverse effects.
Collapse
Affiliation(s)
| | - Arthur Alves Sartori
- São Paulo State University (UNESP), Institute of Biosciences, Campus Botucatu, Brazil
| | - Nicolas Ripari
- São Paulo State University (UNESP), Institute of Biosciences, Campus Botucatu, Brazil
| | - Karina Basso Santiago
- São Paulo State University (UNESP), Institute of Biosciences, Campus Botucatu, Brazil
| | - José Maurício Sforcin
- São Paulo State University (UNESP), Institute of Biosciences, Campus Botucatu, Brazil.
| |
Collapse
|
2
|
Coutinho S, Matos V, Seixas N, Rodrigues H, Paula VB, Freitas L, Dias T, Santos FDAR, Dias LG, Estevinho LM. Melipona scutellaris Geopropolis: Chemical Composition and Bioactivity. Microorganisms 2023; 11:2779. [PMID: 38004790 PMCID: PMC10673356 DOI: 10.3390/microorganisms11112779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Geopropolis has been used in traditional medicine for centuries. In this study, the botanical origin, physicochemical profile, and biological activities of geopropolis from Melipona scutellaris harvested during rainy and dry seasons were investigated. Palynological analysis identified over 50 pollen types, with Schinus terebinthifolius and Cecropia being the predominant types. The analytical results were in line with those reported in the literature. Rainy-season geopropolis exhibited higher total phenol and flavonoid content (determined using High Performance Liquid Chromatography-25.13% and 3.92%, respectively) compared to the dry season (19.30% and 2.09%); the major peaks (naringin, gallic acid, and catechin) were similar among samples. Antioxidant capacity was assessed via DPPH, reducing power, and β-carotene/linoleic acid discoloration assays. Rainy-season samples displayed superior antioxidant activity across methods. Antimicrobial effects were determined using microdilution, while the impact on the cholinesterase enzyme was quantified using 5-thio-2-nitrobenzoic acid accumulation. Anti-inflammatory and antimutagenic activities were assessed through hyaluronidase enzyme inhibition and by utilizing Saccharomyces cerevisiae ATCC-20113 cells. Both samples exhibited anti-inflammatory and antimutagenic properties. Moreover, a significant inhibition of acetylcholinesterase was observed, with IC50 values of 0.35 µg/mL during the rainy season and 0.28 µg/mL during the dry season. Additionally, the geopropolis displayed antimicrobial activity, particularly against Staphylococcus aureus. These findings suggest the therapeutic potential of M. scutellaris geopropolis in the context of inflammatory, oxidative, and infectious diseases.
Collapse
Affiliation(s)
- Sónia Coutinho
- Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal; (S.C.); (L.F.)
| | - Vanessa Matos
- Programa de Pós-Graduação em Botânica, Universidade Estadual de Feira de Santana, Avenida Transnordestina, s/n, Novo Horizonte, Feira de Santana 44036-900, BA, Brazil (F.d.A.R.S.)
| | - Natália Seixas
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal (T.D.); (L.G.D.)
| | - Hellen Rodrigues
- Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal; (S.C.); (L.F.)
| | - Vanessa B. Paula
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal (T.D.); (L.G.D.)
| | - Lais Freitas
- Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal; (S.C.); (L.F.)
| | - Teresa Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal (T.D.); (L.G.D.)
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Francisco de Assis Ribeiro Santos
- Programa de Pós-Graduação em Botânica, Universidade Estadual de Feira de Santana, Avenida Transnordestina, s/n, Novo Horizonte, Feira de Santana 44036-900, BA, Brazil (F.d.A.R.S.)
| | - Luís G. Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal (T.D.); (L.G.D.)
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Letícia M. Estevinho
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal (T.D.); (L.G.D.)
