1
|
Zhou L, Li Y, Ma J, Zhang Q, Tang S, Zou K, Zeng Q, Huang H, Jin H, Zhang Q, Feng J. Role and mechanism of Actein on condylar bone metabolism in APOE deletion-induced osteoporotic mice. Bone 2024; 190:117304. [PMID: 39448001 DOI: 10.1016/j.bone.2024.117304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/18/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
AIMS To investigate the effects of Actein from Cimicifugae Rhizoma on condylar bone and cartilage in APOE deletion-induced osteoporotic mice, and to preliminarily explore the underlying mechanism. METHODS Sixty 8-week-old female mice were used, which underwent APOE-/- and ovariectomy procedures, followed by oral administration of Actein (15 mg/kg) and Atorvastatin Calcium (AC, 3 mg/kg) for eight weeks. Body weight, uterine weight, and systemic indexes related to bone metabolism and lipid metabolism were assessed in each group. Changes in condylar bone histomorphometric parameters were evaluated using Micro-CT. Morphological changes in the condyle were observed with Hematoxylin-Eosin (H&E), Safranin O/Fast Green, and Alcian Blue Hematoxylin/Orange G (ABH/OG) staining, with OARSI pathology scoring performed. Sirius red staining and immunofluorescence were used to determine the expression levels of Collagen I (Col I) and Collagen III (Col III) in bone matrix, and Col II in cartilage matrix. Immunohistochemistry assessed the relative expression levels of ALP and proteins associated with the Wnt/β-catenin/RUNX2 signaling pathway. RESULTS APOE-/- exacerbates ovariectomy -induced osteoporosis (OP) in condylar of mice. Actein and AC significantly reversed OP, improved bone mineral density (BMD), increased bone microarchitecture, and restored abnormal calcium and phosphorus metabolism in the blood and urine. Morphologically, APOE-/- and ovariectomy reduced condylar cartilage thickness, disrupted chondrocyte arrangement, chondrocyte cleavage, and clustered aggregation, resembling osteoarthritis (OA)-like changes. Actein and AC partially restored the disrupted chondrocyte arrangement, smoothed chondrocyte cleavage, and up-regulated the levels of chondrocyte matrix (Col II, aggrecan) and bone matrix (Col III, ALP). Actein reversed the OA process, potentially through the Wnt/β-catenin/RUNX2 signaling pathway. CONCLUSION APOE-/- and ovariectomy induced OP, leading to OA-like lesions in condylar of mice. Actein promoted cartilage repair and trabecular bone recovery by increasing extracellular matrix synthesis (Col II, Col III, aggrecan), reversing the OA process, possibly through the Wnt/β-catenin/RUNX2 signaling pathway.
Collapse
Affiliation(s)
- Linyi Zhou
- School/Hospital of Stomatology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China.
| | - Yuqian Li
- School/Hospital of Stomatology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Jinjin Ma
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.
| | - Qi Zhang
- Central Laboratories, Qingdao Municipal Hospital, Qingdao, Shandong 266071, China
| | - Shuhui Tang
- School/Hospital of Stomatology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Kaiao Zou
- Institute of Orthopaedics and Traumatology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006, China
| | - Qinghe Zeng
- Institute of Orthopaedics and Traumatology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006, China
| | - Haipeng Huang
- Institute of Orthopaedics and Traumatology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006, China
| | - Hongting Jin
- Institute of Orthopaedics and Traumatology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006, China
| | - Qiaoyan Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China.
| | - Jianying Feng
- School/Hospital of Stomatology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China.
