1
|
Arfin S, Kumar D, Lomagno A, Mauri PL, Di Silvestre D. Differentially Expressed Genes, miRNAs and Network Models: A Strategy to Shed Light on Molecular Interactions Driving HNSCC Tumorigenesis. Cancers (Basel) 2023; 15:4420. [PMID: 37686696 PMCID: PMC10563081 DOI: 10.3390/cancers15174420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is among the most common cancer worldwide, accounting for hundreds thousands deaths annually. Unfortunately, most patients are diagnosed in an advanced stage and only a percentage respond favorably to therapies. To help fill this gap, we hereby propose a retrospective in silico study to shed light on gene-miRNA interactions driving the development of HNSCC. Moreover, to identify topological biomarkers as a source for designing new drugs. To achieve this, gene and miRNA profiles from patients and controls are holistically reevaluated using protein-protein interaction (PPI) and bipartite miRNA-target networks. Cytoskeletal remodeling, extracellular matrix (ECM), immune system, proteolysis, and energy metabolism have emerged as major functional modules involved in the pathogenesis of HNSCC. Of note, the landscape of our findings depicts a concerted molecular action in activating genes promoting cell cycle and proliferation, and inactivating those suppressive. In this scenario, genes, including VEGFA, EMP1, PPL, KRAS, MET, TP53, MMPs and HOXs, and miRNAs, including mir-6728 and mir-99a, emerge as key players in the molecular interactions driving HNSCC tumorigenesis. Despite the heterogeneity characterizing these HNSCC subtypes, and the limitations of a study pointing to relationships that could be context dependent, the overlap with previously published studies is encouraging. Hence, it supports further investigation for key molecules, both those already and not correlated to HNSCC.
Collapse
Affiliation(s)
- Saniya Arfin
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun 248007, Uttrakhand, India; (S.A.); (D.K.)
| | - Dhruv Kumar
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun 248007, Uttrakhand, India; (S.A.); (D.K.)
| | - Andrea Lomagno
- Institute for Biomedical Technologies, National Research Council, F.lli Cervi 93, Segrate, 20054 Milan, Italy; (A.L.); (P.L.M.)
- IRCCS Foundation, Istituto Nazionale dei Tumori, Via Venezian, 1, 20133 Milan, Italy
| | - Pietro Luigi Mauri
- Institute for Biomedical Technologies, National Research Council, F.lli Cervi 93, Segrate, 20054 Milan, Italy; (A.L.); (P.L.M.)
| | - Dario Di Silvestre
- Institute for Biomedical Technologies, National Research Council, F.lli Cervi 93, Segrate, 20054 Milan, Italy; (A.L.); (P.L.M.)
| |
Collapse
|
2
|
Mechanosensitive Ion Channel PIEZO1 Signaling in the Hall-Marks of Cancer: Structure and Functions. Cancers (Basel) 2022; 14:cancers14194955. [PMID: 36230880 PMCID: PMC9563973 DOI: 10.3390/cancers14194955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Tumor cells obtain various unique characteristics, which known as hallmarks of cancers, including sustained proliferative signaling, apoptosis resistance, and metastasis. These characteristics are crucial for tumor cells survival and for supporting their rapid growth. Studies have revealed that tumorigenesis is also accompanied by alteration in mechanical properties. Tumor cells could sense various mechanical forces, such as compressive force, shear stress, and portal vein pressure, which in turn could affect tumor progression. Piezo1 is a mechanically sensitive ion channel protein that can be activated mechanically, and is closely related to various diseases. Recent studies showed that Piezo1 is overexpressed in numerous tumors and is associated with poor prognosis. Furthermore, previous studies revealed that Piezo1 mediates these cancer hallmarks, and thus links up mechanical forces with tumor progression. Therefore, the discovery of Piezo1 provides a new insight for elucidating the mechanism of tumor progression under a mechanical microenvironment. Abstract Tumor cells alter their characteristics and behaviors during tumorigenesis. These characteristics, known as hallmarks of cancer, are crucial for supporting their rapid growth, need for energy, and adaptation to tumor microenvironment. Tumorigenesis is also accompanied by alteration in mechanical properties. Cells in tumor tissue sense mechanical signals from the tumor microenvironment, which consequently drive the acquisition of hallmarks of cancer, including sustained proliferative signaling, evading growth suppressors, apoptosis resistance, sustained angiogenesis, metastasis, and immune evasion. Piezo-type mechanosensitive ion channel component 1 (Piezo1) is a mechanically sensitive ion channel protein that can be activated mechanically and is closely related to various diseases. Recent studies showed that Piezo1 mediates tumor development through multiple mechanisms, and its overexpression is associated with poor prognosis. Therefore, the discovery of Piezo1, which links-up physical factors with biological properties, provides a new insight for elucidating the mechanism of tumor progression under a mechanical microenvironment, and suggests its potential application as a tumor marker and therapeutic target. In this review, we summarize current knowledge regarding the role of Piezo1 in regulating cancer hallmarks and the underlying molecular mechanisms. Furthermore, we discuss the potential of Piezo1 as an antitumor therapeutic target and the limitations that need to be overcome.
