1
|
Cheng J, Tang YC, Dong Y, Qin RL, Dong ZQ. Doublecortin-like kinase 3 (DCLK3) is associated with bad clinical outcome of patients with gastric cancer and regulates the ferroptosis and mitochondria function in vitro and in vivo. Ir J Med Sci 2024; 193:35-43. [PMID: 37340227 DOI: 10.1007/s11845-023-03430-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/09/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND Doublecortin-like kinase 3 (DCLK3), a member of tubulin superfamily, has been proved to be closely associated with the pathogenesis of numerous human tumors. However, the expression pattern and regulatory mechanisms of DCLK3 in gastric cancer (GC) remain unknown. MATERIALS AND METHODS DCLK3 expression in GC cells was assessed by RT-qPCR and western blotting. The correlation between DCLK3 levels and the overall survival of GC patients was assessed via TCGA, ACLBI, and Kaplan-Meier plotter databases. Additionally, key proteins (TCF4) involved in the regulation of DCLK3 on GC progression were screened by ACLBI database. Cell proliferation, ferroptotic cell death, and oxidative stress markers were measured by EdU staining, immunofluorescence, ELISA, and western blotting assays. RESULTS DCLK3 was upregulated in GC, and high DCLK3 expression was significantly associated with poor survival of GC patients. Here, DCLK3 knockdown reduced GC cell proliferation, induced ferroptotic cell death, and exacerbated oxidative stress level. Logistic regression analysis showed that TCF4 was an independent prognostic indicator of GC. Mechanistically, DCLK3 promoted TCF4 expression and subsequently upregulated the expression of TCF4 downstream target genes (c-Myc and Cyclin D1). Furthermore, DCLK3 overexpression enhanced GC cell proliferation, but mitigating ferroptotic cell death and oxidative stress. The regulatory mechanism may involve the upregulation of TCF4, c-Myc, and cyclin D1. CONCLUSIONS Our research suggests that DCLK3 modulates the levels of iron and reactive oxygen and may involve regulation of TCF4 pathway, thereby promoting the GC cell growth, indicating that DCLK3 may use as a prognostic marker and therapeutic target for GC patients.
Collapse
Affiliation(s)
- Jie Cheng
- Department of Pharmacy, The First Affiliated Hospital of Baotou Medical College of Inner Mongolia Scientific and Technological University, No. 41 Linyin Road, Kundulun District, Baotou, 014010, Inner Mongolia, China
| | - Yu C Tang
- Department of Pharmacy, The First Affiliated Hospital of Baotou Medical College of Inner Mongolia Scientific and Technological University, No. 41 Linyin Road, Kundulun District, Baotou, 014010, Inner Mongolia, China
| | - Yuan Dong
- Department of Pharmacy, The First Affiliated Hospital of Baotou Medical College of Inner Mongolia Scientific and Technological University, No. 41 Linyin Road, Kundulun District, Baotou, 014010, Inner Mongolia, China
| | - Rui L Qin
- Department of Cardiac Function, The First Affiliated Hospital of Baotou Medical College of Inner Mongolia Scientific and Technological University, Baotou, Inner Mongolia, China
| | - Zhi Q Dong
- Department of Pharmacy, The First Affiliated Hospital of Baotou Medical College of Inner Mongolia Scientific and Technological University, No. 41 Linyin Road, Kundulun District, Baotou, 014010, Inner Mongolia, China.