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
3
|
Chuttong B, Lim K, Praphawilai P, Danmek K, Maitip J, Vit P, Wu MC, Ghosh S, Jung C, Burgett M, Hongsibsong S. Exploring the Functional Properties of Propolis, Geopropolis, and Cerumen, with a Special Emphasis on Their Antimicrobial Effects. Foods 2023; 12:3909. [PMID: 37959028 PMCID: PMC10648409 DOI: 10.3390/foods12213909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Bee propolis has been touted as a natural antimicrobial agent with the potential to replace antibiotics. Numerous reports and reviews have highlighted the functionalities and applications of the natural compound. Despite much clamor for the downstream application of propolis, there remain many grounds to cover, especially in the upstream production, and factors affecting the quality of the propolis. Moreover, geopropolis and cerumen, akin to propolis, hold promise for diverse human applications, yet their benefits and intricate manufacturing processes remain subjects of intensive research. Specialized cement bees are pivotal in gathering and transporting plant resins from suitable sources to their nests. Contrary to common belief, these resins are directly applied within the hive, smoothed out by cement bees, and blended with beeswax and trace components to create raw propolis. Beekeepers subsequently harvest and perform the extraction of the raw propolis to form the final propolis extract that is sold on the market. As a result of the production process, intrinsic and extrinsic factors, such as botanical origins, bee species, and the extraction process, have a direct impact on the quality of the final propolis extract. Towards the end of this paper, a section is dedicated to highlighting the antimicrobial potency of propolis extract.
Collapse
Affiliation(s)
- Bajaree Chuttong
- Meliponini and Apini Research Laboratory, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (M.B.)
| | - Kaiyang Lim
- ES-TA Technology Pte Ltd., Singapore 368819, Singapore;
| | - Pichet Praphawilai
- Meliponini and Apini Research Laboratory, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (M.B.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Khanchai Danmek
- School of Agriculture and Natural Resources, University of Phayao, Phayao 56000, Thailand;
| | - Jakkrawut Maitip
- Faculty of Science, Energy and Environment, King Mongkut’s University of Technology North Bangkok, Rayong Campus, Bankhai, Rayong 21120, Thailand;
| | - Patricia Vit
- Apitherapy and Bioactivity, Food Science Department, Faculty of Pharmacy and Bioanalysis, Universidad de Los Andes, Merida 5001, Venezuela;
| | - Ming-Cheng Wu
- Department of Entomology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Sampat Ghosh
- Agriculture Science and Technology Research Institute, Andong National University, Andong 36729, Republic of Korea;
| | - Chuleui Jung
- Department of Plant Medical, Andong National University, Andong 36729, Republic of Korea;
| | - Michael Burgett
- Meliponini and Apini Research Laboratory, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (M.B.)
- Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA
| | - Surat Hongsibsong
- School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
4
|
de Oliveira Cardoso E, Santiago KB, Conti BJ, Conte FL, Tasca KI, Romagnoli GG, de Assis Golim M, Rainho CA, Bastos JK, Sforcin JM. Brazilian green propolis: A novel tool to improve the cytotoxic and immunomodulatory action of docetaxel on MCF-7 breast cancer cells and on women monocyte. Phytother Res 2021; 36:448-461. [PMID: 34862831 DOI: 10.1002/ptr.7345] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/02/2021] [Accepted: 11/12/2021] [Indexed: 12/14/2022]
Abstract
Docetaxel (DTX) is used against breast cancer despite its side effects such as toxicity and immunosuppression. Here we investigated the cytotoxic and immunomodulatory effects of the ethanol solution extract of propolis (EEP) in combination with DTX on MCF-7 breast cancer cells and on women's monocyte. The cytotoxic potential of EEP + DTX was assessed by MTT assay and the type of tumor cell death was evaluated by flow cytometry. The effects of EEP + DTX on the migration and invasion of MCF-7 cells were analyzed. Cytokine production by monocytes was assessed by ELISA and the expression of cell surface markers was evaluated by flow cytometry. We also assessed the fungicidal activity of monocytes against Candida albicans and the generation of reactive oxygen species (ROS). Finally, the impact of the supernatants of treated monocytes in the viability, migration, and invasiveness of tumor cells was assessed. EEP enhanced the cytotoxicity of DTX alone against MCF-7 cells by inducing necrosis and inhibiting their migratory ability. EEP + DTX exerted no cytotoxic effects on monocytes and stimulated HLA-DR expression, TNF-α, and IL-6 production, exerted an immunorestorative action in the fungicidal activity, and reduced the oxidative stress. Our findings have practical implications and reveal new insights for complementary medicine.