Collapse
|
3
|
Hua T, Zhao BB, Fan SB, Zhao CF, Kong YH, Tian RQ, Zhang BY. Prognostic implications of PPL expression in ovarian cancer. Discov Oncol 2022; 13:35. [PMID: 35612641 PMCID: PMC9133299 DOI: 10.1007/s12672-022-00496-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/09/2022] [Indexed: 11/24/2022] Open
Abstract
Periplakin (PPL) is a main member in plakin family, which plays important role in cellular adhesion complexes supporting and cytoskeletal integrity supplying. PPL was reported to be a potential biomarker candidate for several types of cancers. However, the biological functions and underlying mechanisms of PPL in ovarian cancer (OV) remain unclear. In the present study, we used GEPIA 2, Human Protein Atlas, Oncomine, LinkedOmics, Kaplan-Meier Plotter, STRING, CytoHubba plug-in and TIMER to determine the associations among PPL expression, prognosis, and immune cell infiltration in OV. RT-qPCR and IHC analysis were conducted to validated the role of PPL in an independent OV cohort. Compared with the normal ovary tissues, the levels of PPL mRNA and protein expression were both obviously higher in OV tumors from multiple datasets (P < 0.05), and a poor survival was observed to be strongly correlated with high PPL expression (P < 0.05). Moreover, the results were further validated by RT-qPCR and IHC analysis in an independent OV cohort. A gene-clinical nomogram was constructed, including PPL mRNA expression and clinical factors in TCGA. Functional network analysis suggested that PPL participates in the important pathways like Wnt signaling pathway, MAPK signaling pathway. Ten hub genes (LAMC2, PXN, LAMA3, LAMB3, LAMA5, ITGA3, TLN1, ACTN4, ACTN1, and ITGB4) were identified to be positively associated with PPL. Furthermore, PPL expression was negatively correlated with infiltrating levels of CD4+ T cell, macrophages, neutrophils, and dendritic cells. In conclusion, PPL may be an unfavorable prognostic biomarker candidate in OV, which was also correlated with immune infiltrating and function in immunotherapy response.
Collapse
Affiliation(s)
- Tian Hua
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medial University, 16 Hongxing Road, Xingtai, 054001, Hebei, People's Republic of China.
