1
|
Saadh MJ, Hussain QM, Alazzawi TS, Fahdil AA, Athab ZH, Yarmukhamedov B, Al-Nuaimi AMA, Alsaikhan F, Farhood B. MicroRNA as Key Players in Hepatocellular Carcinoma: Insights into Their Role in Metastasis. Biochem Genet 2024:10.1007/s10528-024-10897-0. [PMID: 39103713 DOI: 10.1007/s10528-024-10897-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
Liver cancer or hepatocellular carcinoma (HCC) remains the most common cancer in global epidemiology. Both the frequency and fatality of this malignancy have shown an upward trend over recent decades. Liver cancer is a significant concern due to its propensity for both intrahepatic and extrahepatic metastasis. Liver cancer metastasis is a multifaceted process characterized by cell detachment from the bulk tumor, modulation of cellular motility and invasiveness, enhanced proliferation, avoidance of the immune system, and spread either via lymphatic or blood vessels. MicroRNAs (miRNAs) are small non-coding ribonucleic acids (RNAs) playing a crucial function in the intricate mechanisms of tumor metastasis. A number of miRNAs can either increase or reduce metastasis via several mechanisms, such as control of motility, proliferation, attack by the immune system, cancer stem cell properties, altering the microenvironment, and the epithelial-mesenchymal transition (EMT). Besides, two other types of non-coding RNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) can competitively bind to endogenous miRNAs. This competition results in the impaired ability of the miRNAs to inhibit the expression of the specific messenger RNAs (mRNAs) that are targeted. Increasing evidence has shown that the regulatory axis comprising circRNA/lncRNA-miRNA-mRNA is correlated with the regulation of HCC metastasis. This review seeks to present a thorough summary of recent research on miRNAs in HCC, and their roles in the cellular processes of EMT, invasion and migration, as well as the metastasis of malignant cells. Finally, we discuss the function of the lncRNA/circRNA-miRNA-mRNA network as a crucial modulator of carcinogenesis and the regulation of signaling pathways or genes that are relevant to the metastasis of HCC. These findings have the potential to offer valuable insight into the discovery of novel therapeutic approaches for management of liver cancer metastasis.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | - Tuqa S Alazzawi
- College of Dentist, National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | - Ali A Fahdil
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Bekhzod Yarmukhamedov
- Department of Public Health and Healthcare management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Cui M, Liu Z, Wang S, Bae S, Guo H, Zhou J, Liu R, Wang L. CRISPR-based dissection of microRNA-23a ~ 27a ~ 24-2 cluster functionality in hepatocellular carcinoma. Oncogene 2024; 43:2708-2721. [PMID: 39112518 PMCID: PMC11364504 DOI: 10.1038/s41388-024-03115-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024]
Abstract
The miR-23a ~ 27a ~ 24-2 cluster, commonly upregulated in diverse cancers, including hepatocellular carcinoma (HCC), raises questions about the specific functions of its three mature miRNAs and their integrated function. Utilizing CRISPR knockout (KO), CRISPR interference (CRISPRi), and CRISPR activation (CRISPRa) technologies, we established controlled endogenous miR-23a ~ 27 ~ a24-2 cell models to unravel their roles and signaling pathways in HCC. Both miR-23a KO and miR-27a KO displayed reduced cell growth in vitro and in vivo, revealing an integrated oncogenic function. Functional analysis indicated cell cycle arrest, particularly at the G2/M phase, through the downregulation of CDK1/cyclin B activation. High-throughput RNA-seq, combined with miRNA target prediction, unveiled the miR-23a/miR-27a-regulated gene network, validated through diverse technologies. While miR-23a and miR-27a exhibited opposing roles in cell migration and mesenchymal-epithelial transition, an integrated CRISPRi/a analysis suggested an oncogenic role of the miR-23a ~ 27a ~ 24-2 cluster in cell migration. This involvement potentially encompasses two signaling axes: miR-23a-BMPR2 and miR-27a-TMEM170B in HCC cells. In conclusion, our CRISPRi/a study provides a valuable tool for comprehending the integrated roles and underlying mechanisms of endogenous miRNA clusters, paving the way for promising directions in miRNA-targeted therapy interventions.
Collapse
Affiliation(s)
- Mengying Cui
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zhichao Liu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shuaibin Wang
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sejong Bae
- Department of O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hua Guo
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jiangbing Zhou
- Department of Neurosurgery, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Runhua Liu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Lizhong Wang
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
3
|
Mukherjee A, Sen R, Al Hoque A, Giri TK, Mukherjee B. H-ras-targeted genetic therapy remarkably surpassed docetaxel treatment in inhibiting chemically induced hepatic tumors in rats. Life Sci 2024; 348:122680. [PMID: 38697280 DOI: 10.1016/j.lfs.2024.122680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/19/2024] [Accepted: 04/27/2024] [Indexed: 05/04/2024]
Abstract
AIMS Hepatocellular carcinoma (HCC) is still a leading cause of cancer-related death worldwide. But its chemotherapeutic options are far from expectation. We here compared H-ras targeted genetic therapy to a commercial docetaxel formulation (DXT) in inhibiting HCC in rats. MAIN METHODS After the physicochemical characterization of phosphorothioate-antisense oligomer (PS-ASO) against H-ras mutated gene, the PS-ASO-mediated in vitro hemolysis, in vivo hepatic uptake, its pharmacokinetic profile, tissue distribution in some highly perfused organs, its effect in normal rats, antineoplastic efficacy in carcinogen-induced HCC in rats were evaluated and compared against DXT treatment. Mutated H-ras expression by in situ hybridization, hep-par-I, CK-7, CD-15, p53 expression patterns by immunohistochemical methods, scanning electron microscopic evaluation of hepatic architecture, various hepatic marker enzyme levels and caspase-3/9 apoptotic enzyme activities were also carried out in the experimental rats. KEY FINDINGS PS-ASO showed low in vitro hemolysis (<3 %), and had a sustained PS-ASO blood residence time in vivo compared to DTX, with a time-dependent hepatic uptake. It showed no toxic manifestations in normal rats. PS-ASO distribution was although initially less in the lung than liver and kidney, but at 8 h it accumulated more in lung than kidney. Antineoplastic potential of PS-ASO (treated for 6 weeks) excelled in inhibiting chemically induced tumorigenesis compared to DTX in rats, by inhibiting H-ras gene expression, some immonohistochemical modulations, and inducing caspase-3/9-mediated apoptosis. It prevented HCC-mediated lung metastatic tumor in the experimental rats. SIGNIFICANCE PS-ASO genetic therapy showed potential to inhibit HCC far more effectively than DXT in rats.
Collapse
Affiliation(s)
- Alankar Mukherjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Ramkrishna Sen
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India; Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa city, IA 52242, USA
| | - Ashique Al Hoque
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Tapan Kumar Giri
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Biswajit Mukherjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
4
|
Andrade AAR, Pauli F, Pressete CG, Zavan B, Hanemann JAC, Miyazawa M, Fonseca R, Caixeta ES, Nacif JLM, Aissa AF, Barreiro EJ, Ionta M. Antiproliferative Activity of N-Acylhydrazone Derivative on Hepatocellular Carcinoma Cells Involves Transcriptional Regulation of Genes Required for G2/M Transition. Biomedicines 2024; 12:892. [PMID: 38672246 PMCID: PMC11048582 DOI: 10.3390/biomedicines12040892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Liver cancer is the second leading cause of cancer-related death in males. It is estimated that approximately one million deaths will occur by 2030 due to hepatic cancer. Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer subtype and is commonly diagnosed at an advanced stage. The drug arsenal used in systemic therapy for HCC is very limited. Multikinase inhibitors sorafenib (Nexavar®) and lenvatinib (Lenvima®) have been used as first-line drugs with modest therapeutic effects. In this scenario, it is imperative to search for new therapeutic strategies for HCC. Herein, the antiproliferative activity of N-acylhydrazone derivatives was evaluated on HCC cells (HepG2 and Hep3B), which were chemically planned on the ALL-993 scaffold, a potent inhibitor of vascular endothelial growth factor 2 (VEGFR2). The substances efficiently reduced the viability of HCC cells, and the LASSBio-2052 derivative was the most effective. Further, we demonstrated that LASSBio-2052 treatment induced FOXM1 downregulation, which compromises the transcriptional activation of genes required for G2/M transition, such as AURKA and AURKB, PLK1, and CDK1. In addition, LASSBio-2052 significantly reduced CCNB1 and CCND1 expression in HCC cells. Our findings indicate that LASSBio-2052 is a promising prototype for further in vivo studies.
Collapse
Affiliation(s)
| | - Fernanda Pauli
- Institute of Chemistry, Fluminense Federal University, Niterói 24020-140, RJ, Brazil
| | - Carolina Girotto Pressete
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil (A.F.A.)
| | - Bruno Zavan
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil (A.F.A.)
| | | | - Marta Miyazawa
- School of Dentistry, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| | - Rafael Fonseca
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil (A.F.A.)
| | - Ester Siqueira Caixeta
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil (A.F.A.)
| | | | - Alexandre Ferro Aissa
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil (A.F.A.)
| | - Eliezer J. Barreiro
- Laboratory of Evaluation and Synthesis of Bioactive Substances (LASSBio), Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-914, RJ, Brazil
| | - Marisa Ionta
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil (A.F.A.)
| |
Collapse
|
5
|
Tasopoulou KM, Karakasiliotis I, Argyriou C, Bampali M, Tsaroucha AK, Dovrolis N, Christaina E, Georgiadis GS. Next-Generation Sequencing of microRNAs in Small Abdominal Aortic Aneurysms: MiR-24 as a Biomarker. Ann Vasc Surg 2024; 99:366-379. [PMID: 37922957 DOI: 10.1016/j.avsg.2023.09.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/28/2023] [Accepted: 09/02/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Small abdominal aortic aneurysms (AAAs) are asymptomatic but can potentially lead to rupture if left undetected. To date, there is a lack of simple nonradiologic routine tests available for diagnosing AAAs. MicroRNAs (miRNAs) have been proven to be good-quality biomarkers in several diseases, including AAA. METHODS An attempt to identify a panel of circulating miRNAs with differential expression in AAAs via next-generation sequencing (NGS) was performed in serum samples: small AAAs (n = 3), large AAAs (n = 3), and controls (n = 3). For miR-24, validation with real-time polymerase chain reaction (PCR) was undertaken in a larger group (n = 80). RESULTS In the NGS study, 23 miRNAs were identified as differentially expressed (with statistical significance) in small AAAs in comparison with controls. Among them, miR-24 showed the largest upregulation with 23-fold change (log2FC 4.5, P = 0.024). For large AAAs compared with controls, and small AAAs compared with large AAAs, a panel of 33 and 131 miRNAs showed statistically significant differential expression, respectively. Based on the results of the NGS stage, a literature search was performed, and information regarding AAA pathogenesis, coronary artery disease, and peripheral arterial disease was documented where applicable: miR-24, miR-103, miR-193a, miR-486, miR-582, and miR-3663. Of these 6 miRNAs, miR-24 was chosen for further validation with real-time PCR. Additionally, in the NGS study analysis, 17 miRNAs were common between the small-large AAAs, small AAAs-controls, and large AAAs-controls comparisons: miR-7846, miR-3195, miR-486-2, miR-3194, miR-5589, miR-1538, miR-3178, miR-4771-1, miR-5695, miR-6504, miR-1908, miR-6823, miR-3159, miR-23a, miR-7853, miR-496, and miR-193a. Interestingly, in the validation stage with real-time PCR, miR-24 was found downregulated in small and large AAAs compared with controls (fold-changes: 0.27, P = 0.015 and 0.15, P = 0.005, respectively). No correlation was found between average Ct values, aneurysm diameter, and patients' age. CONCLUSIONS Our findings further highlight the importance of miR-24 as a potential biomarker as well as a therapeutic target for abdominal aneurysmal disease. Future research and validation of a panel of miRNAs for AAA would aid in diagnosis and discrimination between diseases with overlapping pathogeneses.