| |
Collapse
|
2
|
Zhang Q, Wei W, Jin X, Lu J, Chen S, Ogaji OD, Wang S, Du K, Chang Y, Li J. Traditional uses, phytochemistry, pharmacology, quality control and clinical studies of Cimicifugae Rhizoma: a comprehensive review. Chin Med 2024; 19:66. [PMID: 38715120 PMCID: PMC11075223 DOI: 10.1186/s13020-024-00937-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
Cimicifugae Rhizoma, generally known as "Sheng Ma" in China, has great medicinal and dietary values. Cimicifugae Rhizoma is the dried rhizome of Cimicifuga foetida L., Cimicifuga dahurica (Turcz.) Maxim. and Cimicifuga heracleifolia Kom., which has been used to treat wind-heat headache, tooth pain, aphtha, sore throat, prolapse of anus and uterine prolapse in traditional Chinese medicine. This review systematically presents the traditional uses, phytochemistry, pharmacology, clinical studies, quality control and toxicity of Cimicifugae Rhizoma in order to propose scientific evidence for its rational utilization and product development. Herein, 348 compounds isolated or identified from the herb are summarized in this review, mainly including triterpenoid saponins, phenylpropanoids, chromones, alkaloids, terpenoids and flavonoids. The crude extracts and its constituents had various pharmacological properties such as anti-inflammatory, antitumor, antiviral, antioxidant, neuroprotective, anti-osteoporosis and relieving menopausal symptoms. The recent research progress of Cimicifugae Rhizoma in ethnopharmacology, phytochemistry and pharmacological effects demonstrates the effectiveness of its utilization and supplies valuable guidance for further research. This review will provide a basis for the future development and utilization of Cimicifugae Rhizoma.
Collapse
Affiliation(s)
- Qianqian Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wei Wei
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Xingyue Jin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jin Lu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shujing Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Omachi Daniel Ogaji
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shaoxia Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kunze Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
3
|
Drewe J, Boonen G, Culmsee C. Treat more than heat-New therapeutic implications of Cimicifuga racemosa through AMPK-dependent metabolic effects. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154060. [PMID: 35338990 DOI: 10.1016/j.phymed.2022.154060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 02/18/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Cimicifuga racemosa extracts (CRE) have obtained a "well-established use status" in the treatment of postmenopausal (i.e., climacteric) complaints, which predominantly include vasomotor symptoms such as hot flushes and sweating, as well as nervousness, irritability, and metabolic changes. Although characteristic postmenopausal complaints are known for a very long time and the beneficial effects of CRE on climacteric symptoms are well accepted, both the pathophysiology of postmenopausal symptoms and the mechanism of action of CREs are not yet fully understood. In particular, current hypotheses suggest that changes in the α-adrenergic and serotonergic signaling pathways secondary to estrogen depletion are responsible for the development of hot flushes. PURPOSE Some of the symptoms associated with menopause cannot be explained by these hypotheses. Therefore, we attempted to extend our classic understanding of menopause by integrating of partly age-related metabolic impairments. METHODS A comprehensive literature survey was performed using the PubMed database for articles published through September 2021. The following search terms were used: (cimicifuga OR AMPK) AND (hot flush* OR hot flash* OR menopaus* OR osteoporos* OR cancer OR antioxida* OR cardiovasc*). No limits were set with respect to language, and the references cited in the articles retrieved were used to identify additional publications. RESULTS We found that menopause is a manifestation of the general aging process, with specific metabolic changes that aggravate menopausal symptoms, which are accelerated by estrogen depletion and associated neurotransmitter dysregulation. Cimicifuga extracts with their metabolic effects mitigate climacteric symptoms but may also modulate the aging process itself. Central to these effects are effects of CRE on the metabolic key regulator, the AMP-activated protein kinase (AMPK). CONCLUSIONS As an extension of this effect dimension, other off-label indications may appear attractive in the sense of repurposing of this herbal treatment.
Collapse
Affiliation(s)
- Jürgen Drewe
- Medical Department, Max Zeller Soehne AG, CH-8590 Romanshorn, Switzerland.