| |
Collapse
|
2
|
Zhang S, Chen M, Guo X, Wang J, Tang X, Luo Q, Chen X, Zhong J, Huang J, Chen Y, Lin X, Zhao C, Zheng D, Su S, Xu C, Liu C, Lin C, Yuan Q. Monocyte-derived exosomal XIST exacerbates acute lung injury by regulating the miR-448-5p/HMGB2 axis. Int Immunopharmacol 2023; 122:110415. [PMID: 37402340 DOI: 10.1016/j.intimp.2023.110415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/17/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023]
Abstract
Monocyte-derived exosomes (Exos) have been implicated in inflammation-related autoimmune/inflammatory diseases via transferring bioactive cargoes to recipient cells. The purpose of this study was to investigate the possible effect of monocyte-derived Exos on the initiation and the development of acute lung injury (ALI) by delivering long non-coding RNA XIST. Key factors and regulatory mechanisms in ALI were predicted by bioinformatics methods. BALB/c mice were treated with lipopolysaccharide (LPS) to establish an ALI in vivo model and then injected with Exos isolated from monocytes transduced with sh-XIST to evaluate the effect of monocyte-derived exosomal XIST on ALI. HBE1 cells were co-cultured with Exos isolated from monocytes transduced with sh-XIST for further exploration of its effect. Luciferase reporter, RIP and RNA pull-down assays were performed to verify the interaction between miR-448-5p and XIST, miR-448-5p and HMGB2. miR-448-5p was significantly poorly expressed while XIST and HMGB2 were highly expressed in the LPS-induced mouse model of ALI. Monocyte-derived Exos transferred XIST into HBE1 cells where XIST competitively inhibited miR-448-5p and reduced the binding of miR-448-5p to HMGB2, thus upregulating the expression of HMGB2. Furthermore, in vivo data revealed that XIST delivered by monocyte-derived Exos downregulated miR-448-5p expression and up-regulated HMGB2 expression, ultimately contributing to ALI in mice. Overall, our results indicate that XIST delivered by monocyte-derived Exos aggravates ALI via regulating the miR-448-5p/HMGB2 signaling axis.
Collapse
Affiliation(s)
- Shuyao Zhang
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, PR China; Department of Pharmacology, Shantou University Medical College, Shantou 515041, PR China
| | - Meini Chen
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, PR China
| | - Xinmin Guo
- China Department of Ultrasound, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, PR China
| | - Jing Wang
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, PR China
| | - Xu Tang
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, PR China
| | - Qianhua Luo
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, PR China
| | - Xiaoshan Chen
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, PR China
| | - Jialin Zhong
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, PR China
| | - Jianxiang Huang
- College of Pharmacy, Jinan University, Guangzhou 510220, PR China
| | - Yun Chen
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, PR China
| | - Xinyue Lin
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, PR China
| | - Chengkuan Zhao
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, PR China
| | - Danling Zheng
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, PR China
| | - Siman Su
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, PR China
| | - Chengcheng Xu
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, PR China
| | - Chong Liu
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, PR China
| | - Chaoxian Lin
- Department of Pharmacy, Shantou Chaonan Minsheng Hospital, Shantou 515041, PR China
| | - Quanming Yuan
- The Second Clinical College, Dalian Medical University, Dalian 116000, PR China.
| |
Collapse
|
3
|
Gao X, Yang X, He F, Liu X, Liu D, Yuan X. Downregulation of microRNA‑494 inhibits cell proliferation in lung squamous cell carcinoma via the induction of PUMA‑α‑mediated apoptosis. Exp Ther Med 2023; 25:242. [PMID: 37153893 PMCID: PMC10160919 DOI: 10.3892/etm.2023.11941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 01/16/2023] [Indexed: 05/10/2023] Open
Abstract
Increased evidence has shown that abnormal microRNA (miRNA) plays pivotal roles in numerous types of cancer. However, their expression, function and mechanism in lung squamous cell carcinoma (LSCC) remains to be fully elucidated. The aim of the present study was to investigate the suppressive role of miR-494 in LSCC progression and elucidate its regulatory mechanism. By analyzing expression profiles of miRNAs in LSCC tissues using miRNA microarray, it was revealed that miR-494 was significantly upregulated in 22 pairs of LSCC tissues. Subsequently, reverse transcription-quantitative PCR was performed to determine the expression of miR-494 and p53-upregulated-modulator-of-apoptosis-α (PUMA-α). Western blot analysis was conducted to examine protein levels. Dual-luciferase reporter assay was used to confirm the binding between miR-494 and PUMA-α. Annexin V-fluoresceine isothiocyanate/propidium iodide staining and CCK-8 assays were employed to determine cell apoptosis and cell viability, respectively. It was also revealed that miR-494 was highly expressed in LSCC cell lines compared with that in 16HBE cells. Further experiments confirmed that knockdown of miR-494 reduced cell viability and induced LSCC apoptosis. Bioinformatics analysis predicted that miR-494 could potentially target PUMA-α; also known as Bcl-2-binding component 3, a pro-apoptotic factor, and an inverse correlation between the expression of miR-494 and PUMA-α mRNA levels in LSCC tissues was found. Furthermore, PUMA-α inhibition could reverse the promoting effect of miR-494 knockdown on apoptosis in LSCC cells. Taken together, these findings demonstrated that miR-494 functions as an oncogene by targeting PUMA-α in LSCC, and miR-494 may serve as a novel therapeutic target for treating LSCC.