Collapse
Affiliation(s)
- Kalliopi-Maria Tasopoulou
- Department of Vascular Surgery, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece.
| | - Ioannis Karakasiliotis
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christos Argyriou
- Department of Vascular Surgery, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Maria Bampali
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Alexandra K Tsaroucha
- Department of Experimental Surgery, Democritus University of Thrace, Alexandroupolis, Greece
| | - Nikolas Dovrolis
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Eleni Christaina
- Department of Biostatistics, Democritus University of Thrace, Alexandroupolis, Greece
| | - George S Georgiadis
- Department of Vascular Surgery, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
6
|
Petővári G, Tóth G, Turiák L, L. Kiss A, Pálóczi K, Sebestyén A, Pesti A, Kiss A, Baghy K, Dezső K, Füle T, Tátrai P, Kovalszky I, Reszegi A. Dynamic Interplay in Tumor Ecosystems: Communication between Hepatoma Cells and Fibroblasts. Int J Mol Sci 2023; 24:13996. [PMID: 37762298 PMCID: PMC10530979 DOI: 10.3390/ijms241813996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Tumors are intricate ecosystems where cancer cells and non-malignant stromal cells, including cancer-associated fibroblasts (CAFs), engage in complex communication. In this study, we investigated the interaction between poorly (HLE) and well-differentiated (HuH7) hepatoma cells and LX2 fibroblasts. We explored various communication channels, including soluble factors, metabolites, extracellular vesicles (EVs), and miRNAs. Co-culture with HLE cells induced LX2 to produce higher levels of laminin β1, type IV collagen, and CD44, with pronounced syndecan-1 shedding. Conversely, in HuH7/LX2 co-culture, fibronectin, thrombospondin-1, type IV collagen, and cell surface syndecan-1 were dominant matrix components. Integrins α6β4 and α6β1 were upregulated in HLE, while α5β1 and αVβ1 were increased in HuH7. HLE-stimulated LX2 produced excess MMP-2 and 9, whereas HuH7-stimulated LX2 produced excess MMP-1. LX2 activated MAPK and Wnt signaling in hepatoma cells, and conversely, hepatoma-derived EVs upregulated MAPK and Wnt in LX2 cells. LX2-derived EVs induced over tenfold upregulation of SPOCK1/testican-1 in hepatoma EV cargo. We also identified liver cancer-specific miRNAs in hepatoma EVs, with potential implications for early diagnosis. In summary, our study reveals tumor type-dependent communication between hepatoma cells and fibroblasts, shedding light on potential implications for tumor progression. However, the clinical relevance of liver cancer-specific miRNAs requires further investigation.
Collapse
Affiliation(s)
- Gábor Petővári
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary
| | - Gábor Tóth
- MS Proteomics Research Group, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | - Lilla Turiák
- MS Proteomics Research Group, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | - Anna L. Kiss
- Department of Human Morphology and Developmental Biology, Semmelweis University, Tűzoltó u. 58, H-1094 Budapest, Hungary
| | - Krisztina Pálóczi
- Department of Genetics, Cell and Immunobiology, Semmelweis University, H-1085 Budapest, Hungary
| | - Anna Sebestyén
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary
| | - Adrián Pesti
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Üllői út 93, H-1091 Budapest, Hungary
| | - András Kiss
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Üllői út 93, H-1091 Budapest, Hungary
| | - Kornélia Baghy
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary
| | - Katalin Dezső
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary
| | - Tibor Füle
- Thermo Fisher Scientific Inc., Váci út. 41-43, H-1134 Budapest, Hungary
| | - Péter Tátrai
- Charles River Laboratories Hungary, Irinyi József utca 4-20, H-1117 Budapest, Hungary
| | - Ilona Kovalszky
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary
| | - Andrea Reszegi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Üllői út 93, H-1091 Budapest, Hungary
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
7
|
Papadimitriou MA, Panoutsopoulou K, Pilala KM, Scorilas A, Avgeris M. Epi-miRNAs: Modern mediators of methylation status in human cancers. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1735. [PMID: 35580998 DOI: 10.1002/wrna.1735] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023]
Abstract
Methylation of the fundamental macromolecules, DNA/RNA, and proteins, is remarkably abundant, evolutionarily conserved, and functionally significant in cellular homeostasis and normal tissue/organism development. Disrupted methylation imprinting is strongly linked to loss of the physiological equilibrium and numerous human pathologies, and most importantly to carcinogenesis, tumor heterogeneity, and cancer progression. Mounting recent evidence has documented the active implication of miRNAs in the orchestration of the multicomponent cellular methylation machineries and the deregulation of methylation profile in the epigenetic, epitranscriptomic, and epiproteomic levels during cancer onset and progression. The elucidation of such regulatory networks between the miRNome and the cellular methylation machineries has led to the emergence of a novel subclass of miRNAs, namely "epi-miRNAs" or "epi-miRs." Herein, we have summarized the existing knowledge on the functional role of epi-miRs in the methylation dynamic landscape of human cancers and their clinical utility in modern cancer diagnostics and tailored therapeutics. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Maria-Alexandra Papadimitriou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Panoutsopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina-Marina Pilala
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece.,Laboratory of Clinical Biochemistry - Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| |
Collapse
|
8
|
Khlebodarova TM, Demenkov PS, Ivanisenko TV, Antropova EA, Lavrik IN, Ivanisenko VA. Primary and Secondary micro-RNA Modulation the Extrinsic Pathway of Apoptosis in Hepatocellular Carcinoma. Mol Biol 2023; 57:165-175. [PMID: 37128213 PMCID: PMC10131518 DOI: 10.1134/s0026893323020103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 05/03/2023]
Abstract
Abstract-One of the most common malignant liver diseases is hepatocellular carcinoma, which has a high recurrence rate and a low five-year survival rate. It is very heterogeneous both in structure and between patients, which complicates the diagnosis, prognosis and response to treatment. In this regard, an individualized, patient-centered approach becomes important, in which the use of mimetics and hsa-miRNA inhibitors involved in the pathogenesis of the disease may be determinative. From this point of view hsa-miRNAs are of interest, their aberrant expression is associated with poor prognosis for patients and is associated with tumor progression due to dysregulation of programmed cell death (apoptosis). However, the effect of hsa-miRNA on tumor development depends not only on its direct effect on expression of genes, the primary targets, but also on secondary targets mediated by regulatory pathways. While the former are actively studied, the role of secondary targets of these hsa-miRNAs in modulating apoptosis is still unclear. The present work summarizes data on hsa-miRNAs whose primary targets are key genes of the extrinsic pathway of apoptosis. Their aberrant expression is associated with early disease relapse and poor patient outcome. For these hsa-miRNAs, using the software package ANDSystem, we reconstructed the regulation of the expression of secondary targets and analyzed their impact on the activity of the extrinsic pathway of apoptosis. The potential effect of hsa-miRNAs mediated by action on secondary targets is shown to negatively correlate with the number of primary targets. It is also shown that hsa-miR-373, hsa-miR-106b and hsa-miR-96 have the highest priority as markers of hepatocellular carcinoma, whose action on secondary targets enhances their anti-apoptotic effect.
Collapse
Affiliation(s)
- T. M. Khlebodarova
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Kurchatov Genomic Center, Institute of Cytology and Genetics Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - P. S. Demenkov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Kurchatov Genomic Center, Institute of Cytology and Genetics Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - T. V. Ivanisenko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Kurchatov Genomic Center, Institute of Cytology and Genetics Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - E. A. Antropova
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - I. N. Lavrik
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - V. A. Ivanisenko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Kurchatov Genomic Center, Institute of Cytology and Genetics Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
9
|
Guo S, Zhang L, Li N. ANO1: More Than Just Calcium-Activated Chloride Channel in Cancer. Front Oncol 2022; 12:922838. [PMID: 35734591 PMCID: PMC9207239 DOI: 10.3389/fonc.2022.922838] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/09/2022] [Indexed: 11/22/2022] Open
Abstract
ANO1, a calcium-activated chloride channel (CACC), is also known as transmembrane protein 16A (TMEM16A). It plays a vital role in the occurrence, development, metastasis, proliferation, and apoptosis of various malignant tumors. This article reviews the mechanism of ANO1 involved in the replication, proliferation, invasion and apoptosis of various malignant tumors. Various molecules and Stimuli control the expression of ANO1, and the regulatory mechanism of ANO1 is different in tumor cells. To explore the mechanism of ANO1 overexpression and activation of tumor cells by studying the different effects of ANO1. Current studies have shown that ANO1 expression is controlled by 11q13 gene amplification and may also exert cell-specific effects through its interconnected protein network, phosphorylation of different kinases, and signaling pathways. At the same time, ANO1 also resists tumor apoptosis and promotes tumor immune escape. ANO1 can be used as a promising biomarker for detecting certain malignant tumors. Further studies on the channels and the mechanism of protein activity of ANO1 are needed. Finally, the latest inhibitors of ANO1 are summarized, which provides the research direction for the tumor-promoting mechanism of ANO1.
Collapse
Affiliation(s)
- Saisai Guo
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Linna Zhang
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Na Li
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
10
|
Xu XF, Yang XK, Song Y, Chen BJ, Yu X, Xu T, Chen ZL. Dysregulation of Non-coding RNAs mediates Cisplatin Resistance in Hepatocellular Carcinoma and therapeutic strategies. Pharmacol Res 2021; 176:105906. [PMID: 34543740 DOI: 10.1016/j.phrs.2021.105906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/06/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is the fourth major contributor to cancer-related deaths worldwide, and patients mostly have poor prognosis. Although several drugs have been approved for the treatment of HCC, cisplatin (CDDP) is still applied in treatment of HCC as a classical chemotherapeutic drug. Unfortunately, the emergence of CDDP resistance has caused HCC patients to exhibit poor drug response. How to mitigate or even reverse CDDP resistance is an urgent clinical issue to be solved. Because of critical roles in biological functional processes and disease developments, non-coding RNAs (ncRNAs) have been extensively studied in HCC in recent years. Importantly, ncRNAs have also been demonstrated to be involved in the development of HCC to CDDP resistance process. Therefore, this review highlighted the regulatory roles of ncRNAs in CDDP resistance of HCC, elucidated the multiple potential mechanisms by which HCC develops CDDP resistance, and attempted to propose multiple drug delivery systems to alleviate CDDP resistance. Recently, ncRNA-based therapy may be a feasible strategy to alleviate CDDP resistance in HCC. Meanwhile, nanoparticles can overcome the deficiencies in ncRNA-based therapy and make it possible to reverse tumor drug resistance. The combined use of these strategies provides clues for reversing CDDP resistance and overcoming the poor prognosis of HCC.