| | - Bei-Bei Zhao
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medial University, 16 Hongxing Road, Xingtai, 054001, Hebei, People's Republic of China
| | - Shao-Bei Fan
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medial University, 16 Hongxing Road, Xingtai, 054001, Hebei, People's Republic of China
| | - Cai-Fen Zhao
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medial University, 16 Hongxing Road, Xingtai, 054001, Hebei, People's Republic of China
| | - Yun-Hong Kong
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medial University, 16 Hongxing Road, Xingtai, 054001, Hebei, People's Republic of China
| | - Rui-Qing Tian
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medial University, 16 Hongxing Road, Xingtai, 054001, Hebei, People's Republic of China
| | - Bao-Ying Zhang
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medial University, 16 Hongxing Road, Xingtai, 054001, Hebei, People's Republic of China
| |
Collapse
|
4
|
Serum Epiplakin Might Be a Potential Serodiagnostic Biomarker for Bladder Cancer. Cancers (Basel) 2021; 13:cancers13205150. [PMID: 34680299 PMCID: PMC8534213 DOI: 10.3390/cancers13205150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 11/16/2022] Open
Abstract
Tumor markers that can be detected at an early stage are needed. Here, we evaluated the epiplakin expression levels in sera from patients with bladder cancer (BC). Using a micro-dot blot array, we evaluated epiplakin expression levels in 60 patients with BC, 20 patients with stone disease, and 28 healthy volunteers. The area under the curve (AUC) and best cut-off point were calculated using receiver-operating characteristic (ROC) analysis. Serum epiplakin levels were significantly higher in patients with BC than in those with stone disease (p = 0.0013) and in healthy volunteers (p < 0.0001). The AUC-ROC level for BC was 0.78 (95% confidence interval (CI) = 0.69-0.87). Using a cut-off point of 873, epiplakin expression levels exhibited 68.3% sensitivity and 79.2% specificity for BC. However, the serum epiplakin levels did not significantly differ by sex, age, pathological stage and grade, or urine cytology. We performed immunohistochemical staining using the same antibody on another cohort of 127 patients who underwent radical cystectomy. Univariate and multivariate analysis results showed no significant differences between epiplakin expression, clinicopathological findings, and patient prognoses. Our results showed that serum epiplakin might be a potential serodiagnostic biomarker in patients with BC.
Collapse
|
5
|
Wesley T, Berzins S, Kannourakis G, Ahmed N. The attributes of plakins in cancer and disease: perspectives on ovarian cancer progression, chemoresistance and recurrence. Cell Commun Signal 2021; 19:55. [PMID: 34001250 PMCID: PMC8127266 DOI: 10.1186/s12964-021-00726-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/20/2021] [Indexed: 02/06/2023] Open
Abstract
The plakin family of cytoskeletal proteins play an important role in cancer progression yet are under-studied in cancer, especially ovarian cancer. These large cytoskeletal proteins have primary roles in the maintenance of cytoskeletal integrity but are also associated with scaffolds of intermediate filaments and hemidesmosomal adhesion complexes mediating signalling pathways that regulate cellular growth, migration, invasion and differentiation as well as stress response. Abnormalities of plakins, and the closely related spectraplakins, result in diseases of the skin, striated muscle and nervous tissue. Their prevalence in epithelial cells suggests that plakins may play a role in epithelial ovarian cancer progression and recurrence. In this review article, we explore the roles of plakins, particularly plectin, periplakin and envoplakin in disease-states and cancers with emphasis on ovarian cancer. We discuss the potential role the plakin family of proteins play in regulating cancer cell growth, survival, migration, invasion and drug resistance. We highlight potential relationships between plakins, epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs) and discuss how interaction of these processes may affect ovarian cancer progression, chemoresistance and ultimately recurrence. We propose that molecular changes in the expression of plakins leads to the transition of benign ovarian tumours to carcinomas, as well as floating cellular aggregates (commonly known as spheroids) in the ascites microenvironment, which may contribute to the sustenance and progression of the disease. In this review, attempts have been made to understand the crucial changes in plakin expression in relation to progression and recurrence of ovarian cancer. Video Abstract
Collapse
Affiliation(s)
- Tamsin Wesley
- Fiona Elsey Cancer Research Institute, Ballarat Technology Central Park, Suites 23-26, 106-110 Lydiard Street South, Ballarat, VIC, 3353, Australia.,School of Science, Psychology and Sport, Federation University Australia, Ballarat, VIC, 3010, Australia
| | - Stuart Berzins
- Fiona Elsey Cancer Research Institute, Ballarat Technology Central Park, Suites 23-26, 106-110 Lydiard Street South, Ballarat, VIC, 3353, Australia.,School of Science, Psychology and Sport, Federation University Australia, Ballarat, VIC, 3010, Australia
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat Technology Central Park, Suites 23-26, 106-110 Lydiard Street South, Ballarat, VIC, 3353, Australia.,School of Science, Psychology and Sport, Federation University Australia, Ballarat, VIC, 3010, Australia
| | - Nuzhat Ahmed
- Fiona Elsey Cancer Research Institute, Ballarat Technology Central Park, Suites 23-26, 106-110 Lydiard Street South, Ballarat, VIC, 3353, Australia. .,School of Science, Psychology and Sport, Federation University Australia, Ballarat, VIC, 3010, Australia. .,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, 3052, Australia. .,Centre for Reproductive Health, The Hudson Institute of Medical Research and Department of Translational Medicine, Monash University, Melbourne, VIC, 3168, Australia.