| | - Georg Boonen
- Medical Department, Max Zeller Soehne AG, CH-8590 Romanshorn, Switzerland
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, D-35043 Marburg, Germany; Center for Mind, Brain and Behavior, D-35032 Marburg, Germany
| |
Collapse
|
4
|
Yan L, Wang D, Liu X, Gu C, Gao S. Actein antagonizes colorectal cancer through blocking PI3K/Akt pathways by downregulating IMPDH2. Anticancer Drugs 2021; 32:864-874. [PMID: 33929996 DOI: 10.1097/cad.0000000000001080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Actein, a triterpene glycoside, isolated from rhizomes of Cimicifuga foetida, was reported to exhibit anticancer effects in vitro and in vivo. However, the effects of actein on colorectal cancer (CRC) remains unclear. As one of the most popular cancers all over the world, CRC ranked third place in both men and women. Recently, we investigated the potential anti-CRC effects of actein and its mechanisms. The Cell counting kit-8 cell proliferation assays, cell cycle detection, apoptosis detection, reactive oxygen species and mitochondrial membrane potential evaluation, western blot, as well as SW480 xenograft mice model were conducted to illustrate the mechanisms of action on anti-CRC effects of actein. Actein could significantly inhibit the human CRC cell lines SW480 and HT-29 proliferation, whereas less antiproliferation effects were found in normal colorectal cell lines HCoEpiC and FHC. Administration of actein resulted in G1 phase cell cycle arrest in both SW480 and HT-29 cells. Moreover, mitochondria-mediated apoptosis was also observed after treatment with actein in SW480 and HT-29 cell lines. Further investigation of mechanisms of action on actein-mediated anti-CRC proliferation effects indicated that the phosphoinositide 3-kinases (PI3K)/Akt pathways were involved. Actein significantly downregulated the phosphorylation of key molecules in PI3K/Akt pathways, including mTOR, glycogen synthesis kinase 3β (GSK-3β), as well as FOXO1. In addition, inosine 5'-monophosphate dehydrogenase type II (IMPDH2) was also observed decreasing in both SW480 and HT-29 cell lines after actein treatment, suggesting that actein may inhibit the PI3K/Akt pathways by decreasing IMPDH2. Finally, our SW480 xenograft model verified the anti-CRC effects and the safety of actein in vivo. Our findings suggest actein is worthy of further investigation as a novel drug candidate for the treatment of CRC.
Collapse
Affiliation(s)
- Liwei Yan
- Anorectal Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine
| | - Dandan Wang
- College of Health, Shandong University of Traditional Chinese Medicine
| | - Xiaoming Liu
- Preventive Medicine Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Chao Gu
- Anorectal Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine
| | - Shanyu Gao
- Anorectal Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine
| |
Collapse
|
5
|
Zhao C, Zhang Z, Dai X, Wang J, Liu H, Ma H. Actein Antagonizes Oral Squamous Cell Carcinoma Proliferation through Activating FoxO1. Pharmacology 2021; 106:551-563. [PMID: 34175854 DOI: 10.1159/000515601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/01/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is among the most prevalent head and neck malignancies globally, and it is associated with high mortality rates. Actein is one of the primary active components extractable from the rhizomes of Cimicifuga foetida. This study aimed to evaluate the anti-OSCC effects of actein and evaluate the potential underlying mechanisms. METHODS AND RESULTS CCK-8 cell proliferation experiments demonstrated significant dose- and time-dependent anti-OSCC effects of actein, while actein had weak cytotoxic effects on normal oral cell lines. Flow cytometry for cell cycle evaluation revealed that actein could induce cell cycle arrest at the G1 phase among OSCC cell lines. In our Annexin V/PI double staining apoptosis analysis, actein induced significant apoptosis among OSCC cells, with upregulation of Bax and downregulation of Bcl-2. Our mechanistic study implicated the involvement of the Akt/FoxO1 pathway in the anti-OSCC effects of actein. Akt1 and Akt2 expression significantly decreased in association with the FoxO1 upregulation. Furthermore, Bim and p21 were significantly upregulated, while survivin expression was downregulated. Finally, actein treatment was associated with significant p-Akt downregulation and p-FoxO1 upregulation in OSCC cells, demonstrating the validated roles of Akt/FoxO1 in actein-mediated OSCC cell apoptosis and cell cycle arrest. FoxO1 knockdown significantly reversed the anti-OSCC effects of actein. Additionally, a xenograft model indicated that actein could inhibit OSCC cell growth in vivo. CONCLUSIONS Our findings demonstrated that actein could be a strong anti-OSCC candidate. Further evaluations of its safety and effectiveness are necessary before it can be considered for clinical use.