Collapse
Affiliation(s)
- Eliza de Oliveira Cardoso
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Campus Botucatu, São Paulo, Brazil
| | - Karina Basso Santiago
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Campus Botucatu, São Paulo, Brazil
| | - Bruno José Conti
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Campus Botucatu, São Paulo, Brazil
| | - Fernanda Lopes Conte
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Campus Botucatu, São Paulo, Brazil
| | - Karen Ingrid Tasca
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Campus Botucatu, São Paulo, Brazil
| | | | - Marjorie de Assis Golim
- Botucatu Blood Center, School of Medicine, São Paulo State University (UNESP), Campus Botucatu, São Paulo, Brazil
| | - Cláudia Aparecida Rainho
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Campus Botucatu, São Paulo, Brazil
| | - Jairo Kenupp Bastos
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - José Maurício Sforcin
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Campus Botucatu, São Paulo, Brazil
| |
Collapse
|
5
|
Pereira FAN, Barboza JR, Vasconcelos CC, Lopes AJO, Ribeiro MNDS. Use of Stingless Bee Propolis and Geopropolis against Cancer-A Literature Review of Preclinical Studies. Pharmaceuticals (Basel) 2021; 14:1161. [PMID: 34832943 PMCID: PMC8623341 DOI: 10.3390/ph14111161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 01/10/2023] Open
Abstract
Cancer is one of the major maladies affecting humankind and remains one of the leading causes of death worldwide. The investigation of the biological activities of stingless bee products, especially propolis and geopropolis, has revealed promising therapeutic properties, especially in the research on new antineoplastic agents. This literature review of preclinical trials, involving biological assays of antitumor activity and identification of the chemical composition of propolis and geopropolis of stingless bee species, describes the cytotoxicity in tumor lineages (breast, lung, ovarian, liver, mouth, pharynx, larynx, colon, stomach, colorectal, cervix, kidney, prostate, melanoma, human glioblastoma, canine osteosarcoma, erythroleukemia, human chronic myelocytic leukemia, and human promyelocytic leukemia) of propolis and geopropolis of 33 species of stingless bees. The chemical composition of propolis and geopropolis was identified, indicating that these belong to the chemical classes of phenolic acids, flavonoids, coumarins, benzophenones, anthraquinones, alkaloids, terpenes, steroids, saponins, fatty acids, and carbohydrates and are possibly responsible for the cytotoxicity in tumor cells. Apoptosis was one of the main mechanisms of cytotoxicity of extracts and substances isolated from stingless bee products. Although the results found are encouraging, other preclinical studies and clinical trials are essential for the discovery of new anticancer agents.
Collapse
Affiliation(s)
- Francisco Assis Nascimento Pereira
- Laboratório de Farmacognosia, Departamento de Farmácia, Campus Bacanga, Universidade Federal do Maranhão, Av. dos Portugueses, 1966, São Luís 65080-805, Maranhão, Brazil; (J.R.B.); (C.C.V.)
| | | | | | - Alberto Jorge Oliveira Lopes
- Laboratório de Farmacognosia, Departamento de Farmácia, Campus Bacanga, Universidade Federal do Maranhão, Av. dos Portugueses, 1966, São Luís 65080-805, Maranhão, Brazil; (J.R.B.); (C.C.V.)
| | - Maria Nilce de Sousa Ribeiro
- Laboratório de Farmacognosia, Departamento de Farmácia, Campus Bacanga, Universidade Federal do Maranhão, Av. dos Portugueses, 1966, São Luís 65080-805, Maranhão, Brazil; (J.R.B.); (C.C.V.)
| |
Collapse
|
6
|
Stingless Bee Propolis: New Insights for Anticancer Drugs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2169017. [PMID: 34603594 PMCID: PMC8483912 DOI: 10.1155/2021/2169017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/16/2021] [Accepted: 09/03/2021] [Indexed: 12/16/2022]
Abstract
Natural products are important sources of biomolecules possessing antitumor activity and can be used as anticancer drug prototypes. The rich biodiversity of tropical and subtropical regions of the world provides considerable bioprospecting potential, including the potential of propolis produced by stingless bee species. Investigations of the potential of these products are extremely important, not only for providing a scientific basis for their use as adjuvants for existing drug therapies but also as a source of new and potent anticancer drugs. In this context, this article organizes the main studies describing the anticancer potential of propolis from different species of stingless bees with an emphasis on the chemical compounds, mechanisms of action, and cell death profiles. These mechanisms include apoptotic events; modulation of BAX, BAD, BCL2-L1 (BCL-2 like 1), and BCL-2; depolarization of the mitochondrial membrane; increased caspase-3 activity; poly (ADP-ribose) polymerase (PARP) cleavage; and cell death induction by necroptosis via receptor interacting protein kinase 1 (RIPK1) activation. Additionally, the correlation between compounds with antioxidant and anti-inflammatory potential is demonstrated that help in the prevention of cancer development. In summary, we highlight the important antitumor potential of propolis from stingless bees, but further preclinical and clinical trials are needed to explore the selectivity, efficacy, and safety of propolis.