| |
Collapse
|
6
|
Co-expression network-based identification of biomarkers correlated with the lymph node metastasis of patients with head and neck squamous cell carcinoma. Biosci Rep 2021; 40:222104. [PMID: 32076707 PMCID: PMC7033310 DOI: 10.1042/bsr20194067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/09/2020] [Accepted: 02/12/2020] [Indexed: 01/07/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is ranked as one of the most frequent malignancies worldwide with a high risk of lymph node metastasis, which serves as a main reason for cancer deaths. Identification of the potential biomarkers for lymph node metastasis in HNSCC patients may contribute to personalized treatment and better therapeutic effect. In the present study, GSE30788 microarray data and corresponding clinical parameters were downloaded from Gene Expression Omnibus (GEO) and Weighted Gene Co-expression Network Analysis (WGCNA) was performed to investigate significant modules associated with clinical traits. As a result, the genes in the blue module were determined as candidate genes related with HNSCC lymph node metastasis and ten hub genes were selected from the PPI network. Further analysis validated the close associations of hub gene expression with lymph node metastasis of HNSCC patients. Furthermore, survival analysis suggested the level of Loricrin (LOR) was statistically significantly associated with the disease-free survival of HNSCC patients, indicating the potential of utilizing it as prognosis predictor. Overall, our study conducted a co-expression network-based analysis to investigate significant genes underlying HNSCC metastasis, providing promising biomarkers and therapeutic targets.
Collapse
|
7
|
Gujrati M, Mittal R, Ekal L, Mishra RK. SUMOylation of periplakin is critical for efficient reorganization of keratin filament network. Mol Biol Cell 2018; 30:357-369. [PMID: 30516430 PMCID: PMC6589569 DOI: 10.1091/mbc.e18-04-0244] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The architecture of the cytoskeleton and its remodeling are tightly regulated by dynamic reorganization of keratin-rich intermediate filaments. Plakin family proteins associate with the network of intermediate filaments (IFs) and affect its reorganization during migration, differentiation, and response to stress. The smallest plakin, periplakin (PPL), interacts specifically with intermediate filament proteins K8, K18, and vimentin via its C-terminal linker domain. Here, we show that periplakin is SUMOylated at a conserved lysine in its linker domain (K1646) preferentially by small ubiquitin-like modifier 1 (SUMO1). Our data indicate that PPL SUMOylation is essential for the proper reorganization of the keratin IF network. Stresses perturbing intermediate-filament and cytoskeletal architecture induce hyper--SUMOylation of periplakin. Okadaic acid induced hyperphosphorylation-dependent collapse of the keratin IF network results in a similar hyper-SUMOylation of PPL. Strikingly, exogenous overexpression of a non-SUMOylatable periplakin mutant (K1646R) induced aberrant bundling and loose network interconnections of the keratin filaments. Time-lapse imaging of cells expressing the K1646R mutant showed the enhanced sensitivity of keratin filament collapse upon okadaic acid treatment. Our data identify an important regulatory role for periplakin SUMOylation in dynamic reorganization and stability of keratin IFs.