Collapse
Affiliation(s)
- Xu-Feng Xu
- Department of Hemorrhoid and Fistula of Traditional Chinese Medicine, Chaohu Hospital Affiliated to Anhui Medical University, Chaohu, Anhui, 238000, P.R. China.
| | - Xiao-Ke Yang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, P.R. China.
| | - Yang Song
- Department of Pain Treatment, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, P.R. China.
| | - Bang-Jie Chen
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, P.R. China.
| | - Xiao Yu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, P. R. China.
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, P. R. China; School of Pharmacy, Anhui Key Lab. of Bioactivity of Natural Products, Anhui Medical University, Hefei, Anhui, 230032, P. R. China.
| | - Zhao-Lin Chen
- Department of Pharmacy, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, Anhui, 230001, P.R. China.
| |
Collapse
|
11
|
Eichelmann AK, Mayne GC, Chiam K, Due SL, Bastian I, Butz F, Wang T, Sykes PJ, Clemons NJ, Liu DS, Michael MZ, Karapetis CS, Hummel R, Watson DI, Hussey DJ. Mutant p53 Mediates Sensitivity to Cancer Treatment Agents in Oesophageal Adenocarcinoma Associated with MicroRNA and SLC7A11 Expression. Int J Mol Sci 2021; 22:ijms22115547. [PMID: 34074015 PMCID: PMC8197322 DOI: 10.3390/ijms22115547] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 12/18/2022] Open
Abstract
TP53 gene mutations occur in 70% of oesophageal adenocarcinomas (OACs). Given the central role of p53 in controlling cellular response to therapy we investigated the role of mutant (mut-) p53 and SLC7A11 in a CRISPR-mediated JH-EsoAd1 TP53 knockout model. Response to 2 Gy irradiation, cisplatin, 5-FU, 4-hydroxytamoxifen, and endoxifen was assessed, followed by a TaqMan OpenArray qPCR screening for differences in miRNA expression. Knockout of mut-p53 resulted in increased chemo- and radioresistance (2 Gy survival fraction: 38% vs. 56%, p < 0.0001) and in altered miRNA expression levels. Target mRNA pathways analyses indicated several potential mechanisms of treatment resistance. SLC7A11 knockdown restored radiosensitivity (2 Gy SF: 46% vs. 73%; p = 0.0239), possibly via enhanced sensitivity to oxidative stress. Pathway analysis of the mRNA targets of differentially expressed miRNAs indicated potential involvement in several pathways associated with apoptosis, ribosomes, and p53 signaling pathways. The data suggest that mut-p53 in JH-EsoAd1, despite being classified as non-functional, has some function related to radio- and chemoresistance. The results also highlight the important role of SLC7A11 in cancer metabolism and redox balance and the influence of p53 on these processes. Inhibition of the SLC7A11-glutathione axis may represent a promising approach to overcome resistance associated with mut-p53.
Collapse
Affiliation(s)
- Ann-Kathrin Eichelmann
- Flinders Health and Medical Research Institute—Cancer Program, Flinders University, Bedford Park, Adelaide, SA 5042, Australia; (G.C.M.); (K.C.); (S.L.D.); (I.B.); (F.B.); (T.W.); (P.J.S.); (M.Z.M.); (C.S.K.); (D.I.W.)
- Department of General, Visceral and Transplant Surgery, University Hospital of Münster, Waldeyerstrasse 1, 48149 Münster, Germany
- Correspondence: (A.-K.E.); (D.J.H.)
| | - George C. Mayne
- Flinders Health and Medical Research Institute—Cancer Program, Flinders University, Bedford Park, Adelaide, SA 5042, Australia; (G.C.M.); (K.C.); (S.L.D.); (I.B.); (F.B.); (T.W.); (P.J.S.); (M.Z.M.); (C.S.K.); (D.I.W.)
- Department of Surgery, Flinders Medical Centre, Bedford Park, Adelaide, SA 5042, Australia
| | - Karen Chiam
- Flinders Health and Medical Research Institute—Cancer Program, Flinders University, Bedford Park, Adelaide, SA 5042, Australia; (G.C.M.); (K.C.); (S.L.D.); (I.B.); (F.B.); (T.W.); (P.J.S.); (M.Z.M.); (C.S.K.); (D.I.W.)
| | - Steven L. Due
- Flinders Health and Medical Research Institute—Cancer Program, Flinders University, Bedford Park, Adelaide, SA 5042, Australia; (G.C.M.); (K.C.); (S.L.D.); (I.B.); (F.B.); (T.W.); (P.J.S.); (M.Z.M.); (C.S.K.); (D.I.W.)
| | - Isabell Bastian
- Flinders Health and Medical Research Institute—Cancer Program, Flinders University, Bedford Park, Adelaide, SA 5042, Australia; (G.C.M.); (K.C.); (S.L.D.); (I.B.); (F.B.); (T.W.); (P.J.S.); (M.Z.M.); (C.S.K.); (D.I.W.)
| | - Frederike Butz
- Flinders Health and Medical Research Institute—Cancer Program, Flinders University, Bedford Park, Adelaide, SA 5042, Australia; (G.C.M.); (K.C.); (S.L.D.); (I.B.); (F.B.); (T.W.); (P.J.S.); (M.Z.M.); (C.S.K.); (D.I.W.)
| | - Tingting Wang
- Flinders Health and Medical Research Institute—Cancer Program, Flinders University, Bedford Park, Adelaide, SA 5042, Australia; (G.C.M.); (K.C.); (S.L.D.); (I.B.); (F.B.); (T.W.); (P.J.S.); (M.Z.M.); (C.S.K.); (D.I.W.)
| | - Pamela J. Sykes
- Flinders Health and Medical Research Institute—Cancer Program, Flinders University, Bedford Park, Adelaide, SA 5042, Australia; (G.C.M.); (K.C.); (S.L.D.); (I.B.); (F.B.); (T.W.); (P.J.S.); (M.Z.M.); (C.S.K.); (D.I.W.)
| | - Nicholas J. Clemons
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; (N.J.C.); (D.S.L.)
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - David S. Liu
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; (N.J.C.); (D.S.L.)
- Department of Surgery, Austin Health, Heidelberg, VIC 3084, Australia
| | - Michael Z. Michael
- Flinders Health and Medical Research Institute—Cancer Program, Flinders University, Bedford Park, Adelaide, SA 5042, Australia; (G.C.M.); (K.C.); (S.L.D.); (I.B.); (F.B.); (T.W.); (P.J.S.); (M.Z.M.); (C.S.K.); (D.I.W.)
- Department of Gastroenterology, Flinders Medical Centre, Bedford Park, Adelaide, SA 5042, Australia
| | - Christos S. Karapetis
- Flinders Health and Medical Research Institute—Cancer Program, Flinders University, Bedford Park, Adelaide, SA 5042, Australia; (G.C.M.); (K.C.); (S.L.D.); (I.B.); (F.B.); (T.W.); (P.J.S.); (M.Z.M.); (C.S.K.); (D.I.W.)
- Department of Medical Oncology, Flinders Medical Centre, Bedford Park, Adelaide, SA 5042, Australia
| | - Richard Hummel
- Department of Surgery, University Hospital of Schleswig-Holstein, Ratzeburger Allee 160, 23538 Lübeck, Germany;
| | - David I. Watson
- Flinders Health and Medical Research Institute—Cancer Program, Flinders University, Bedford Park, Adelaide, SA 5042, Australia; (G.C.M.); (K.C.); (S.L.D.); (I.B.); (F.B.); (T.W.); (P.J.S.); (M.Z.M.); (C.S.K.); (D.I.W.)
- Department of Surgery, Flinders Medical Centre, Bedford Park, Adelaide, SA 5042, Australia
| | - Damian J. Hussey
- Flinders Health and Medical Research Institute—Cancer Program, Flinders University, Bedford Park, Adelaide, SA 5042, Australia; (G.C.M.); (K.C.); (S.L.D.); (I.B.); (F.B.); (T.W.); (P.J.S.); (M.Z.M.); (C.S.K.); (D.I.W.)
- Department of Surgery, Flinders Medical Centre, Bedford Park, Adelaide, SA 5042, Australia
- Correspondence: (A.-K.E.); (D.J.H.)
| |
Collapse
|
12
|
Timmerman DM, Remmers TL, Hillenius S, Looijenga LHJ. Mechanisms of TP53 Pathway Inactivation in Embryonic and Somatic Cells-Relevance for Understanding (Germ Cell) Tumorigenesis. Int J Mol Sci 2021; 22:ijms22105377. [PMID: 34065345 PMCID: PMC8161298 DOI: 10.3390/ijms22105377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 01/10/2023] Open
Abstract
The P53 pathway is the most important cellular pathway to maintain genomic and cellular integrity, both in embryonic and non-embryonic cells. Stress signals induce its activation, initiating autophagy or cell cycle arrest to enable DNA repair. The persistence of these signals causes either senescence or apoptosis. Over 50% of all solid tumors harbor mutations in TP53 that inactivate the pathway. The remaining cancers are suggested to harbor mutations in genes that regulate the P53 pathway such as its inhibitors Mouse Double Minute 2 and 4 (MDM2 and MDM4, respectively). Many reviews have already been dedicated to P53, MDM2, and MDM4, while this review additionally focuses on the other factors that can deregulate P53 signaling. We discuss that P14ARF (ARF) functions as a negative regulator of MDM2, explaining the frequent loss of ARF detected in cancers. The long non-coding RNA Antisense Non-coding RNA in the INK4 Locus (ANRIL) is encoded on the same locus as ARF, inhibiting ARF expression, thus contributing to the process of tumorigenesis. Mutations in tripartite motif (TRIM) proteins deregulate P53 signaling through their ubiquitin ligase activity. Several microRNAs (miRNAs) inactivate the P53 pathway through inhibition of translation. CCCTC-binding factor (CTCF) maintains an open chromatin structure at the TP53 locus, explaining its inactivation of CTCF during tumorigenesis. P21, a downstream effector of P53, has been found to be deregulated in different tumor types. This review provides a comprehensive overview of these factors that are known to deregulate the P53 pathway in both somatic and embryonic cells, as well as their malignant counterparts (i.e., somatic and germ cell tumors). It provides insights into which aspects still need to be unraveled to grasp their contribution to tumorigenesis, putatively leading to novel targets for effective cancer therapies.