Collapse
|
7
|
Naree S, Benbow ME, Suwannapong G, Ellis JD. Mitigating Nosema ceranae infection in western honey bee (Apis mellifera) workers using propolis collected from honey bee and stingless bee (Tetrigona apicalis) hives. J Invertebr Pathol 2021; 185:107666. [PMID: 34530028 DOI: 10.1016/j.jip.2021.107666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 11/15/2022]
Abstract
Beekeepers need sustainable control options to treat Nosema ceranae infection in colonies of western honey bees (Apis mellifera L.) they manage. Propolis is a natural product derived from plant resins and contains chemical compounds with potential antimicrobial activity against N. ceranae. Here, we determined the efficacy of propolis from A. mellifera (USA) and Tetrigona apicalis (stingless bees, Thailand) colonies as treatments for N. ceranae infection in honey bee workers. Newly emerged bees were individually fed 2 μL of 50% (w/v) sucrose solution containing 1 × 105N. ceranae spores. Following this, the infected bees were treated with 50% propolis extracted from A. mellifera or T. apicalis hives and fed in 50% sucrose solution (v/v). All bees were maintained at 34 ± 2 °C and 55 ± 5% RH. Dead bees were counted daily for 30 d to calculate survival. We also determined infection rate (# infected bees/100 bees), infectivity (number of spores per bee) and protein content in the hypopharyngeal glands and hemolymph on 7, 14, and 21 d post infection as measures of bee health. Propolis from both bee species significantly reduced bee mortality, infection rate and infectivity compared with those of untreated bees and led to significantly greater protein contents in hypopharyngeal glands and hemolymph in treated bees than in untreated ones (p < 0.0001). In conclusion, propolis from A. mellifera and T. apicalis colonies shows promise as a control against N. ceranae infection in honey bees.
Collapse
Affiliation(s)
- Sanchai Naree
- Department of Biology, Faculty of Science, Burapha University, Chon Buri 20131 Thailand
| | - Mark E Benbow
- Department of Entomology and Department of Osteopathic Medical Specialties, Michigan State University, East Lansing, MI 48824, USA
| | - Guntima Suwannapong
- Department of Biology, Faculty of Science, Burapha University, Chon Buri 20131 Thailand
| | - James D Ellis
- Entomology and Nematology Department, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
8
|
Surek M, Fachi MM, de Fátima Cobre A, de Oliveira FF, Pontarolo R, Crisma AR, de Souza WM, Felipe KB. Chemical composition, cytotoxicity, and antibacterial activity of propolis from Africanized honeybees and three different Meliponini species. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113662. [PMID: 33307049 DOI: 10.1016/j.jep.2020.113662] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/12/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Propolis extracts are widely used in traditional folk medicine and exhibit several properties such as antitumor, anti-inflammatory, and antimicrobial. However, these products have not been investigated in combination with medicines used in clinical practice. AIM OF THE STUDY This study aimed to evaluate the chemical composition of propolis extracts from Apis mellifera scutellata and different Meliponini species and characterize their cytotoxicity against tumor cells, antibacterial effects, and interference with the actions of doxorubicin and gentamicin. MATERIALS AND METHODS Chromatographic and spectrometric analyses were performed using ultra-high-performance liquid chromatography (UPLC)-tandem mass spectrometry (MS/MS). Propolis extracts were evaluated for cytotoxicity and synergism using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and the antimicrobial activity was examined using the broth microdilution technique and synergism was investigated using checkerboard and time-kill assays. RESULTS The chemical characterization revealed the presence of 63 compounds, and the extracts showed selective cytotoxicity against tumor cell lines. Propolis extracts of mandaçaia and mirim exerted selective synergistic cytotoxicity in combination with doxorubicin. Except for the tubuna extract, all evaluated extracts exhibited antibacterial effects on gram-positive strains. Mandaçaia and mirim extracts exerted a synergistic effect with gentamicin; however, only mandaçaia extract exerted a selective effect. CONCLUSION Propolis could be a source of antineoplastics and antibiotics. These natural products may reduce the occurrence of doxorubicin and gentamicin related adverse effects, resistance, or both.