Collapse
Affiliation(s)
- Mansi Gujrati
- Nups and SUMO Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh 462066, India
| | - Rohit Mittal
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Lakhan Ekal
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Ram Kumar Mishra
- Nups and SUMO Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
8
|
Wu H, Li X, Feng M, Yao L, Deng Z, Zao G, Zhou Y, Chen S, Du Z. Downregulation of RNF138 inhibits cellular proliferation, migration, invasion and EMT in glioma cells via suppression of the Erk signaling pathway. Oncol Rep 2018; 40:3285-3296. [PMID: 30272353 PMCID: PMC6196598 DOI: 10.3892/or.2018.6744] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 09/21/2018] [Indexed: 12/19/2022] Open
Abstract
Glioma is the most common adult malignant primary brain tumor; however, the effect of chemotherapy is often limited by drug‑resistance and poor prognosis is common. Ring finger protein 138 (RNF138) belongs to the E3 ligase family, and has significantly higher expression level in glioma tissue than in noncancerous brain tissues. Epithelial-mesenchymal-transition (EMT) has a critical role in cancer invasion and metastasis, ultimately leading to increased cell motility and resistance to genotoxic agents. Extracellular‑signal regulated kinase (Erk) pathways promote the growth of glioma cells and enhance tumor invasion, with a role in the progression of EMT. However, the association between RNF138 and human glioma progression remains poorly understood. Relatively little is known about the association between RNF138, Erk, and EMT in glioma progression. In the current study, experiments were performed to explore the potential roles and mechanisms of RNF138 in glioblastoma in vitro and in vivo. Glioma cell line proliferation, migration and invasion were inhibited by knockdown of RNF138 in vitro. By lowering the RNF138 expression, cleaved caspase3 and E‑cadherin were upregulated, while phospho‑Erk1/2, vimentin, MMP2, HIF‑1α and VEGF were downregulated in U87 and U251 cells in vitro. In vivo findings revealed that the growth of U87 cell‑transplanted tumors in nude mice was inhibited in tumors with RNF138 knockdown. These findings suggested that downregulation of RNF138 inhibited glioma cell proliferation, migration, and invasion, and reversed EMT, potentially via Erk signaling pathway. Therefore, RNF138 may be a potential therapeutic target against glioma.
Collapse
Affiliation(s)
- Haibin Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xuetao Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Ming Feng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Lin Yao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Zhitong Deng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Guozheng Zao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Youxin Zhou
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Sansong Chen
- Department of Neurosurgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Ziwei Du
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
9
|
Li F, Yoshizawa JM, Kim KM, Kanjanapangka J, Grogan TR, Wang X, Elashoff DE, Ishikawa S, Chia D, Liao W, Akin D, Yan X, Lee MS, Choi R, Kim SM, Kang SY, Bae JM, Sohn TS, Lee JH, Choi MG, Min BH, Lee JH, Kim JJ, Kim Y, Kim S, Wong DTW. Discovery and Validation of Salivary Extracellular RNA Biomarkers for Noninvasive Detection of Gastric Cancer. Clin Chem 2018; 64:1513-1521. [PMID: 30097497 DOI: 10.1373/clinchem.2018.290569] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/03/2018] [Indexed: 01/28/2023]
Abstract
BACKGROUND Biomarkers are needed for noninvasive early detection of gastric cancer (GC). We investigated salivary extracellular RNA (exRNA) biomarkers as potential clinical evaluation tools for GC. METHODS Unstimulated whole saliva samples were prospectively collected from 294 individuals (163 GC and 131 non-GC patients) who underwent endoscopic evaluation at the Samsung Medical Center in Korea. Salivary transcriptomes of 63 GC and 31 non-GC patients were profiled, and mRNA biomarker candidates were verified with reverse transcription quantitative real-time PCR (RT-qPCR). In parallel, microRNA (miRNA) biomarkers were profiled and verified with saliva samples from 10 GC and 10 non-GC patients. Candidate biomarkers were validated with RT-qPCR in an independent cohort of 100/100 saliva samples from GC and non-GC patients. Validated individual markers were configured into a best performance panel. RESULTS We identified 30 mRNA and 15 miRNA candidates whose expression pattern associated with the presence of GC. Among them, 12 mRNA and 6 miRNA candidates were verified with the discovery cohort by RT-qPCR and further validated with the independent cohort (n = 200). The configured biomarker panel consisted of 3 mRNAs (SPINK7, PPL, and SEMA4B) and 2 miRNAs (MIR140-5p and MIR301a), which were all significantly down-regulated in the GC group, and yielded an area under the ROC curve (AUC) of 0.81 (95% CI, 0.72-0.89). When combined with demographic factors, the AUC of the biomarker panel reached 0.87 (95% CI, 0.80-0.93). CONCLUSIONS We have discovered and validated a panel of salivary exRNA biomarkers with credible clinical performance for the detection of GC. Our study demonstrates the potential utility of salivary exRNA biomarkers in screening and risk assessment for GC.