Collapse
|
13
|
Wang SM, Yang PW, Feng XJ, Zhu YW, Qiu FJ, Hu XD, Zhang SH. Apigenin Inhibits the Growth of Hepatocellular Carcinoma Cells by Affecting the Expression of microRNA Transcriptome. Front Oncol 2021; 11:657665. [PMID: 33959508 PMCID: PMC8095173 DOI: 10.3389/fonc.2021.657665] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/12/2021] [Indexed: 01/22/2023] Open
Abstract
Background Apigenin, as a natural flavonoid, has low intrinsic toxicity and has potential pharmacological effects against hepatocellular carcinoma (HCC). However, the molecular mechanisms involving microRNAs (miRNAs) and their target genes regulated by apigenin in the treatment of HCC have not been addressed. Objective In this study, the molecular mechanisms of apigenin involved in the prevention and treatment of HCC were explored in vivo and in vitro using miRNA transcriptomic sequencing to determine the basis for the clinical applications of apigenin in the treatment of HCC. Methods The effects of apigenin on the proliferation, cell cycle progression, apoptosis, and invasion of human hepatoma cell line Huh7 and Hep3B were studied in vitro, and the effects on the tumorigenicity of Huh7 cells were assessed in vivo. Then, a differential expression analysis of miRNAs regulated by apigenin in Huh7 cells was performed using next-generation RNA sequencing and further validated by qRT-PCR. The potential genes targeted by the differentially expressed miRNAs were identified using a curated miRTarBase miRNA database and their molecular functions were predicted using Gene Ontology and KEGG signaling pathway analysis. Results Compared with the control treatment group, apigenin significantly inhibited Huh7 cell proliferation, cell cycle, colony formation, and cell invasion in a concentration-dependent manner. Moreover, apigenin reduced tumor growth, promoted tumor cell necrosis, reduced the expression of Ki67, and increased the expression of Bax and Bcl-2 in the xenograft tumors of Huh7 cells. Bioinformatics analysis of the miRNA transcriptome showed that hsa-miR-24, hsa-miR-6769b-3p, hsa-miR-6836-3p, hsa-miR-199a-3p, hsa-miR-663a, hsa-miR-4739, hsa-miR-6892-3p, hsa-miR-7107-5p, hsa-miR-1273g-3p, hsa-miR-1343, and hsa-miR-6089 were the most significantly up-regulated miRNAs, and their key gene targets were MAPK1, PIK3CD, HRAS, CCND1, CDKN1A, E2F2, etc. The core regulatory pathways of the up-regulated miRNAs were associated with the hepatocellular carcinoma pathway. The down-regulated miRNAs were hsa-miR-181a-5p and hsa-miR-148a-3p, and the key target genes were MAPK1, HRAS, STAT3, FOS, BCL2, SMAD2, PPP3CA, IFNG, MET, and VAV2, with the core regulatory pathways identified as proteoglycans in cancer pathway. Conclusion Apigenin can inhibit the growth of HCC cells, which may be mediated by up-regulation or down-regulation of miRNA molecules and their related target genes.
Collapse
Affiliation(s)
- Shou-Mei Wang
- Department of Pathology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Chinese Medicine, Shanghai, China
| | - Pei-Wei Yang
- Department of Pathology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Chinese Medicine, Shanghai, China
| | - Xiao-Jun Feng
- Department of Pathology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Chinese Medicine, Shanghai, China
| | - Yi-Wei Zhu
- Department of Biology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng-Jun Qiu
- Department of Biology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Dong Hu
- Department of Biology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shu-Hui Zhang
- Department of Pathology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Chinese Medicine, Shanghai, China
| |
Collapse
|
14
|
Hu B, Ma X, Fu P, Sun Q, Tang W, Sun H, Yang Z, Yu M, Zhou J, Fan J, Xu Y. miRNA-mRNA Regulatory Network and Factors Associated with Prediction of Prognosis in Hepatocellular Carcinoma. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 19:913-925. [PMID: 33741523 PMCID: PMC9402792 DOI: 10.1016/j.gpb.2021.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 01/02/2019] [Accepted: 02/15/2019] [Indexed: 12/22/2022]
Abstract
The aim of this study was to identify novel gene and miRNA biomarkers of risk and prognostic factors for hepatocarcinogenesis using methods in systems biology. Differentially expressed genes (DEGs), microRNAs (miRNAs), and long non-coding RNA (lncRNAs) were compared between hepatocellular carcinoma (HCC) tumour tissue and normal liver tissues in the Cancer Genome Atlas (TCGA) database. Subsequently, the prognosis-associated gene co-expression network, mRNA-miRNA, and mRNA-miRNA-lncRNA regulatory networks were constructed to identify biomarkers of risk for HCC through Cox survival analysis. Seven prognosis-associated gene co-expression modules were obtained by analyzing these DEGs. An expression module including 120 genes significantly correlated with HCC patient survival. Combined with patient survival data, several mRNAs and miRNAs, including CHST4, SLC22A8, STC2, hsa-miR-326, and hsa-miR-21 were identified from the network to predict HCC patient prognosis. Clinical significance was investigated using tissue microarray analysis of samples from 258 patients with HCC. Functional annotation of hsa-miR-326 and hsa-miR-21-5p indicated specific associations with several cancer-related pathways. The present study provides a bioinformatics method for biomarker screening, which led to the identification of an integrated mRNA-miRNA-lncRNA regulatory network and their co-expression in relation to predicting HCC patient survival.
Collapse
Affiliation(s)
- Bo Hu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China
| | - Xiaolu Ma
- Laboratory Medicine Department, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China
| | - Peiyao Fu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China
| | - Qiman Sun
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China
| | - Weiguo Tang
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Haixiang Sun
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China
| | - Zhangfu Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China
| | - Mincheng Yu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China; State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China; Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China; State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China; Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yang Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China.
| |
Collapse
|
15
|
Liu R, Kong W, Zheng S, Yu C, Yu Y, Xu Y, Ye L, Shao Y. Prognostic significance of microRNA miR-24 in cancers: a meta-analysis. Bioengineered 2021; 12:450-460. [PMID: 33550881 PMCID: PMC8291878 DOI: 10.1080/21655979.2021.1875662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The prognostic significance of miR-24 in tumors has not been determined. Therefore, we conducted a meta-analysis to systematically assess the correlation between miR-24 and its prognostic value in cancers PubMed, EMBASE, and Web of Science databases were used to search relevant articles (up to 1 October 2020). Studies that evaluated the prognostic value of miR-24 in tumors were included. The hazard ratio (HR) and odds ratio (OR) with 95% confidence intervals (CI) were used to evaluate survival outcomes and clinical characteristics. All data analyses were implemented using STATA 12.0 software. A total of 17 studies from 15 articles involving 1705 patients were collected for the meta-analysis. The pooled analysis revealed that elevated miR-24 expression was obviously associated with poor overall survival (OS) (HR = 1.66, 95% CI: 1.20-2.31). Furthermore, we also found that elevated miR-24 expression was positively correlated with tumor size (large or small) and tumor stage (III-IV vs I-II). Elevated miR-24 expression indicates poor prognosis and may be a promising prognostic marker in different cancers. Our findings needed to be verified through further investigations. [Figure: see text].
Collapse
Affiliation(s)
- Rongqiang Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University , Nanchang, Jiangxi, China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University , Guangzhou, Guangdong, China
| | - Weihao Kong
- Department of Emergency Surgery, Department of Emergency Medicine, The First Affiliated Hospital of Anhui Medical University , Hefei, Anhui, China
| | - Shiyang Zheng
- Department of Breast Surgery, The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou, China
| | - Chenyu Yu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University , Nanchang, Jiangxi, China
| | - Yajie Yu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University , Nanchang, Jiangxi, China
| | - Yuling Xu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University , Nanchang, Jiangxi, China
| | - Linsen Ye
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou, China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University , Nanchang, Jiangxi, China
| |
Collapse
|
16
|
Xie L, Zhou Q, Chen X, Du X, Liu Z, Fei B, Hou J, Dai Y, She W. Elucidation of the Hdac2/Sp1/ miR-204-5p/ Bcl-2 axis as a modulator of cochlear apoptosis via in vivo/ in vitro models of acute hearing loss. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:1093-1109. [PMID: 33614251 PMCID: PMC7875768 DOI: 10.1016/j.omtn.2021.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 01/14/2021] [Indexed: 11/21/2022]
Abstract
We previously reported that dysregulation of histone deacetylase 2 (Hdac2) was associated with the prognosis of sudden sensorineural hearing loss. However, the underlying molecular mechanisms are poorly understood. In the present study, we developed an acute hearing loss animal model in guinea pigs by infusing lipopolysaccharides (LPS) into the cochlea and measured the expression of Hdac2 in the sensory epithelium. We observed that the level of Hdac2 was significantly decreased in the LPS-infused cochleae. The levels of apoptosis-inhibition genes Bcl-2 and Bcl-xl were also decreased in the cochlea and correlated positively with the levels of Hdac2. Caspase3 or TUNEL-positive spiral ganglion neurons, hair cells, and supporting cells were observed in the LPS-infused cochleae. These in vivo observations were recapitulated in cell culture experiments. Based on bioinformatics analysis, we found miR-204-5p was engaged in the regulation of Hdac2 on Bcl-2. Molecular mechanism experiments displayed that miR-204-5p could be regulated by Hdac2 through interacting with transcription factor Sp1. Taken together, these results indicated that the Hdac2/Sp1/miR-204-5p/Bcl-2 regulatory axis mediated apoptosis in the cochlea, providing potential insights into the progression of acute hearing loss. To our knowledge, the study describes a miRNA-related mechanism for Hdac2-mediated regulation in the cochlea for the first time.
Collapse
Affiliation(s)
- Lisheng Xie
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China
- Department of Otolaryngology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Qiongqiong Zhou
- Department of Otolaryngology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Xiaorui Chen
- Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Xiaoping Du
- Hough Ear Institute, Oklahoma City, OK 73112, USA
| | - Zhibiao Liu
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China
| | - Bing Fei
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China
| | - Jie Hou
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China
| | - Yanhong Dai
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China
- Correspondence: Yanhong Dai, Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University: 321 Zhongshan Road, Nanjing 210008, China.
| | - Wandong She
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China
- Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing 210008, China
- Corresponding author Wandong She, Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing 210008, China.
| |
Collapse
|
17
|
Sun R, Xu Y, Zhang H, Yang Q, Wang K, Shi Y, Wang Z. Mechanistic Modeling of Gene Regulation and Metabolism Identifies Potential Targets for Hepatocellular Carcinoma. Front Genet 2020; 11:595242. [PMID: 33424926 PMCID: PMC7786279 DOI: 10.3389/fgene.2020.595242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the predominant form of liver cancer and has long been among the top three cancers that cause the most deaths worldwide. Therapeutic options for HCC are limited due to the pronounced tumor heterogeneity. Thus, there is a critical need to study HCC from a systems point of view to discover effective therapeutic targets, such as through the systematic study of disease perturbation in both regulation and metabolism using a unified model. Such integration makes sense for cancers as it links one of the dominant physiological features of cancers (growth, which is driven by metabolic networks) with the primary available omics data source, transcriptomics (which is systematically integrated with metabolism through the regulatory-metabolic network model). Here, we developed an integrated transcriptional regulatory-metabolic model for HCC molecular stratification and the prediction of potential therapeutic targets. To predict transcription factors (TFs) and target genes affecting tumorigenesis, we used two algorithms to reconstruct the genome-scale transcriptional regulatory networks for HCC and normal liver tissue. which were then integrated with corresponding constraint-based metabolic models. Five key TFs affecting cancer cell growth were identified. They included the regulator CREB3L3, which has been associated with poor prognosis. Comprehensive personalized metabolic analysis based on models generated from data of liver HCC in The Cancer Genome Atlas revealed 18 genes essential for tumorigenesis in all three subtypes of patients stratified based on the non-negative matrix factorization method and two other genes (ACADSB and CMPK1) that have been strongly correlated with lower overall survival subtype. Among these 20 genes, 11 are targeted by approved drugs for cancers or cancer-related diseases, and six other genes have corresponding drugs being evaluated experimentally or investigationally. The remaining three genes represent potential targets. We also validated the stratification and prognosis results by an independent dataset of HCC cohort samples (LIRI-JP) from the International Cancer Genome Consortium database. In addition, microRNAs targeting key TFs and genes were also involved in established cancer-related pathways. Taken together, the multi-scale regulatory-metabolic model provided a new approach to assess key mechanisms of HCC cell proliferation in the context of systems and suggested potential targets.