Collapse
Affiliation(s)
- Monica Surek
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Paraná, Av. Prefeito Lothário Meissner 632, 80210-170, Curitiba, PR, Brazil; Laboratory of Physiology and Cell Signalling, Department of Clinical Analysis, Federal University of Paraná, Av. Prefeito Lothário Meissner 632, 80210-170, Curitiba, PR, Brazil
| | - Mariana M Fachi
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Paraná, Av. Prefeito Lothário Meissner 632, 80210-170, Curitiba, PR, Brazil
| | - Alexandre de Fátima Cobre
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Paraná, Av. Prefeito Lothário Meissner 632, 80210-170, Curitiba, PR, Brazil
| | - Favízia F de Oliveira
- Laboratory of Bionomy, Biogeography and Insect Systematics (BIOSIS), Federal University of Bahia, St. Barão de Jeremoabo, S/N, 40170-115, Salvador, BA, Brazil
| | - Roberto Pontarolo
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Paraná, Av. Prefeito Lothário Meissner 632, 80210-170, Curitiba, PR, Brazil
| | - Amanda R Crisma
- Laboratory of Physiology and Cell Signalling, Department of Clinical Analysis, Federal University of Paraná, Av. Prefeito Lothário Meissner 632, 80210-170, Curitiba, PR, Brazil
| | - Wesley M de Souza
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Paraná, Av. Prefeito Lothário Meissner 632, 80210-170, Curitiba, PR, Brazil
| | - Karina B Felipe
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Paraná, Av. Prefeito Lothário Meissner 632, 80210-170, Curitiba, PR, Brazil; Laboratory of Physiology and Cell Signalling, Department of Clinical Analysis, Federal University of Paraná, Av. Prefeito Lothário Meissner 632, 80210-170, Curitiba, PR, Brazil.
| |
Collapse
|
9
|
Bhuyan DJ, Alsherbiny MA, Low MN, Zhou X, Kaur K, Li G, Li CG. Broad-spectrum pharmacological activity of Australian propolis and metabolomic-driven identification of marker metabolites of propolis samples from three continents. Food Funct 2021; 12:2498-2519. [PMID: 33683257 DOI: 10.1039/d1fo00127b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Propolis is a by-product of honeybee farming known for its broad therapeutic benefits around the world and is extensively used in the health food and beverage industry. Despite Australia being one of the world's megadiverse countries with rich flora and fauna, Australian propolis samples have not been explored adequately with most in vitro and in vivo studies centred on their Brazilian and Chinese counterparts. In view of this, our study was designed to investigate the chemical composition and anti-proliferative, antibacterial, antifungal, anti-inflammatory and antioxidant properties of Australian propolis (AP-1) extract to draw a comparison with Brazilian (BP-1) and Chinese propolis (CP-1) extracts. The AP-1 extract displayed significantly greater anti-proliferative activity against the MCF7 and the MDA-MB-231 metastatic breast adenocarcinoma cell lines compared to BP-1 and CP-1 (p < 0.05). Similar trends were also observed in the antibacterial (Escherichia coli and Staphylococcus aureus), anti-inflammatory (lipopolysaccharide-induced RAW264.7 macrophages) and antioxidant assays (ABTS, DPPH and CUPRAC) with AP-1 exhibiting more potent activity than BP-1 and CP-1. The ultra-high performance liquid chromatography (UPLC) coupled with quadrupole high-resolution time of flight mass spectrometry (qTOF-MS) and chemometrics implementing unsupervised PCA and supervised OPLS-DA analyses of the propolis samples from Australia, China and Brazil revealed 67 key discriminatory metabolites belonging to seven main chemical classes including flavonoids, triterpenes, acid derivatives, stilbenes, steroid derivatives, diterpenes and miscellaneous compounds. Additionally, seven common phenolic compounds were quantified in the samples. Further mechanistic studies are necessary to elucidate the modes of action of Australian propolis for its prospective use in the food, nutraceutical and pharmaceutical industries.