Collapse
Affiliation(s)
- Xinyuan Gao
- Department of Respiratory and Critical Care, The First Affiliated Hospital of Xinxiang Medical College, Xinxiang, Henan 453100, P.R. China
| | - Xiaohua Yang
- Department of Respiratory and Critical Care, The First Affiliated Hospital of Xinxiang Medical College, Xinxiang, Henan 453100, P.R. China
| | - Fengzhen He
- Department of Respiratory and Critical Care, The First Affiliated Hospital of Xinxiang Medical College, Xinxiang, Henan 453100, P.R. China
| | - Xue Liu
- Department of Respiratory and Critical Care, The First Affiliated Hospital of Xinxiang Medical College, Xinxiang, Henan 453100, P.R. China
| | - Ding Liu
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Xiaomei Yuan
- Department of Respiratory and Critical Care, The First Affiliated Hospital of Xinxiang Medical College, Xinxiang, Henan 453100, P.R. China
- Correspondence to: Professor Xiaomei Yuan, Department of Respiratory and Critical Care, The First Affiliated Hospital of Xinxiang Medical College, 88 Jiankang Road, Weihui, Xinxiang, Henan 453100, P.R. China
| |
Collapse
|
4
|
Shan X, Zhang C, Li C, Fan X, Song G, Zhu J, Cao R, Zhang X, Zhu W. miR-338-3p acts as a tumor suppressor in lung squamous cell carcinoma by targeting FGFR2/FRS2. CANCER PATHOGENESIS AND THERAPY 2023; 1:87-97. [PMID: 38328402 PMCID: PMC10846316 DOI: 10.1016/j.cpt.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/02/2022] [Accepted: 12/23/2022] [Indexed: 02/09/2024]
Abstract
Background Lung cancer refers to the occurrence of malignant tumors in the lung, and squamous cell carcinoma is one of the most common pathological types of non-small cell lung cancer. Studies have shown that microRNAs (miRNAs) play an important role in the occurrence, development, early diagnosis, and treatment of lung cancer. This study aimed to explore the role and possible mechanism of MicroRNA-338-3p (miR-338-3p) in lung squamous cell carcinoma (LUSC). Method In this study, we compared 238 LUSC patients with relatively high miR-338-3p expression levels with 238 miR-338-3p expression levels in The Cancer Genome Atlas (TCGA)-LUSC dataset using first-line gene set enrichment analysis (GSEA). Second, the mRNA expression of miR-338-3p, FGFR2, and fibroblast growth factor receptor substrate 2 (FRS2) in 30 lung cancers and adjacent lung tissues was detected using quantitative real-time polymerase chain reaction (qRT-PCR). Finally, in vitro experiments were conducted, whereby the expression levels of miR-338-3p in lung cancer cells (H1703, SKMES1, H2170, H520) and normal lung epithelial cells (16HBE) were detected using qRT-PCR. miR-338-3p was overexpressed in lung cancer cells (H1703), and the cell proliferation (cell counting kit-8 [CCK8] assay), colony formation, cell apoptosis, cell cycle (BD-FACSVerse assay, Becton Dickinson, Bedford, MA, USA), cell invasion, and migration (Transwell assay, Thermo Fischer Corporation, Waltham, MA, USA) were detected. Results We found that the expression of miR-338-3p was significantly reduced in LUSC tissues (p < 0.001) and cancer cell lines (P < 0.01), and miR-338-3p was significantly negatively correlated with the expression of FGFR2 (P < 0.001) and FRS2 (P < 0.01). Furthermore, overexpression of miR-338-3p inhibited proliferation (P < 0.001), migration, and invasion (P < 0.001) of LUSC cell lines and increased apoptosis in the G1 phase (P < 0.001) and cell cycle arrest (P < 0.05). Conclusions Our study demonstrates that miR-338-3p inhibits tumor cell proliferation and migration by targeting FGFR2 and FRS2 in LUSC. We believe that miR-338-3p may be a promising target for the treatment of LUSC.