Collapse
Affiliation(s)
| | | | | | | | | | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Zhuo Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
18
|
Wei C, Wei H, Wu X, Nong G, Wu C, Lee J, Meng N, Yu D, Su J, Guo M, Qin J, Fan X. LncRNA-IUR Sponges miR-24 to Upregulate P53 in Laryngeal Squamous Cell Carcinoma. Cancer Manag Res 2020; 12:11639-11647. [PMID: 33235495 PMCID: PMC7678708 DOI: 10.2147/cmar.s236188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 09/16/2020] [Indexed: 12/24/2022] Open
Abstract
Objective The functions of lncRNA-IUR in laryngeal squamous cell carcinoma (LSCC) were investigated in this study. Methods RT-qPCR and paired t-test were used to measure and compare expression levels of IUR, miR-24 and p53 in LSCC and non-tumor tissues. Human LSCC cell line UM-SCC-17A was used and transfected by pcDNA3.1 vector to overexpress IUR and miR-24. The transwell assay and wound healing assay illustrated the effect of overexpression of IUR or miR-24 in the cell invasion and migration of LSCC. Subcutaneous tumor model in nude mice was carried out to demonstrate the mechanism between IUR and miR-24 in regulating tumor growth. Results We found that IUR was downregulated in LSCC. Low expression levels of IUR were correlated with the poor survival of LSCC patients. Overexpression experiments showed that overexpression of IUR led to increased, while overexpression of miR-24 led to decreased expression levels of p53 in LSCC cells. And bioinformatics analysis showed that IUR may sponge miR-24. Cell proliferation assay showed that overexpression of IUR and p53 led to decreased proliferation rate of LSCC cells, while overexpression of miR-24 led to increased proliferation rate of LSCC cells. We also illustrated that overexpression of IUR promoted cell migration and invasion while miR-24 had opposite effects. In addition, subcutaneous tumor model in nude mice showed that overexpression of miR-24 attenuated the effects of overexpression of IUR on the expression of p53 and cancer cell proliferation. Conclusion IUR sponges miR-24 to upregulate p53 in LSCC, thereby inhibiting cancer cell proliferation.
Collapse
Affiliation(s)
- Cen Wei
- ENT & HN Surgery Department, Wuming Hospital of Guangxi Medical University, Nanning 530199, People's Republic of China
| | - Huaqing Wei
- Department of Cardiology, Wuming Hospital of Guangxi Medical University, Nanning 530199, People's Republic of China
| | - Xun Wu
- Department of Maxillofacial Surgery, Guangxi Medical University College of Stomatology, Nanning 530021, People's Republic of China
| | - Guangyao Nong
- ENT & HN Surgery Department, Wuming Hospital of Guangxi Medical University, Nanning 530199, People's Republic of China
| | - Chenglin Wu
- Department of ENT, Sixth Affiliated Hospital of Guangxi Medical University, Nanning 537000, People's Republic of China
| | - Jinli Lee
- Department of Gastroenterology, 923 Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Nanning 530021, People's Republic of China
| | - Ning Meng
- Department of Maxillofacial Surgery, Guangxi Medical University College of Stomatology, Nanning 530021, People's Republic of China
| | - Dahai Yu
- Department of Stomatology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Jiping Su
- ENT & HN Surgery Department, The First Affiliated Hospital of Guangxi Medical University, Nanning 530199, People's Republic of China
| | - Mengzhu Guo
- Department of Stomatology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Jiangyuan Qin
- Department of Otolaryngology, Guangxi General Hospital of Chinses People's Armed Police Force, Nanning 530000, People's Republic of China
| | - Xuemin Fan
- Department of Maxillofacial Surgery, Guangxi Medical University College of Stomatology, Nanning 530021, People's Republic of China
| |
Collapse
|
19
|
XCHD Inhibits C6 Cell Growth Primarily via the p53/Caspase Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7973639. [PMID: 33029173 PMCID: PMC7528083 DOI: 10.1155/2020/7973639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 08/28/2020] [Accepted: 09/07/2020] [Indexed: 01/22/2023]
Abstract
The effects of XCHD on the proliferation of C6 cells and on factors associated with the microRNA-34a (miR-34a)/p53/caspase-3 signaling pathway in vitro were investigated. Methods. XCHD was purchased too much to complete the study. CCK-8 assay was used to measure the XCHD concentration, and qPCR was used to quantify miR-34a expression at the mRNA level. Apoptosis was assessed using TUNEL. Western blots were used to determine the p53, caspase-3, caspase-8, and Bcl-2 expression levels. Results. The optimal XCHD concentration and time effect for C6 cells were observed after 36 h of exposure to a concentration of 100 µg/ml XCHD. miR-34a expression increased 8 and 12 h after the addition of XCHD. The presence of XCHD decreased Bcl-2 expression but increased p53, cleaved caspase-3, Bax, and caspase-8 expression. When p53 was inhibited, miR-34a expression was unaffected by the addition of XCHD, Bcl-2 expression was low, and cleaved caspase-3, Bax, and caspase-8 expression increased. The inhibition of p53 promoted C6 cell growth when compared with C6 cells exposed to XCHD and with no inhibition of p53. Conclusions. XCHD inhibits C6 cell growth which was influenced by the p53/caspase pathway.
Collapse
|
20
|
Wang S, Liu N, Tang Q, Sheng H, Long S, Wu W. MicroRNA-24 in Cancer: A Double Side Medal With Opposite Properties. Front Oncol 2020; 10:553714. [PMID: 33123467 PMCID: PMC7566899 DOI: 10.3389/fonc.2020.553714] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
MicroRNA-24 (miR-24) has been widely studied in a variety of human cancers, which plays different roles in specific type of cancers. In the present review, we summarized the recent surveys regarding the role of miR-24 in different human cancers. On the one hand, miR-24 was reported to be down-regulated in some types of cancer, indicating its role as a tumor suppressor. On the other hand, it has shown that miR-24 was up-regulated in some other types of cancer, even in the same type of cancer, suggesting the role of miR-24 being as an oncogene. Firstly, miR-24 was dysregualted in human cancers, which is related to the clinical performance of cancer patients. Thus miR-24 could be used as a potential non-invasive diagnostic marker in human cancers. Secondly, miR-24 was associated with the tumor initiation and progression, being as a promoter or inhibitor. Therefore, miR-24 might be an effective prognostic biomarker in different type of cancers. Lastly, the abnormal expression of miR-24 was involved in the chemo- and radio- therapies of cancer patients, indicating the role of miR-24 being as a predictive biomarker to cancer treatment. Totally, miR-24 contributes to tumorigenesis, tumor progression, and tumor therapy, which closely related to clinic. The present review shows that miR-24 plays a double role in human cancers and provides plenty of evidences to apply miR-24 as a potential novel therapeutic target in treating human cancers.
Collapse
Affiliation(s)
- Sumei Wang
- Department of Oncology, Clinical and Basic Research Team of Traditional Chinese Medicine Prevention and Treatment of Non-Small Cell Lung Cancer, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Nayan Liu
- Department of Oncology, Clinical and Basic Research Team of Traditional Chinese Medicine Prevention and Treatment of Non-Small Cell Lung Cancer, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong Pharmaceutical University, Guangzhou, China
| | - Qing Tang
- Department of Oncology, Clinical and Basic Research Team of Traditional Chinese Medicine Prevention and Treatment of Non-Small Cell Lung Cancer, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Honghao Sheng
- Department of Oncology, Clinical and Basic Research Team of Traditional Chinese Medicine Prevention and Treatment of Non-Small Cell Lung Cancer, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Shunqin Long
- Department of Oncology, Clinical and Basic Research Team of Traditional Chinese Medicine Prevention and Treatment of Non-Small Cell Lung Cancer, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Wanyin Wu
- Department of Oncology, Clinical and Basic Research Team of Traditional Chinese Medicine Prevention and Treatment of Non-Small Cell Lung Cancer, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| |
Collapse
|
21
|
Lei D, Sun H, Zhang B. MiR-24 Promotes Cell Growth in Human Glioma by CDX1/PI3K/Akt Signaling Pathway. Cancer Biother Radiopharm 2020; 36:588-599. [PMID: 32876500 DOI: 10.1089/cbr.2020.3711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MicroRNA-24 (miR-24) has been identified to be related to the development of glioma. However, the exact molecular mechanism of miR-24 in glioma progression remains vague. The aim of the present study was to investigate the role of miR-24 in sepsis and to reveal the associated mechanisms. Quantitative real-time polymerase chain reaction was used to compare the levels of miR-24 in glioma and normal tissue. The miR-24 inhibitor or miR-24 mimic was transfected into glioma cells, and then the effects of miR-24 on cell proliferation and apoptosis were detected using CCK-8 (Cell Counting Kit-8) assay and flow cytometry, respectively. Western blot was used to examine the levels of CDX1 (caudal-type homeobox 1), PI3K, p-PI3K, Akt, p-Akt, Cyclin D1, p27, proliferating cell nuclear antigen, Bcl-2, Bax, and Cleaved-casp3. Luciferase assay was used to identify the target gene of miR-24. An animal model was established in mice to detect the role of miR-24 in vivo. These results suggested that miR-24 was elevated in glioma, and miR-24 could promote glioma progression by facilitating cell proliferation and inducing cell apoptosis through CDX1/PI3K/Akt signaling pathway, indicating a novel pathway underlying progression in glioma cells and providing a potential target for glioma treatment.