Collapse
Affiliation(s)
- Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia.
| | | | | | | | | | | | | |
Collapse
|
10
|
Antileishmanial activity and chemical composition from Brazilian geopropolis produced by stingless bee Melipona fasciculata. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2019. [DOI: 10.1016/j.bjp.2019.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Geopropolis gel for the adjuvant treatment of candidiasis – formulation and in vitro release assay. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2019. [DOI: 10.1016/j.bjp.2019.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
12
|
Brazilian stingless bee propolis and geopropolis: promising sources of biologically active compounds. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2019. [DOI: 10.1016/j.bjp.2018.11.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Oliveira LPG, Conte FL, de Oliveira Cardoso E, Conti BJ, Santiago KB, de Assis Golim M, da Silva Feltran G, Zambuzzi WF, Sforcin JM. A new chemotherapeutic approach using doxorubicin simultaneously with geopropolis favoring monocyte functions. Life Sci 2019; 217:81-90. [DOI: 10.1016/j.lfs.2018.11.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/21/2018] [Accepted: 11/29/2018] [Indexed: 11/25/2022]
|
14
|
de Souza SA, da Silva TMG, da Silva EMS, Camara CA, Silva TMS. Characterisation of phenolic compounds by UPLC-QTOF-MS/MS of geopropolis from the stingless bee Melipona subnitida (jandaíra). PHYTOCHEMICAL ANALYSIS : PCA 2018; 29:549-558. [PMID: 29770982 DOI: 10.1002/pca.2766] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/17/2018] [Accepted: 02/17/2018] [Indexed: 06/08/2023]
Abstract
INTRODUCTION Melipona subnitida Ducke (jandaíra) is a stingless bee native to north-eastern Brazil, which produces geopropolis, a mixture of beeswax, plant resins, pollens and earth that is used for sealing beehives. OBJECTIVE To extend the knowledge on phenolic compounds in fractions obtained by C18-solid phase extraction (SPE) of nine geopropolis samples from Melipona subnitida collected at different times. METHODOLOGY Chromatographic profiles of nine samples of geopropolis from jandaíra were analysed by ultra-performance liquid chromatography coupled with a diode array detector and quadrupole time-of-flight mass spectrometry (UPLC-DAD-QTOF-MS/MS) and combined with the use of data-independent acquisition (MSE) for the profiling and structural characterisation of the phenolic compounds. The isolated compound was identified by nuclear magnetic resonance of hydrogen and carbon (1 H- and 13 C-NMR). RESULTS The present study with geopropolis of jandaíra resulted in the characterisation of 51 phenolics by UPLC-DAD-QTOF-MS/MS: four galloyl glucosides, one ellagic acid, 11 acyl-hexosides, 23 acyl-galloyl-hexosides and 12 flavonoids. The structures of two compounds (1,6-di-O-(E)-coumaroyl-2-O-galloyl-β-d-glucopyranoside and 1-O-cinnamoyl-6-O-(E)-coumaroyl-2-O-galloyl-β-d-glucopyranoside) were established by 1 H and the attached proton test (APT) experiments as well as high-resolution electrospray ionisation mass spectroscopy (HR-ESI-MS) analysis. CONCLUSION The geopropolis of jandaíra showed phenolic compounds galloyl hexosides, ellagic acid, acyl-(cinnamoyl/coumaroyl)-hexosides, acyl-(cinnamoyl/coumaroyl)-galloyl-hexosides and flavonoids (aglycones and acylated-O-glycosides).
Collapse
Affiliation(s)
- Silvana Alves de Souza
- Laboratório de Bioprospecção Fitoquímica, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | | | | | - Celso Amorim Camara
- Laboratório de Bioprospecção Fitoquímica, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | | |
Collapse
|
15
|
dos Santos CM, Campos JF, dos Santos HF, Balestieri JBP, Silva DB, de Picoli Souza K, Carollo CA, Estevinho LM, dos Santos EL. Chemical Composition and Pharmacological Effects of Geopropolis Produced by Melipona quadrifasciata anthidioides. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8320804. [PMID: 29213354 PMCID: PMC5682095 DOI: 10.1155/2017/8320804] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/24/2017] [Indexed: 12/24/2022]
Abstract
Stingless bees produce geopropolis, which is popularly described for its medicinal properties, but for which few scientific studies have demonstrated pharmacological effects. The objective of this study was to investigate the chemical composition of the geopropolis of Melipona quadrifasciata anthidioides and to evaluate its antioxidant, antimutagenic, anti-inflammatory, and antimicrobial activities. The composition of the hydroethanolic extract of geopropolis (HEG) included di- and trigalloyl and phenylpropanyl heteroside derivatives, flavanones, diterpenes, and triterpenes. HEG showed antioxidant action via the direct capture of free radicals and by inhibiting the levels of oxidative hemolysis and malondialdehyde in human erythrocytes under oxidative stress. HEG also reduced the frequency of gene conversion and the number of mutant colonies of S. cerevisiae. The anti-inflammatory action of HEG was demonstrated by the inhibition of hyaluronidase enzyme activity. In addition, HEG induced cell death in all evaluated gram-positive bacteria, gram-negative bacteria, and yeasts, including clinical isolates with antimicrobial drug resistance. Collectively, these results demonstrate the potential of M. q. anthidioides geopropolis for the prevention and treatment of various diseases related to oxidative stress, mutagenesis, inflammatory processes, and microbial infections.