Collapse
Affiliation(s)
- Feng Li
- Institute of Diagnostic in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China.,School of Dentistry, University of California, Los Angeles, CA
| | | | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | | - Tristan R Grogan
- Department of Medicine Statistics Core, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Xiaoyan Wang
- Department of Medicine Statistics Core, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - David E Elashoff
- Department of Medicine Statistics Core, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Shigeo Ishikawa
- School of Dentistry, University of California, Los Angeles, CA
| | - David Chia
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Wei Liao
- School of Dentistry, University of California, Los Angeles, CA
| | - David Akin
- School of Dentistry, University of California, Los Angeles, CA
| | - Xinmin Yan
- School of Dentistry, University of California, Los Angeles, CA
| | - Min-Sun Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Rayun Choi
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Su-Mi Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - So-Young Kang
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jae-Moon Bae
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Tae-Sung Sohn
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jun-Ho Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Min-Gew Choi
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Byung-Hoon Min
- Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jun-Haeng Lee
- Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jae J Kim
- Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Yong Kim
- School of Dentistry, University of California, Los Angeles, CA;
| | - Sung Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea;
| | - David T W Wong
- School of Dentistry, University of California, Los Angeles, CA;
| |
Collapse
|
10
|
Hu L, Huang Z, Wu Z, Ali A, Qian A. Mammalian Plakins, Giant Cytolinkers: Versatile Biological Functions and Roles in Cancer. Int J Mol Sci 2018; 19:ijms19040974. [PMID: 29587367 PMCID: PMC5979291 DOI: 10.3390/ijms19040974] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/18/2018] [Accepted: 03/20/2018] [Indexed: 01/07/2023] Open
Abstract
Cancer is a highly lethal disease that is characterized by aberrant cell proliferation, migration, and adhesion, which are closely related to the dynamic changes of cytoskeletons and cytoskeletal-adhesion. These will further result in cell invasion and metastasis. Plakins are a family of giant cytolinkers that connect cytoskeletal elements with each other and to junctional complexes. With various isoforms composed of different domain structures, mammalian plakins are broadly expressed in numerous tissues. They play critical roles in many cellular processes, including cell proliferation, migration, adhesion, and signaling transduction. As these cellular processes are key steps in cancer development, mammalian plakins have in recent years attracted more and more attention for their potential roles in cancer. Current evidence shows the importance of mammalian plakins in various human cancers and demonstrates mammalian plakins as potential biomarkers for cancer. Here, we introduce the basic characteristics of mammalian plakins, review the recent advances in understanding their biological functions, and highlight their roles in human cancers, based on studies performed by us and others. This will provide researchers with a comprehensive understanding of mammalian plakins, new insights into the development of cancer, and novel targets for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Lifang Hu
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Zizhan Huang
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Zixiang Wu
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Arshad Ali
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Airong Qian
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
11
|
Microtubule-Actin Crosslinking Factor 1 and Plakins as Therapeutic Drug Targets. Int J Mol Sci 2018; 19:ijms19020368. [PMID: 29373494 PMCID: PMC5855590 DOI: 10.3390/ijms19020368] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 12/16/2022] Open
Abstract
Plakins are a family of seven cytoskeletal cross-linker proteins (microtubule-actin crosslinking factor 1 (MACF), bullous pemphigoid antigen (BPAG1) desmoplakin, envoplakin, periplakin, plectin, epiplakin) that network the three major filaments that comprise the cytoskeleton. Plakins have been found to be involved in disorders and diseases of the skin, heart, nervous system, and cancer that are attributed to autoimmune responses and genetic alterations of these macromolecules. Despite their role and involvement across a spectrum of several diseases, there are no current drugs or pharmacological agents that specifically target the members of this protein family. On the contrary, microtubules have traditionally been targeted by microtubule inhibiting agents, used for the treatment of diseases such as cancer, in spite of the deleterious toxicities associated with their clinical utility. The Research Collaboratory for Structural Bioinformatics (RCSB) was used here to identify therapeutic drugs targeting the plakin proteins, particularly the spectraplakins MACF1 and BPAG1, which contain microtubule-binding domains. RCSB analysis revealed that plakin proteins had 329 ligands, of which more than 50% were MACF1 and BPAG1 ligands and 10 were documented, clinically or experimentally, to have several therapeutic applications as anticancer, anti-inflammatory, and antibiotic agents.