Collapse
Affiliation(s)
- Dan Lei
- Department of Neurosurgery, Hanyang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Huanhuan Sun
- Department of Head, Neck and Thoracic Tumor Surgery, Pu'ai Campus, Central Hospital of Huangshi, Huangshi, China
| | - Bo Zhang
- Second Department of Breast Tumor, Pu'ai Campus, Central Hospital of Huangshi, Huangshi, China
| |
Collapse
|
22
|
The Effect of Methylselenocysteine and Sodium Selenite Treatment on microRNA Expression in Liver Cancer Cell Lines. Pathol Oncol Res 2020; 26:2669-2681. [PMID: 32656599 PMCID: PMC7471166 DOI: 10.1007/s12253-020-00870-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022]
Abstract
The unique character of selenium compounds, including sodium selenite and Se-methylselenocysteine (MSC), is that they exert cytotoxic effects on neoplastic cells, providing a great potential for treating cancer cells being highly resistant to cytostatic drugs. However, selenium treatment may affect microRNA (miRNA) expression as the pattern of circulating miRNAs changed in a placebo-controlled selenium supplement study. This necessitates exploring possible changes in the expression profiles of miRNAs. For this, miRNAs being critical for liver function were selected and their expression was measured in hepatocellular carcinoma (HLE and HLF) and cholangiocarcinoma cell lines (TFK-1 and HuH-28) using individual TaqMan MicroRNA Assays following selenite or MSC treatments. For establishing tolerable concentrations, IC50 values were determined by performing SRB proliferation assays. The results revealed much lower IC50 values for selenite (from 2.7 to 11.3 μM) compared to MSC (from 79.5 to 322.6 μM). The treatments resulted in cell line-dependent miRNA expression patterns, with all miRNAs found to show fold change differences; however, only a few of these changes were statistically different in treated cells compared to untreated cells below IC50. Namely, miR-199a in HLF, miR-143 in TFK-1 upon MSC treatment, miR-210 in HLF and TFK-1, miR-22, -24, -122, -143 in HLF upon selenite treatment. Fold change differences revealed that miR-122 with both selenium compounds, miR-199a with MSC and miR-22 with selenite were affected. The miRNAs showing minimal alterations included miR-125b and miR-194. In conclusion, our results revealed moderately altered miRNA expression in the cell lines (less alterations following MSC treatment), being miR-122, -199a the most affected and miR-125b, -194 the least altered miRNAs upon selenium treatment.
Collapse
|
23
|
Zhang S, Zhou Y, Wang Y, Wang Z, Xiao Q, Zhang Y, Lou Y, Qiu Y, Zhu F. The mechanistic, diagnostic and therapeutic novel nucleic acids for hepatocellular carcinoma emerging in past score years. Brief Bioinform 2020; 22:1860-1883. [PMID: 32249290 DOI: 10.1093/bib/bbaa023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/09/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023] Open
Abstract
Despite The Central Dogma states the destiny of gene as 'DNA makes RNA and RNA makes protein', the nucleic acids not only store and transmit genetic information but also, surprisingly, join in intracellular vital movement as a regulator of gene expression. Bioinformatics has contributed to knowledge for a series of emerging novel nucleic acids molecules. For typical cases, microRNA (miRNA), long noncoding RNA (lncRNA) and circular RNA (circRNA) exert crucial role in regulating vital biological processes, especially in malignant diseases. Due to extraordinarily heterogeneity among all malignancies, hepatocellular carcinoma (HCC) has emerged enormous limitation in diagnosis and therapy. Mechanistic, diagnostic and therapeutic nucleic acids for HCC emerging in past score years have been systematically reviewed. Particularly, we have organized recent advances on nucleic acids of HCC into three facets: (i) summarizing diverse nucleic acids and their modification (miRNA, lncRNA, circRNA, circulating tumor DNA and DNA methylation) acting as potential biomarkers in HCC diagnosis; (ii) concluding different patterns of three key noncoding RNAs (miRNA, lncRNA and circRNA) in gene regulation and (iii) outlining the progress of these novel nucleic acids for HCC diagnosis and therapy in clinical trials, and discuss their possibility for clinical applications. All in all, this review takes a detailed look at the advances of novel nucleic acids from potential of biomarkers and elaboration of mechanism to early clinical application in past 20 years.
Collapse
Affiliation(s)
- Song Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital in Zhejiang University, China.,College of Pharmaceutical Sciences in Zhejiang University, China
| | - Ying Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital in Zhejiang University, China
| | - Yanan Wang
- School of Life Sciences in Nanchang University, China
| | - Zhengwen Wang
- College of Pharmaceutical Sciences in Zhejiang University, China
| | - Qitao Xiao
- College of Pharmaceutical Sciences in Zhejiang University, China
| | - Ying Zhang
- College of Pharmaceutical Sciences in Zhejiang University, China
| | - Yan Lou
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital in Zhejiang University, China
| | - Yunqing Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital in Zhejiang University, China
| | - Feng Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital in Zhejiang University, China.,College of Pharmaceutical Sciences in Zhejiang University, China
| |
Collapse
|
24
|
Long Noncoding RNA GATA3-AS1 Promotes Cell Proliferation and Metastasis in Hepatocellular Carcinoma by Suppression of PTEN, CDKN1A, and TP53. Can J Gastroenterol Hepatol 2019; 2019:1389653. [PMID: 31871924 PMCID: PMC6913283 DOI: 10.1155/2019/1389653] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/31/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) have been known to play important roles in the progression of various types of human cancer. LncRNA GATA3 antisense RNA 1, GATA3-AS1, has been reported to be associated with T-cell development and differentiation. However, the expression pattern and function of GATA3-AS1 in hepatocellular carcinoma (HCC) remain unknown. METHODS Real-time quantitative PCR (RT-qPCR) assay was conducted to detect GATA3-AS1 expression levels in 80 cases of pairs HCC tissues and matched normal tissues. Chi-squared (χ 2) test was used to analyze the correlation between GATA3-AS1 expression and clinicopathologic variables. Survival curves were plotted using the Kaplan-Meier method and were compared via the log-rank test. The cell counting kit-8 (CCK-8) and wound scratch assays were applied to detect the effect of GATA3-AS1 knockdown and overexpression on cell growth and migration of HCC. RT-qPCR was performed for the detection of the phosphatase and tensin homolog (PTEN), cyclin-dependent kinase inhibitor 1A (CDKN1A), and tumor protein p53 (TP53) expression in HCC cells after GATA3-AS1 knockdown and overexpression. RESULTS GATA3-AS1 was significantly upregulated in HCC tissues compared with matched normal tissues. The high expression of GATA3-AS1 was significantly correlated with larger tumor size, advanced TNM stage, and more lymph node metastasis. High GATA3-AS1 expression was markedly correlated with shorter overall survival times of HCC patients. Furthermore, knockdown of GATA3-AS1 obviously inhibited Hep3B and HCCLM3 cell growth and migration, whereas overexpression of GATA3-AS1 had the opposite effects. In addition, GATA3-AS1 knockdown resulted in upregulated expression levels of tumor-suppressive genes, PTEN, CDKN1A, and TP53, in Hep3B and HCCLM3 cells, while restoration of GATA3-AS1 decreased PTEN, CDKN1A, and TP53 expression levels. CONCLUSION Our data suggested that GATA3-AS1 promotes cell proliferation and metastasis of HCC by suppression of PTEN, CDKN1A, and TP53.
Collapse
|
25
|
Akula SM, Abrams SL, Steelman LS, Emma MR, Augello G, Cusimano A, Azzolina A, Montalto G, Cervello M, McCubrey JA. RAS/RAF/MEK/ERK, PI3K/PTEN/AKT/mTORC1 and TP53 pathways and regulatory miRs as therapeutic targets in hepatocellular carcinoma. Expert Opin Ther Targets 2019; 23:915-929. [PMID: 31657972 DOI: 10.1080/14728222.2019.1685501] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Hepatocellular carcinoma (HCC) is a significant problem globally because of viral infections and the increasing incidence of obesity and fatty liver disease. However, it is difficult to treat because its inherent genetic heterogeneity results in activation of numerous signaling pathways. Kinases have been targeted for decades with varying results, but the development of therapeutic resistance is a major challenge.Areas covered: The key roles of the RAS/RAF/MEK/ERK, PI3K/PTEN/AKT/mTORC1, TP53 microRNAs (miRs) as therapeutic targets are discussed and we suggests novel approaches for targeting miRs or their downstream targets to combat HCC. We performed literature searches using the Medline Database from 2000 to the present.Expert opinion: The involvement of RAS/RAF/MEK/ERK, PI3K/PTEN/AKT/mTORC and TP53 pathways as drivers of the disease and drug resistance is a challenge. Moreover, miRs regulate the expression of key genes in these pathways. What we and others are proposing is the prospect of targeting miRs and their downstream targets to improve conventional approaches to treat HCC. Combination approaches are often promising because multiple signaling pathways are deregulated due to diverse mutations and events.
Collapse
Affiliation(s)
- Shaw M Akula
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Maria R Emma
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Giuseppa Augello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Antonella Cusimano
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Antonina Azzolina
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Giuseppe Montalto
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy.,Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| |
Collapse
|
26
|
Bhargava A, Shukla A, Bunkar N, Shandilya R, Lodhi L, Kumari R, Gupta PK, Rahman A, Chaudhury K, Tiwari R, Goryacheva IY, Mishra PK. Exposure to ultrafine particulate matter induces NF-κβ mediated epigenetic modifications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:39-50. [PMID: 31146237 DOI: 10.1016/j.envpol.2019.05.065] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
Exposure to ultrafine particulate matter (PM0.1) is positively associated with the etiology of different acute and chronic disorders; however, the in-depth biological imprints that link these submicron particles with the disturbances in the epigenomic machinery are not well defined. Earlier, we showed that exposure to these particles causes significant disturbances in the mitochondrial machinery and triggers PI-3-kinase mediated DNA damage responses. In the present study, we aimed to further understand the epigenomic insights of the ultrafine PM exposure. The higher levels of intracellular reactive oxygen species and depleted Nrf-2 in ultrafine PM exposed cells reconfirmed its potential to induce oxidative stress. Importantly, the observed increase in the levels of NF-κβ and associated cytokines among exposed cells suggested the activation of NF-κβ mediated inflammatory loop which potentially serves as a platform for initiating epigenetic insinuations. This fact was strongly supported by the altered miRNA expression profile of the ultrafine PM exposed cells. These NF-κβ induced miRNA alterations were also found to be associated with other epigenetic targets as the exposed cells showed higher expression levels of DNA methyltransferases which positively corresponded with the global changes in DNA methylation levels. Upon further analysis, significant alterations in histone code were also reported in ultrafine PM exposed cells. Conclusively our results suggested that NF-κβ acts as an inflammatory switch that possesses the potential to induce genome-wide epigenetic modification upon ultrafine PM exposure.