Collapse
Affiliation(s)
- Chenguang Zhao
- Department of Emergency and General Dentistry, Tianjin Stomatology Hospital, NanKai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| | - Zhiling Zhang
- Department of Oral and Maxillofacial Radiology, Tianjin Stomatology Hospital, NanKai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| | - Xiaohua Dai
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, China
| | - Jinhui Wang
- Department of Emergency and General Dentistry, Tianjin Stomatology Hospital, NanKai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| | - Hao Liu
- Department of Emergency and General Dentistry, Tianjin Stomatology Hospital, NanKai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| | - Hongwei Ma
- Department of Emergency and General Dentistry, Tianjin Stomatology Hospital, NanKai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| |
Collapse
|
6
|
Wu XX, Yue GGL, Dong JR, Lam CWK, Wong CK, Qiu MH, Lau CBS. Actein Inhibits Tumor Growth and Metastasis in HER2-Positive Breast Tumor Bearing Mice via Suppressing AKT/mTOR and Ras/Raf/MAPK Signaling Pathways. Front Oncol 2020; 10:854. [PMID: 32547952 PMCID: PMC7269144 DOI: 10.3389/fonc.2020.00854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/29/2020] [Indexed: 12/20/2022] Open
Abstract
HER2-positive breast cancer accounts for 15–20% in breast cancer and 50% of the metastatic HER2-positive breast cancer patients died of central nervous system progression. The present study investigated the effects of actein (a natural cycloartane triterpene) on cells adhesion, migration, proliferation and matrix degradation, and its underlying mechanism in HER2-positive breast cancer cells. The in vivo effect of actein on tumor growth and metastasis in MDA-MB-361 tumor-bearing mice as well as the anti-brain metastasis in tail vein injection mice model were also investigated. Our results showed that actein inhibited HER2-positive breast cancer cells viability, proliferation and migration. Actein also induced MDA-MB-361 cells G1 phase arrest and inhibited the expressions of cyclins and cyclin-dependent kinases. For intracellular mechanisms, actein inhibited the expressions of molecules in AKT/mTOR and Ras/Raf/MAPK signaling pathways. Furthermore, actein (15 mg/kg) was shown to exhibit anti-tumor and anti-metastatic activities in MDA-MB-361 breast tumor-bearing mice, and reduced brain metastasis in tail vein injection mice model. All these findings strongly suggested that actein is a potential anti-metastatic agent for HER2-positive breast cancer.
Collapse
Affiliation(s)
- Xiao-Xiao Wu
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Grace Gar-Lee Yue
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Jin-Run Dong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Christopher Wai-Kei Lam
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Chun-Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China.,Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Clara Bik-San Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China.,Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
7
|
Lu J, Peng XR, Li DS, Shi QQ, Qiu MH. Cytotoxic Cycloartane Triterpenoid Saponins from the Rhizomes of Cimicifuga foetida. NATURAL PRODUCTS AND BIOPROSPECTING 2019; 9:303-310. [PMID: 31214880 PMCID: PMC6646490 DOI: 10.1007/s13659-019-0214-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 06/05/2019] [Indexed: 05/16/2023]
Abstract
To enrich the bioactive cycloartane triterpenoid glycoside named actein and find out more cytotoxic cycloartane triterpenes, a phytochemical study of Cimicifuga foetida was conducted. 113 g (0.17%) actein was purified by recrystallization while eight cycloartane-type triterpenes (1-8) were isolated from the mother liquid. The chemical structures of new compounds (1-4) were elucidated by 1D and 2D NMR and HRESIMS spectroscopic analyses. Moreover, new compounds showed moderate and broad-spectrum cytotoxicity against 5 human cancer cell lines with IC50 values ranging from 4.02 to 15.80 μM.
Collapse
Affiliation(s)
- Jing Lu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, 650204, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xing-Rong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, 650204, People's Republic of China
| | - Da-Shan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, 650204, People's Republic of China
| | - Qiang-Qiang Shi
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, 650204, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, 650204, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132 LanHei Road, Kunming, 650201, Yunnan, People's Republic of China.
| |
Collapse
|
8
|
A transcriptomic analysis of black cohosh: Actein alters cholesterol biosynthesis pathways and synergizes with simvastatin. Food Chem Toxicol 2018; 120:356-366. [PMID: 29969672 DOI: 10.1016/j.fct.2018.06.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/08/2018] [Accepted: 06/30/2018] [Indexed: 12/31/2022]
Abstract
Previous studies indicate that the herb black cohosh (Actaea racemosa L.) and the triterpene glycoside actein inhibit the growth of human breast cancer cells and activate stress-associated responses. This study assessed the transcriptomic effects of black cohosh and actein on rat liver tissue, using Ingenuity and ToxFX analyses. Sprague-Dawley rats were treated with an extract of black cohosh enriched in triterpene glycosides (27%) for 24 h or actein for 6 and 24 h, at 35.7 mg/kg, and liver tissue collected for gene expression analysis. Ingenuity analysis indicates the top canonical pathways are, for black cohosh, RAR Activation, and, for actein, Superpathway of Cholesterol Biosynthesis, at 24 h. Actein alters the expression of cholesterol biosynthetic genes, but does not inhibit HMG-CoA reductase activity. Black cohosh and actein inhibited the growth of human breast and colon cancer cells and synergized with the statin simvastatin. Combinations of black cohosh with certain classes of statins could enhance their activity, as well as toxic, such as inflammatory liver, side effects. Transcriptomic analysis indicates black cohosh and actein warrant further study to prevent and treat cancer and lipid disorders. This study lays the basis for an approach to characterize the mode of action and toxicity of herbal medicines.