Collapse
|
12
|
Liu W, Jiao X, Thutkawkorapin J, Mahdessian H, Lindblom A. Cancer risk susceptibility loci in a Swedish population. Oncotarget 2017; 8:110300-110310. [PMID: 29299148 PMCID: PMC5746383 DOI: 10.18632/oncotarget.22687] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/27/2017] [Indexed: 12/13/2022] Open
Abstract
A germline mutation in cancer predisposing genes is known to increase the risk of more than one tumor type. In order to find loci associated with many types of cancer, a genome-wide association study (GWAS) was conducted, and 3,555 Swedish cancer cases and 15,581 controls were analyzed for 226,883 SNPs. The study used haplotype analysis instead of single SNP analysis in order to find putative founder effects. Haplotype association studies identified seven risk loci associated with cancer risk, on chromosomes 1, 7, 11, 14, 16, 17 and 21. Four of the haplotypes, on chromosomes 7, 14, 16 and 17, were confirmed in Swedish familial cancer cases. It was possible to perform exome sequencing in one patient for each of those four loci. No clear disease-causing exonic mutation was found in any of the four loci. Some of the candidate loci hold several cancer genes, suggesting that the risk associated with one locus could involve more than one gene associated with cancer risk. In summary, this study identified seven novel candidate loci associated with cancer risk. It was also suggested that cancer risk at one locus could depend on multiple contributing risk mutations/genes.
Collapse
Affiliation(s)
- Wen Liu
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Xiang Jiao
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | | | - Hovsep Mahdessian
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Chen Y, Fang L, Li G, Zhang J, Li C, Ma M, Guan C, Bai F, Lyu J, Meng QH. Synergistic inhibition of colon cancer growth by the combination of methylglyoxal and silencing of glyoxalase I mediated by the STAT1 pathway. Oncotarget 2017; 8:54838-54857. [PMID: 28903386 PMCID: PMC5589625 DOI: 10.18632/oncotarget.18601] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/31/2017] [Indexed: 12/31/2022] Open
Abstract
Methylglyoxal (MG), an extremely reactive glucose metabolite, exhibits antitumor activity. Glyoxalase I (GLOI), which catalyzes MG metabolism, is associated with the progression of human malignancies. While the roles of MG or GLOI have been demonstrated in some types of cancer, their effects in colon cancer and the mechanisms underlying these effects remain largely unknown. For this study, MG and GLOI levels were manipulated in colon cancer cells and the effects on their viability, proliferation, apoptosis, migration, and invasion in vitro were quantified by Cell Counting Kit-8, colony formation assay, flow cytometry, and transwell assays. The expression levels of STAT1 pathway–associated proteins and mRNAs in these cells were quantified by western blot and qRT-PCR, respectively. The antitumor effects of MG and silencing of GLOI were investigated in vivo in a SW620 colon cancer xenograft model in BALB/c nude mice. Our findings demonstrate that MG in combination with silencing of GLOI synergistically inhibited the cancer cells’ proliferation, colony formation, migration, and invasion and induced apoptosis in vitro compared with the controls. Furthermore, these treatments up-regulated STAT1 and Bax while down-regulating Bcl-2 in vitro. MG treatment alone or in combination with silencing of GLOI also reduced the growth of the SW620 tumors in mice by up-regulation of STAT1 and Bax and down-regulation of Bcl-2. Taken together, our findings suggest that MG in combination with silencing of GLOI merits further evaluation as a targeted therapeutic strategy for colon cancer.