Collapse
Affiliation(s)
- Xia Shan
- Department of Respiration, Jiangsu Province Hospital, And Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu 210000, China
| | - Cheng Zhang
- Women & Children Central Laboratory, Jiangsu Province Hospital, And Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu 210036, China
| | - Chunyu Li
- Women & Children Intensive Care Unit, Jiangsu Province Hospital, And Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu 210036, China
| | - Xingchen Fan
- Department of Oncology, Jiangsu Province Hospital, And Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu 210029, China
| | - Guoxin Song
- Department of Pathology, Jiangsu Province Hospital, And Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu 210029, China
| | - Jingfeng Zhu
- Department of Nephrology, Jiangsu Province Hospital, And Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu 210029, China
| | - Risheng Cao
- Department of Science and Technology, Jiangsu Province Hospital, And Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu 210029, China
| | - Xiuwei Zhang
- Department of Respiration, Jiangsu Province Hospital, And Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu 210000, China
| | - Wei Zhu
- Department of Oncology, Jiangsu Province Hospital, And Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu 210029, China
| |
Collapse
|
5
|
Cadena-Suárez AR, Hernández-Hernández HA, Alvarado-Vásquez N, Rangel-Escareño C, Sommer B, Negrete-García MC. Role of MicroRNAs in Signaling Pathways Associated with the Pathogenesis of Idiopathic Pulmonary Fibrosis: A Focus on Epithelial-Mesenchymal Transition. Int J Mol Sci 2022; 23:ijms23126613. [PMID: 35743055 PMCID: PMC9224458 DOI: 10.3390/ijms23126613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive disease with high mortality and unclear etiology. Previous evidence supports that the origin of this disease is associated with epigenetic alterations, age, and environmental factors. IPF initiates with chronic epithelial lung injuries, followed by basal membrane destruction, which promotes the activation of myofibroblasts and excessive synthesis of extracellular matrix (ECM) proteins, as well as epithelial-mesenchymal transition (EMT). Due to miRNAs’ role as regulators of apoptosis, proliferation, differentiation, and cell-cell interaction processes, some studies have involved miRNAs in the biogenesis and progression of IPF. In this context, the analysis and discussion of the probable association of miRNAs with the signaling pathways involved in the development of IPF would improve our knowledge of the associated molecular mechanisms, thereby facilitating its evaluation as a therapeutic target for this severe lung disease. In this work, the most recent publications evaluating the role of miRNAs as regulators or activators of signal pathways associated with the pathogenesis of IPF were analyzed. The search in Pubmed was made using the following terms: “miRNAs and idiopathic pulmonary fibrosis (IPF)”; “miRNAs and IPF and signaling pathways (SP)”; and “miRNAs and IPF and SP and IPF pathogenesis”. Additionally, we focus mainly on those works where the signaling pathways involved with EMT, fibroblast differentiation, and synthesis of ECM components were assessed. Finally, the importance and significance of miRNAs as potential therapeutic or diagnostic tools for the treatment of IPF are discussed.
Collapse
Affiliation(s)
- Ana Ruth Cadena-Suárez
- Laboratorio de Biología Molecular, Instituto Nacional de Enfermedades Respiratorias (INER) “Ismael Cosío Villegas”, Calz. Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico; (A.R.C.-S.); (H.A.H.-H.)
| | - Hilda Arely Hernández-Hernández
- Laboratorio de Biología Molecular, Instituto Nacional de Enfermedades Respiratorias (INER) “Ismael Cosío Villegas”, Calz. Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico; (A.R.C.-S.); (H.A.H.-H.)
| | - Noé Alvarado-Vásquez
- Departamento de Bioquímica, Instituto Nacional de Enfermedades Respiratorias (INER) “Ismael Cosío Villegas”, Calz. Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico;
| | - Claudia Rangel-Escareño
- Departamento de Genomica Computacional, Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Col. Arenal Tepepan, Mexico City 14610, Mexico;
- Escuela de Ingenieria y Ciencias, Tecnológico de Monterrey, Epigmenio González 500, San Pablo 76130, Mexico
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias (INER) “Ismael Cosío Villegas”, Calz. Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico;
| | - María Cristina Negrete-García
- Laboratorio de Biología Molecular, Instituto Nacional de Enfermedades Respiratorias (INER) “Ismael Cosío Villegas”, Calz. Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico; (A.R.C.-S.); (H.A.H.-H.)