Collapse
Affiliation(s)
- Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Anushi Shukla
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Neha Bunkar
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Ruchita Shandilya
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Lalit Lodhi
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Roshani Kumari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Pushpendra Kumar Gupta
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Akhlaqur Rahman
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Koel Chaudhury
- School of Medical Science & Technology, Indian Institute of Technology, Kharagpur, India
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Irina Yu Goryacheva
- Department of General and Inorganic Chemistry, Saratov State University, Saratov, Russia
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
27
|
Cui M, Yao X, Lin Y, Zhang D, Cui R, Zhang X. Interactive functions of microRNAs in the miR-23a-27a-24-2 cluster and the potential for targeted therapy in cancer. J Cell Physiol 2019; 235:6-16. [PMID: 31192453 DOI: 10.1002/jcp.28958] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs about 19-22 nucleotides in length. Growing evidence has reported the significant role of miRNAs in various cancer-associated biological processes, such as proliferation, differentiation, apoptosis, metabolism, invasion, metastasis, and drug resistance. However, most studies focus on the targets of some individual miRNAs; the interactive and global functions of diverse miRNAs are still unclear and the phenomenon of the gathering of miRNAs in clusters has always been ignored. On the other hand, the fact that a single miRNA may regulate many genes and that numerous mRNAs are regulated by the same miRNA also makes it imperative to further study the cooperating characteristics of miRNAs in cancer. MiR-23a-27a-24-2 is located in the human chromosome 9q22, forming three mature miRNAs: miR-23a, miR27a, and miR-24, which are expressed abnormally in many malignant tumors. This review aims to summarize the interactive functions of miRNAs in miR-23a-27a-24-2 clusters in cancer from the perspectives of the regulation network, tumor microenvironment, and targeted therapy.
Collapse
Affiliation(s)
- Mengying Cui
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, P. R. China
| | - Xiaoxiao Yao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, P. R. China
| | - Yang Lin
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, P. R. China
| | - Dan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, P. R. China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, P. R. China
| | - Xuewen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, P. R. China
| |
Collapse
|
28
|
Park YR, Lee ST, Kim SL, Zhu SM, Lee MR, Kim SH, Kim IH, Lee SO, Seo SY, Kim SW. Down-regulation of miR-9 promotes epithelial mesenchymal transition via regulating anoctamin-1 (ANO1) in CRC cells. Cancer Genet 2018; 231-232:22-31. [PMID: 30803553 DOI: 10.1016/j.cancergen.2018.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/21/2018] [Accepted: 12/23/2018] [Indexed: 12/19/2022]
Abstract
MicroRNA-9 (miR-9) has been reported to play a suppressive or promoting role according to cancer type. In this study, we investigated the effects of anoctamin-1 (ANO1) and miR-9 on colorectal cancer (CRC) cell proliferation, migration, and invasion and determined the underlying molecular mechanisms. Thirty-two paired CRC tissues and adjacent normal tissues were analyzed for ANO1 expression using quantitative real-time PCR (qRT-PCR). HCT116 cells were transiently transfected with miR-9 mimic, miR-9 inhibitor, or si-ANO1. Cell proliferation was determined by MTT, and flow cytometric analysis, while cell migration and invasion were assayed by trans-well migration and invasion assay in HCT116 cells. ANO1 was validated as a target of miR-9 using luciferase reporter assay and bioinformatics algorithms. We found that ANO1 expression was up-regulated in CRC tissues compared with adjacent normal tissues. ANO1 expression was associated with advanced tumor stage and lymph node metastasis, and there was an inverse relationship between miR-9 and ANO1 mRNA expression in CRC specimens, but no significant difference was found between miR-9 and ANO1 expression. ANO1 is a direct target of miR-9, and overexpression of miR-9 suppressed both mRNA and protein expression of ANO1 and inhibited cell proliferation, migration, and invasion of HCT116 cells. We also showed that overexpression of miR-9 suppressed expression of p-AKT, cyclin D1, and p-ERK in HCT116 cells. We conclude that miR-9 inhibits CRC cell proliferation, migration, and invasion by directly targeting ANO1, and miR-9/ANO1 could be a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Young Ran Park
- Department of Internal Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju, Jeonbuk 54907, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - Soo Teik Lee
- Department of Internal Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju, Jeonbuk 54907, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - Se Lim Kim
- Department of Internal Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju, Jeonbuk 54907, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - Shi Mao Zhu
- Department of Internal Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju, Jeonbuk 54907, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - Min Ro Lee
- Department of Surgery, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Seong Hun Kim
- Department of Internal Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju, Jeonbuk 54907, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - In Hee Kim
- Department of Internal Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju, Jeonbuk 54907, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - Seung Ok Lee
- Department of Internal Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju, Jeonbuk 54907, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - Seung Young Seo
- Department of Internal Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju, Jeonbuk 54907, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - Sang Wook Kim
- Department of Internal Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju, Jeonbuk 54907, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea.
| |
Collapse
|
29
|
Weis BL, Guth N, Fischer S, Wissing S, Fradin S, Holzmann KH, Handrick R, Otte K. Stable miRNA overexpression in human CAP cells: Engineering alternative production systems for advanced manufacturing of biologics using miR-136 and miR-3074. Biotechnol Bioeng 2018; 115:2027-2038. [PMID: 29665036 DOI: 10.1002/bit.26715] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/15/2018] [Accepted: 04/09/2018] [Indexed: 01/06/2023]
Abstract
Chinese hamster ovary (CHO) cells still represent the major production host for therapeutic proteins. However, multiple limitations have been acknowledged leading to the search for alternative expression systems. CEVEC's amniocyte production (CAP) cells are human production cells demonstrated to enable efficient overexpression of recombinant proteins with human glycosylation pattern. However, CAP cells have not yet undergone any engineering approaches to optimize process parameters for a cheaper and more sustainable production of biopharmaceuticals. Thus, we assessed the possibility to enhance CAP cell production capacity via cell engineering using miRNA technology. Based on a previous high-content miRNA screen in CHO-SEAP cells, selected pro-productive miRNAs including, miR-99b-3p, 30a-5p, 329-3p, 483-3p, 370-3p, 219-1-3p, 3074-5p, 136-3p, 30e-5p, 1a-3p, and 484-5p, were shown to act pro-productive and product independent upon transient transfection in CAP and CHO antibody expressing cell lines. Stable expression of miRNAs established seven CAP cell pools with an overexpression of the pro-productive miRNA strand. Subsequent small-scale screening as well as upscaling batch experiments identified miR-136 and miR-3074 to significantly increase final mAb concentration in CAP-mAb cells. Transcriptomic changes analyzed by microarrays identified several lncRNAs as well as growth and apoptosis-related miRNAs to be differentially regulated in CAP-mAb-miR-136 and -miR-3074. This study presents the first engineering approach to optimize the alternative human expression system of CAP-cells.
Collapse
Affiliation(s)
- Benjamin L Weis
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany
| | - Nadine Guth
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany
| | - Simon Fischer
- Boehringer Ingelheim Pharma GmbH & Co KG, Cell Culture Development CMB, Biberach, Germany
| | | | | | | | - René Handrick
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany
| | - Kerstin Otte
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany
| |
Collapse
|
30
|
Sun Y, Wang H, Li Y, Liu S, Chen J, Ying H. miR-24 and miR-122 Negatively Regulate the Transforming Growth Factor-β/Smad Signaling Pathway in Skeletal Muscle Fibrosis. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 11:528-537. [PMID: 29858088 PMCID: PMC5992481 DOI: 10.1016/j.omtn.2018.04.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 03/22/2018] [Accepted: 04/15/2018] [Indexed: 02/08/2023]
Abstract
Fibrosis is common after skeletal muscle injury, undermining tissue regeneration and function. The mechanism underlying skeletal muscle fibrosis remains unveiled. Transforming growth factor-β/Smad signaling pathway is supposed to play a pivotal role. However, how microRNAs interact with transforming growth factor-β/Smad-related muscle fibrosis remains unclear. We showed that microRNA (miR)-24-3p and miR-122-5p declined in skeletal muscle fibrosis, which was a consequence of transforming growth factor-β. Upregulating Smad4 suppressed two microRNAs, whereas inhibiting Smad4 elevated microRNAs. Luciferase reporter assay and chromatin immunoprecipitation confirmed that Smad4 directly inhibited two microRNAs. On the other hand, overexpression of these two miRs retarded fibrotic process. We further identified that Smad2 was a direct target of miR-24-3p, whereas miR-122-5p targeted transforming growth factor-β receptor-II. Both targets were important participants in transforming growth factor-β/Smad signaling. Taken together, a positive feedback loop in transforming growth factor-β/Smad4 signaling pathway in skeletal muscle fibrosis was identified. Transforming growth factor-β/Smad axis could be downregulated by microRNAs. This effect, however, was suppressed by Smad4, the downstream of transforming growth factor-β.
Collapse
Affiliation(s)
- Yaying Sun
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Hui Wang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yan Li
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shaohua Liu
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiwu Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| | - Hao Ying
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
31
|
Krstic J, Galhuber M, Schulz TJ, Schupp M, Prokesch A. p53 as a Dichotomous Regulator of Liver Disease: The Dose Makes the Medicine. Int J Mol Sci 2018; 19:E921. [PMID: 29558460 PMCID: PMC5877782 DOI: 10.3390/ijms19030921] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 02/07/2023] Open
Abstract
Lifestyle-related disorders, such as the metabolic syndrome, have become a primary risk factor for the development of liver pathologies that can progress from hepatic steatosis, hepatic insulin resistance, steatohepatitis, fibrosis and cirrhosis, to the most severe condition of hepatocellular carcinoma (HCC). While the prevalence of liver pathologies is steadily increasing in modern societies, there are currently no approved drugs other than chemotherapeutic intervention in late stage HCC. Hence, there is a pressing need to identify and investigate causative molecular pathways that can yield new therapeutic avenues. The transcription factor p53 is well established as a tumor suppressor and has recently been described as a central metabolic player both in physiological and pathological settings. Given that liver is a dynamic tissue with direct exposition to ingested nutrients, hepatic p53, by integrating cellular stress response, metabolism and cell cycle regulation, has emerged as an important regulator of liver homeostasis and dysfunction. The underlying evidence is reviewed herein, with a focus on clinical data and animal studies that highlight a direct influence of p53 activity on different stages of liver diseases. Based on current literature showing that activation of p53 signaling can either attenuate or fuel liver disease, we herein discuss the hypothesis that, while hyper-activation or loss of function can cause disease, moderate induction of hepatic p53 within physiological margins could be beneficial in the prevention and treatment of liver pathologies. Hence, stimuli that lead to a moderate and temporary p53 activation could present new therapeutic approaches through several entry points in the cascade from hepatic steatosis to HCC.
Collapse
Affiliation(s)
- Jelena Krstic
- Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, 8010 Graz, Austria.
| | - Markus Galhuber
- Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, 8010 Graz, Austria.
| | - Tim J Schulz
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition, Potsdam-Rehhbrücke, 14558 Nuthetal, Germany.
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany.
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany.
| | - Michael Schupp
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pharmacology, Center for Cardiovascular Research, 10117 Berlin, Germany.
| | - Andreas Prokesch
- Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, 8010 Graz, Austria.