Collapse
Affiliation(s)
- Yuan Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lei Fang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Gefei Li
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiali Zhang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Changxi Li
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Mengni Ma
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chen Guan
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Fumao Bai
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jianxin Lyu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qing H Meng
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
14
|
Xie N, Yao Y, Wan L, Zhu T, Liu L, Yuan J. Next-generation sequencing reveals lymph node metastasis associated genetic markers in colorectal cancer. Exp Ther Med 2017; 14:338-343. [PMID: 28672935 DOI: 10.3892/etm.2017.4464] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 01/20/2017] [Indexed: 01/01/2023] Open
Abstract
Colorectal cancer is the third most prevalent type of cancer in the United States. Early diagnosis of lymph node metastases is essential to improve the prognosis for patients with colorectal cancer. Therefore, the present study aimed to screen genetic markers, including single nucleotide polymorphisms (SNPs), copy number variations (CNVs) and mRNA expression, associated with lymph node metastases in patients with colorectal cancer to enable an early diagnosis. Targeted next-generation sequencing was applied to capture SNPs and CNVs in tumor-related candidate genes within tumor tissues from 39 colorectal cancer patients; reverse transcription-quantitative polymerase chain reaction was used to detect the specific mRNA level of tumor-related candidate genes, including vascular endothelial growth factor C, cyclin-A2, Interleukin-2, ATP-binding cassette sub-family G member 2, epidermal growth factor (EGF) and nuclear factor kappa B subunit 1 (NFKB1) on chromosome 4. The SNPs in solute carrier family 28 member 3 (SLC28A3), breast cancer 1 (BRCA1), ribonucleotide reductase regulators subunit M2 (RRM2), PMS1 homolog 2 (PMS2), cytidine deaminase (CDA), epoxide hydrolase 1 (EPHX1), heterogenous ribonucleoprotein particle-associated with lethal yellow (RALY), Siglec-3 (CD33), B cell lymphoma 10 (BCL10), ETS variant 1 (ETV1), macrophage stimulating 1 receptor 1 (MST1R), lysine methyltransferase 2B (KMT2B), B cell lymphoma 2 (BCL2), U6 small nuclear RNA-associated Sm-like protein 3 (LSM3), thyroid transcription factor 1 (TTF1) and mitogen-activated protein 3 kinase 1 (MAP3K1) were significantly associated with lymphatic metastasis (P<0.05). EGF and NFKB1 were both observed to be significantly downregulated in the lymph node metastases group (P<0.05). Although no association between CNVs and lymph node metastases in patients with colorectal cancer was observed in the present study, SNPs in SLC28A3, BRCA1, RRM2, PMS2, CDA, EPHX1, RALY, CD33, BCL10, ETV1, MST1R, KMT2B, BCL2, LSM3, TTF1 and MAP3K1 were significantly associated with colorectal cancer. Downregulation of EGF and NFKB1 was also identified to be associated with lymph node metastases in colorectal cancer. The findings of the current study provide a scientific basis for the clinical inspection of lymphatic metastasis and prognosis prediction, intervention and guidance therapy for patients with colorectal cancer.
Collapse
Affiliation(s)
- Ni Xie
- Science and Education Administration Department of Shenzhen Second People's Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Yujiang Yao
- Science and Education Administration Department of Shenzhen Second People's Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Lili Wan
- Science and Education Administration Department of Shenzhen Second People's Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Ting Zhu
- Science and Education Administration Department of Shenzhen Second People's Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Litao Liu
- Science and Education Administration Department of Shenzhen Second People's Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Jianhui Yuan
- Science and Education Administration Department of Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, P.R. China
| |
Collapse
|