Collapse
|
9
|
Ji L, Zhong B, Jiang X, Mao F, Liu G, Song B, Wang CY, Jiao Y, Wang JP, Xu ZB, Li X, Zhan B. Actein induces autophagy and apoptosis in human bladder cancer by potentiating ROS/JNK and inhibiting AKT pathways. Oncotarget 2017; 8:112498-112515. [PMID: 29348843 PMCID: PMC5762528 DOI: 10.18632/oncotarget.22274] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/20/2017] [Indexed: 02/06/2023] Open
Abstract
Human bladder cancer is a common genitourinary malignant cancer worldwide. However, new therapeutic strategies are required to overcome its stagnated survival rate. Triterpene glycoside Actein (ACT), extracted from the herb black cohosh, suppresses the growth of human breast cancer cells. Our study attempted to explore the role of ACT in human bladder cancer cell growth and to reveal the underlying molecular mechanisms. We found that ACT significantly impeded the bladder cancer cell proliferation via induction of G2/M cycle arrest. Additionally, ACT administration triggered autophagy and apoptosis in bladder cancer cells, proved by the autophagosome formation, LC3B-II accumulation, improved cleavage of Caspases/poly (ADP-ribose) polymerase (PARP). Furthermore, reduction of reactive oxygen species (ROS) and p-c-Jun N-terminal kinase (JNK) could markedly reverse ACT-induced autophagy and apoptosis. In contrast, AKT and mammalian target of rapamycin (mTOR) were greatly de-phosphorylated by ACT, while suppressing AKT and mTOR activity could enhance the effects of ACT on apoptosis and autophagy induction. In vivo, ACT reduced the tumor growth with little toxicity. Taken together, our findings indicated that ACT suppressed cell proliferation, induced autophagy and apoptosis through promoting ROS/JNK activation, and blunting AKT pathway in human bladder cancer, which indicated that ACT might be an effective candidate against human bladder cancer in future.
Collapse
Affiliation(s)
- Lu Ji
- Department of Urology, Huai’an First People's Hospital, Nanjing Medical University, Huai’an 223300, China
| | - Bing Zhong
- Department of Urology, Huai’an First People's Hospital, Nanjing Medical University, Huai’an 223300, China
| | - Xi Jiang
- Department of Urology, Huai’an First People's Hospital, Nanjing Medical University, Huai’an 223300, China
| | - Fei Mao
- Department of Urology, Huai’an First People's Hospital, Nanjing Medical University, Huai’an 223300, China
| | - Gang Liu
- Department of Orthopaedics, Huai’an First People's Hospital, Nanjing Medical University, Huai’an 223300, China
| | - Bin Song
- Branch of Raw Material and Natural Products, Far East Biological Products Co. LTD., Nanjing 210009, China
| | - Cheng-Yuan Wang
- Branch of Raw Material and Natural Products, Far East Biological Products Co. LTD., Nanjing 210009, China
| | - Yong Jiao
- Branch of Raw Material and Natural Products, Far East Biological Products Co. LTD., Nanjing 210009, China
| | - Jiang-Ping Wang
- Branch of Raw Material and Natural Products, Far East Biological Products Co. LTD., Nanjing 210009, China
| | - Zhi-Bin Xu
- Branch of Raw Material and Natural Products, Far East Biological Products Co. LTD., Nanjing 210009, China
| | - Xing Li
- Branch of Raw Material and Natural Products, Far East Biological Products Co. LTD., Nanjing 210009, China
| | - Bo Zhan
- Branch of Raw Material and Natural Products, Far East Biological Products Co. LTD., Nanjing 210009, China
| |
Collapse
|