- BioTechMed-Graz, 8010 Graz, Austria.
| |
Collapse
|
32
|
Zhang LL, Zhang LF, Shi YB. miR-24 inhibited the killing effect of natural killer cells to colorectal cancer cells by downregulating Paxillin. Biomed Pharmacother 2018; 101:257-263. [PMID: 29494963 DOI: 10.1016/j.biopha.2018.02.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE To identify the molecular mechanism that modulates the killing effect of natural killer (NK) cells to colorectal cancer cells. MATERIALS AND METHODS Expressions of miR-24 and Paxillin were detected by qRT-PCR and Western blot. Secretions of IFN-γ and TNF-α were measured by ELISA. The killing effect of NK cells was detected by CytoTox 96 non-radioactive cytotoxicity assay. Luciferase reporter assay was conducted to confirm the regulation of miR-24 on Paxillin. RESULTS miR-24 was overexpressed in NK cells from patients with colorectal cancer than healthy volunteers. Secretions of IFN-γ and TNF-α in activated NK cells were significantly increased, indicating the enhancement of the killing effect of NK cells. Paxillin expression was overexpressed in activated NK cells. Interference of Paxillin significantly decreased Paxillin expression, secretions of IFN-γ and TNF-α, and the killing effect of NK cells to colorectal cancer cells. In addition, we confirmed that Paxillin was a direct target of miR-24, and miR-24 was negatively correlated with Paxillin. Moreover, overexpression of miR-24 inhibited secretions of IFN-γ and TNF-α, and decreased cytotoxicity by downregulating Paxillin expression. Finally, we observed that overexpression of Paxillin significantly decreased tumor volume of colorectal cancer. CONCLUSION Overexpression of miR-24 supressed the killing effect of NK cells to colorectal cancer cells by downregulating Paxillin expression.
Collapse
Affiliation(s)
- Ling-Li Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lian-Feng Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yun-Bo Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
33
|
Khodadadi-Jamayran A, Akgol-Oksuz B, Afanasyeva Y, Heguy A, Thompson M, Ray K, Giro-Perafita A, Sánchez I, Wu X, Tripathy D, Zeleniuch-Jacquotte A, Tsirigos A, Esteva FJ. Prognostic role of elevated mir-24-3p in breast cancer and its association with the metastatic process. Oncotarget 2018; 9:12868-12878. [PMID: 29560116 PMCID: PMC5849180 DOI: 10.18632/oncotarget.24403] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 01/13/2018] [Indexed: 11/25/2022] Open
Abstract
MicroRNAs have been shown to play important roles in breast cancer progression and can serve as biomarkers. To assess the prognostic role of a panel of miRNAs in breast cancer, we collected plasma prospectively at the time of initial diagnosis from 1,780 patients with stage I-III breast cancer prior to definitive treatment. We identified plasma from 115 patients who subsequently developed distant metastases and 115 patients without metastatic disease. Both groups were matched by: age at blood collection, year of blood collection, breast cancer subtype, and stage. The median follow up was 3.4 years (range, 1-9 years). We extracted RNA from plasma and analyzed the expression of 800 miRNAs using Nanostring technology. We then assessed the expression of miRNAs in primary and metastatic breast cancer samples from The Cancer Genome Atlas (TCGA). We found that, miR-24-3p was upregulated in patients with metastases, both in plasma and in breast cancer tissues. Patients whose primary tumors expressed high levels of miR-24-3p had a significantly lower survival rate compared to patients with low mir-24-3p levels in the TCGA cohort (n=1,024). RNA-Seq data of the samples with the highest miR-24-3p expression versus those with the lowest miR-24-3p in the TCGA cohort identified a specific gene expression signature for those tumors with high miR-24-3p. Possible target genes for miR-24-3p were predicted based on gene expression and binding site, and their effects on cancer pathways were evaluated. Cancer, breast cancer and proteoglycans were the top three pathways affected by miR-24-3p overexpression.
Collapse
Affiliation(s)
| | - Betul Akgol-Oksuz
- Department Bioinformatics and Computational Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Adriana Heguy
- Department of Pathology, NYU School of Medicine, New York, NY, USA.,Genome Technology Center, NYU School of Medicine, New York, NY, USA
| | - Marae Thompson
- Division of Hematology/Oncology, Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Karina Ray
- Genome Technology Center, NYU School of Medicine, New York, NY, USA
| | - Ariadna Giro-Perafita
- Division of Hematology/Oncology, Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Irma Sánchez
- Department of Pathology, NYU School of Medicine, New York, NY, USA
| | - Xifeng Wu
- Department of Epidemiology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Debu Tripathy
- Department of Breast Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | | | - Aristotelis Tsirigos
- Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY, USA.,Department of Pathology, NYU School of Medicine, New York, NY, USA
| | - Francisco J Esteva
- Division of Hematology/Oncology, Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| |
Collapse
|
34
|
Lu B, Christensen IT, Ma LW, Wang XL, Jiang LF, Wang CX, Feng L, Zhang JS, Yan QC. miR-24-p53 pathway evoked by oxidative stress promotes lens epithelial cell apoptosis in age-related cataracts. Mol Med Rep 2018; 17:5021-5028. [PMID: 29393409 PMCID: PMC5865963 DOI: 10.3892/mmr.2018.8492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 01/16/2018] [Indexed: 12/20/2022] Open
Abstract
MicroRNA-24 (miR-24) serves an important role in cell proliferation, migration and inflammation in various types of disease. In the present study, the biological function and molecular mechanism of miR-24 was investigated in association with the progression of age-associated cataracts. To the best of our knowledge the present study is the first to report that the expression of miR-24 was significantly increased in human anterior lens capsules affected by age-associated cataracts as well as lens epithelial cells (LECs) exposed to oxidative stress. Overexpression of miR-24 induced p53 expression and p53 was verified as a direct target of miR-24. Overexpression of miR-24 enhanced LEC death by directly targeting p53. The present study revealed that oxidative stress induced the upregulation of miR-24 and enhanced LEC death by directly targeting p53. These results suggest that the miR-24-p53 signaling pathway is involved in a novel mechanism of age-associated cataractogenesis and miR-24 may be a useful therapeutic target for age-associated cataracts.
Collapse
Affiliation(s)
- Bo Lu
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang, Liaoning 110005, P.R. China
| | - Ian T Christensen
- The School of Medicine, University of Utah, Salt Lake, UT 84132, USA
| | - Li-Wei Ma
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang, Liaoning 110005, P.R. China
| | - Xin-Ling Wang
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang, Liaoning 110005, P.R. China
| | - Ling-Feng Jiang
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang, Liaoning 110005, P.R. China
| | - Chun-Xia Wang
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang, Liaoning 110005, P.R. China
| | - Li Feng
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang, Liaoning 110005, P.R. China
| | - Jin-Song Zhang
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang, Liaoning 110005, P.R. China
| | - Qi-Chang Yan
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang, Liaoning 110005, P.R. China
| |
Collapse
|
35
|
Abstract
Liver cancer remains one of the most common human cancers with a high mortality rate. Therapies for hepatocellular carcinoma (HCC) remain ineffective, due to the heterogeneity of HCC with regard to both the etiology and mutation spectrum, as well as its chemotherapy resistant nature; thus surgical resection and liver transplantation remain the gold standard of patient care. The most common etiologies of HCC are extrinsic factors. Humans have multiple defense mechanisms against extrinsic factor-induced carcinogenesis, of which tumor suppressors play crucial roles in preventing normal cells from becoming cancerous. The tumor suppressor p53 is one of the most frequently mutated genes in liver cancer. p53 regulates expression of genes involved in cell cycle progression, cell death, and cellular metabolism to avert tumor development due to carcinogens. This review article mainly summarizes extrinsic factors that induce liver cancer and potentially have etiological association with p53, including aflatoxin B1, vinyl chloride, non-alcoholic fatty liver disease, iron overload, and infection of hepatitis viruses.
Collapse
Affiliation(s)
- Tim Link
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Tomoo Iwakuma
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
36
|
Munk R, Panda AC, Grammatikakis I, Gorospe M, Abdelmohsen K. Senescence-Associated MicroRNAs. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 334:177-205. [PMID: 28838538 PMCID: PMC8436595 DOI: 10.1016/bs.ircmb.2017.03.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Senescent cells arise as a consequence of cellular damage and can have either a detrimental or advantageous impact on tissues and organs depending on the specific cell type and metabolic state. As senescent cells accumulate in tissues with advancing age, they have been implicated in many age-related declines and diseases. The major facets of senescence include two pathways responsible for establishing and maintaining a senescence program, p53/CDKN1A(p21) and CDKN2A(p16)/RB, as well as the senescence-associated secretory phenotype. Numerous MicroRNAs influence senescence by modulating the abundance of key senescence regulatory proteins, generally by lowering the stability and/or translation of mRNAs that encode such factors. Accordingly, understanding the molecular mechanisms by which MicroRNAs influence senescence will enable diagnostic and therapeutic opportunities directed at senescent cells. Here, we review senescence-associated (SA)-MicroRNAs and discuss their implications in senescence-relevant pathologies.
Collapse
Affiliation(s)
- Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Amaresh C Panda
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Ioannis Grammatikakis
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States.
| |
Collapse
|
37
|
Zhao J, Xu T, Wang F, Cai W, Chen L. miR-493-5p suppresses hepatocellular carcinoma cell proliferation through targeting GP73. Biomed Pharmacother 2017; 90:744-751. [PMID: 28419971 DOI: 10.1016/j.biopha.2017.04.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/02/2017] [Accepted: 04/10/2017] [Indexed: 02/07/2023] Open
Abstract
Aberrant expression of miRNAs has been documented to play critical roles in the development and progression of hepatocellular carcinoma (HCC). However, the expression pattern, functional roles and regulatory mechanism of miR-493-5p in HCC have not been addressed. Herein, we found that miR-493-5p was significantly downregulated in HCC tissues and was tightly associated with tumor size, tumor differentiation grade and TNM stage of HCC patients. Overexpression of miR-493-5p inhibited HCC cell proliferation, arrested cell cycle in G0/G1 phase and induced cell apoptosis. Bioinformatical analysis and luciferase reporter assay further proved that Golgiprotein73 (GP73), an oncogene which was generally overexpressed in HCC, acted as a novel target of miR-493-5p. MiR-493-5p could inhibit GP73 both mRNA and protein expression. Moreover, overexpression of GP73 could reverse the inhibitory effects of miR-493-5p mediated HCC cell proliferation. In addition, upregulated GP73 in HCC tissues was inversely correlated with the miR-493-5p expression levels in the HCC tissues. Collectively, our present study demonstrates that miR-493-5p is downregulated in HCC and it can suppress the proliferation of HCC cells, partly at least, via directly targeting GP73. Besides, this study provides a novel insight into the mechanism of hepatocarcinogenesis and a promising blueprint for miR-493-5p-GP73 axis-oriented treatment of HCC.
Collapse
Affiliation(s)
- Jinli Zhao
- Department of Medical Imaging, Affiliated Hospital of Nantong University, Jiangsu, 226001, China
| | - Tongsheng Xu
- Department of Pharmacy, The People's Hospital of Hai
tm)an County, Jiangsu, 226600, China
| | - Feng Wang
- Department of Clinical Laboratory, Affiliated Hospital of Nantong University, Jiangsu, 226001, China.
| | - Weihua Cai
- Department of Gastroenterology and Clinical Laboratory, Nantong Third Hospital Affiliated to Nantong University, Jiangsu, 226006, China
| | - Lin Chen
- Department of Gastroenterology and Clinical Laboratory, Nantong Third Hospital Affiliated to Nantong University, Jiangsu, 226006, China.
| |
Collapse
|