Collapse
Affiliation(s)
- Cintia Miranda dos Santos
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Rodovia Dourados Itahum, Km 12, 79804-970 Dourados, MS, Brazil
| | - Jaqueline Ferreira Campos
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Rodovia Dourados Itahum, Km 12, 79804-970 Dourados, MS, Brazil
| | - Helder Freitas dos Santos
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Rodovia Dourados Itahum, Km 12, 79804-970 Dourados, MS, Brazil
| | - José Benedito Perrella Balestieri
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Rodovia Dourados Itahum, Km 12, 79804-970 Dourados, MS, Brazil
| | - Denise Brentan Silva
- Laboratory of Natural Products and Mass Spectrometry, Federal University of Mato Grosso do Sul, Cidade Universitária, 79070-900 Campo Grande, MS, Brazil
| | - Kely de Picoli Souza
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Rodovia Dourados Itahum, Km 12, 79804-970 Dourados, MS, Brazil
| | - Carlos Alexandre Carollo
- Laboratory of Natural Products and Mass Spectrometry, Federal University of Mato Grosso do Sul, Cidade Universitária, 79070-900 Campo Grande, MS, Brazil
| | - Leticia M. Estevinho
- Agricultural College of Bragança, Polytechnic Institute of Bragança, Campus Santa Apolónia, 5301-855 Bragança, Portugal
- Molecular and Environmental Biology Centre (CBMA), Universidade do Minho, Campus de Gualtar, 4710 057 Braga, Portugal
| | - Edson Lucas dos Santos
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Rodovia Dourados Itahum, Km 12, 79804-970 Dourados, MS, Brazil
| |
Collapse
|
16
|
Santos HFD, Campos JF, Santos CMD, Balestieri JBP, Silva DB, Carollo CA, de Picoli Souza K, Estevinho LM, Dos Santos EL. Chemical Profile and Antioxidant, Anti-Inflammatory, Antimutagenic and Antimicrobial Activities of Geopropolis from the Stingless Bee Melipona orbignyi. Int J Mol Sci 2017; 18:ijms18050953. [PMID: 28467350 PMCID: PMC5454866 DOI: 10.3390/ijms18050953] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 04/27/2017] [Indexed: 12/17/2022] Open
Abstract
Geopropolis is a resin mixed with mud, produced only by stingless bees. Despite being popularly known for its medicinal properties, few scientific studies have proven its biological activities. In this context, the objective of this study was to determine the chemical composition and antioxidant, anti-inflammatory, antimutagenic and antimicrobial activities of the Melipona orbignyi geopropolis. The hydroalcoholic extract of geopropolis (HEGP) was prepared and its chemical composition determined by high performance liquid chromatography coupled to diode array detector and mass spectrometry (HPLC-DAD-MS). The antioxidant activity was determined by the capture of free radicals and inhibition of lipid peroxidation in human erythrocytes. The anti-inflammatory activity was evaluated by the inhibition of the hyaluronidase enzyme and the antimutagenic action was investigated in Saccharomyces cerevisiae colonies. The antimicrobial activities were determined against bacteria and yeasts, isolated from reference strains and hospital origin. The chemical composition of HEGP included flavonoids, derivatives of glycosylated phenolic acids and terpenoids. HEGP showed high antioxidant activity, it inhibited the activity of the inflammatory enzyme hyaluronidase and reduced the mutagenic effects in S. cerevisiae. In relation to the antimicrobial activity, it promoted the death of all microorganisms evaluated. In conclusion, this study reveals for the first time the chemical composition of the HEGP of M. orbignyi and demonstrates its pharmacological properties.