- Correspondence:
| |
Collapse
|
6
|
Peng BH, Ji YF, Qiu XJ. LncRNA PITPNA-AS1/miR-223-3p/PTN axis regulates malignant progression and stemness in lung squamous cell carcinoma. J Clin Lab Anal 2022; 36:e24506. [PMID: 35588441 PMCID: PMC9280013 DOI: 10.1002/jcla.24506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/22/2022] [Accepted: 05/07/2022] [Indexed: 12/27/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) are a kind of molecule that cannot code proteins, and their expression is dysregulated in diversified cancers. LncRNA PITPNA‐AS1 has been shown to act as a tumor promoter in a variety of malignancies, but its function and regulatory mechanisms in lung squamous cell carcinoma (LUSC) are yet unknown. Methods The mRNA and protein expression of genes were examined by RT‐qPCR, western blot, and IHC assay. The cell proliferation, migration, invasion, and stemness were detected through CCK‐8, colony formation, Transwell and spheroid formation assays. The CD44+ and CD166+‐positive cells were detected through flow cytometry. The binding ability among genes through luciferase reporter and RNA pull‐down assays. The tumor growth was detected through in vivo nude mice assay. Results The lncRNA PITPNA‐AS1 had increased expression in LUSC and was linked to a poor prognosis. In LUSC, PITPNA‐AS1 also enhanced cell proliferation, migration, invasion, and stemness. This mechanistic investigation showed that PITPNA‐AS1 absorbed miR‐223‐3p and that miR‐223‐3p targeted PTN. MiR‐223‐3p inhibition or PTN overexpression might reverse the inhibitory effects of PITPNA‐AS1 suppression on LUSC progression, as demonstrated by rescue experiments. In addition, the PITPNA‐AS1/miR‐223‐3p/PTN axis accelerated tumor development in vivo. Conclusions It is the first time we investigated the potential role and ceRNA regulatory mechanism of PITPNA‐AS1 in LUSC. The data disclosed that PITPNA‐AS1 upregulated PTN through sponging miR‐223‐3p to enhance the onset and progression of LUSC. These findings suggested the ceRNA axis may serve as a promising therapeutic biomarker for LUSC patients.
Collapse
Affiliation(s)
- Bi-Hao Peng
- The Second Clinical Medical School, Nanchang University, Nanchang, China
| | - Yu-Fei Ji
- The Second Clinical Medical School, Nanchang University, Nanchang, China
| | - Xiao-Jian Qiu
- Department of Respiratory and Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Lai T, Qiu H, Si L, Zhen Y, Chu D, Guo R. Long noncoding RNA BMPR1B-AS1 facilitates endometrial cancer cell proliferation and metastasis by sponging miR-7-2-3p to modulate the DCLK1/Akt/NF-κB pathway. Cell Cycle 2022; 21:1599-1618. [PMID: 35404759 PMCID: PMC9291686 DOI: 10.1080/15384101.2022.2060003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Endometrial carcinoma (EC) originates from the endometrium and is one of the most common tumors in female patients, and its incidence has continued to increase in recent decades. LncRNAs are involved in the pathogenesis and metastasis of a variety of malignant tumors, which indicates that lncRNAs can be used as tumor diagnostic markers and potential therapeutic targets. In this study, we analyzed the RNA transcripts of EC cells from The Cancer Genome Atlas (TCGA) and first reported a novel lncRNA, BMPR1B-AS1, that was more highly expressed in endometrial cancer tissues than in adjacent tissues, and BMPR1B-AS1 could promote endometrial cancer cell proliferation and metastasis. Bioinformatics prediction and experimental results both suggested that BMPR1B-AS1 could modulate the malignant behaviors of endometrial cancer cell lines by sponging miR-7-2-3p to modulate DCLK1, and a DCLK1 inhibitor blocked the activation of the PI3K/Akt/NF-κB signaling pathway. Collectively, this study suggests that the BMPR1B-AS1/miR-7-2-3p/DCLK1 axis contributes to the proliferation and metastasis of endometrial cancer cells via the PI3K/Akt/NF-κB pathway.