Collapse
Affiliation(s)
- Helder Freitas Dos Santos
- Research group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Rodovia Dourados Itahum, Km 12, 79804-970 Dourados, MS, Brazil.
| | - Jaqueline Ferreira Campos
- Research group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Rodovia Dourados Itahum, Km 12, 79804-970 Dourados, MS, Brazil.
| | - Cintia Miranda Dos Santos
- Research group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Rodovia Dourados Itahum, Km 12, 79804-970 Dourados, MS, Brazil.
| | - José Benedito Perrella Balestieri
- Research group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Rodovia Dourados Itahum, Km 12, 79804-970 Dourados, MS, Brazil.
| | - Denise Brentan Silva
- Laboratory of Natural Products and Mass Spectrometry, Federal University of Mato Grosso do Sul, Cidade Universitária, 79070-900 Campo Grande, MS, Brazil.
| | - Carlos Alexandre Carollo
- Laboratory of Natural Products and Mass Spectrometry, Federal University of Mato Grosso do Sul, Cidade Universitária, 79070-900 Campo Grande, MS, Brazil.
| | - Kely de Picoli Souza
- Research group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Rodovia Dourados Itahum, Km 12, 79804-970 Dourados, MS, Brazil.
| | - Leticia Miranda Estevinho
- Polytechnic Institute of Bragança, Agricultural College of Bragança, Campus Santa Apolónia, E 5301-855 Bragança, Portugal.
- Centre of Molecular and Environmental Biology, Biology Department, Minho University, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Edson Lucas Dos Santos
- Research group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Rodovia Dourados Itahum, Km 12, 79804-970 Dourados, MS, Brazil.
| |
Collapse
|
17
|
Oliveira LPG, Conte FL, Cardoso EDO, Conti BJ, Santiago KB, Golim MDA, Cruz MT, Sforcin JM. Immunomodulatory/inflammatory effects of geopropolis produced by Melipona fasciculata Smith in combination with doxorubicin on THP-1 cells. ACTA ACUST UNITED AC 2016; 68:1551-1558. [PMID: 27747861 DOI: 10.1111/jphp.12649] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/18/2016] [Indexed: 01/09/2023]
Abstract
OBJECTIVES Geopropolis (GEO) in combination with doxorubicin (DOX) reduced HEp-2 cells viability compared to GEO and DOX alone. A possible effect of this combination on the innate immunity could take place, and its effects were analysed on THP-1 cell - a human leukaemia monocytic cell line used as a model to study monocyte activity and macrophage activity, assessing cell viability, expression of cell markers and cytokine production. METHODS THP-1 cells were incubated with GEO, DOX and their combination. Cell viability was assessed by MTT assay, cell markers expression by flow cytometry and cytokine production by ELISA. KEY FINDINGS GEO + DOX did not affect cell viability. GEO alone or in combination increased TLR-4 and CD80 but not HLA-DR and TLR-2 expression. GEO stimulated TNF-α production while DOX alone or in combination did not affect it. GEO alone or in combination inhibited IL-6 production. CONCLUSIONS GEO exerted a pro-inflammatory profile by increasing TLR-4 and CD80 expression and TNF-α production, favouring the activation of the immune/inflammatory response. GEO + DOX did not affect cell viability and presented an immunomodulatory action. Lower concentrations of DOX combined to GEO could be used in cancer patients, avoiding side effects and benefiting from the biological properties of GEO.
Collapse
Affiliation(s)
| | - Fernanda Lopes Conte
- Department of Microbiology and Immunology, Biosciences Institute, UNESP, Botucatu, SP, Brazil
| | | | - Bruno José Conti
- Department of Microbiology and Immunology, Biosciences Institute, UNESP, Botucatu, SP, Brazil
| | - Karina Basso Santiago
- Department of Microbiology and Immunology, Biosciences Institute, UNESP, Botucatu, SP, Brazil
| | | | - Maria Teresa Cruz
- Faculty of Pharmacy, Center for Neurosciences and Cellular Biology, University of Coimbra, Coimbra, Portugal
| | - José Maurício Sforcin
- Department of Microbiology and Immunology, Biosciences Institute, UNESP, Botucatu, SP, Brazil
| |
Collapse
|