Collapse
Affiliation(s)
- Tianjiao Lai
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Henan, China.,Academy of Medical Science, Zhengzhou University, Henan, Zhengzhou China
| | - Haifeng Qiu
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Henan, China
| | - Lulu Si
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Henan, China
| | - Yu Zhen
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Henan, China.,Academy of Medical Science, Zhengzhou University, Henan, Zhengzhou China
| | - Danxia Chu
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Henan, China
| | - Ruixia Guo
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Henan, China
| |
Collapse
|
8
|
A diagnostic and prognostic value of blood-based circulating long non-coding RNAs in Thyroid, Pancreatic and Ovarian Cancer. Crit Rev Oncol Hematol 2022; 171:103598. [PMID: 35033662 DOI: 10.1016/j.critrevonc.2022.103598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Several studies have demonstrated the potential of circulating long non-coding RNAs (lncRNAs) as promising cancer biomarkers. Herein, we addressed the regulatory role of circulating lncRNAs and their potential value as diagnostic/prognostic markers for thyroid, pancreatic and ovarian cancers. Furthermore, we analyzed and measured the clinical implications and association of lncRNAs with sensitivity, specificity, and area under the ROC curve (AUC). Based on our meta-analysis, we found that GAS8-AS1 could discriminate thyroid cancer from non-cancer and other cancers with higher accuracy (AUC = 0.746; sensitivity = 61.70%, and specificity = 90.00%). Similarly, for ovarian cancer, lncRNA RP5-837J1.2 was found to have ideal diagnostic potential with critical clinical specifications of AUC = 0.996; sensitivity = 97.30% and specificity = 94.60%. Whereas we could not find any lncRNA having high diagnostic/prognostic efficiency in pancreatic cancer. We believe that lncRNAs mentioned above may explore clinical settings for the diagnosis and prognosis of cancer patients.
Collapse
|
9
|
Hu J, Xiang X, Guan W, Lou W, He J, Chen J, Fu Y, Lou G. MiR-497-5p down-regulates CDCA4 to restrains lung squamous cell carcinoma progression. J Cardiothorac Surg 2021; 16:330. [PMID: 34772428 PMCID: PMC8588708 DOI: 10.1186/s13019-021-01698-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/26/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND So far, few have concerned miR-497-5p in lung squamous cell carcinoma (LUSC). METHODS MiR-497-5p expression in LUSC was measured by qRT-PCR. Its impacts on tumor-related cell behaviors were investigated by CCK8 assay, scratch healing assay, flow cytometry and Transwell invasion methods. In addition, interaction between miR-497-5p and CDCA4 in LUSC was also elucidated through rescue experiment, western blot, dual-luciferase, and bioinformatics analysis. RESULTS Low level of miR-497-5p was confirmed in LUSC tissue and cells. Overexpressed miR-497-5p markedly inhibited cancer progression. miR-497-5p restrained CDCA4 expression. Rescue assay showed that overexpressing miR-497-5p eliminated effect of overexpressed CDCA4. CONCLUSION By targeting CDCA4, miR-497-5p restrained development of LUSC.
Collapse
Affiliation(s)
- Jiangwei Hu
- Department of Cardiovascular Surgery, Yiwu Central Hospital, No.699 Jiangdong Dong Lu, Yiwu City, 322000, Zhejiang Province, China
| | - Xinqin Xiang
- Department of Cardiovascular Surgery, Yiwu Central Hospital, No.699 Jiangdong Dong Lu, Yiwu City, 322000, Zhejiang Province, China
| | - Wei Guan
- Department of Cardiovascular Surgery, Yiwu Central Hospital, No.699 Jiangdong Dong Lu, Yiwu City, 322000, Zhejiang Province, China
| | - Weihua Lou
- Department of Cardiovascular Surgery, Yiwu Central Hospital, No.699 Jiangdong Dong Lu, Yiwu City, 322000, Zhejiang Province, China
| | - Junming He
- Department of Cardiovascular Surgery, Yiwu Central Hospital, No.699 Jiangdong Dong Lu, Yiwu City, 322000, Zhejiang Province, China
| | - Jian Chen
- Department of Cardiovascular Surgery, Yiwu Central Hospital, No.699 Jiangdong Dong Lu, Yiwu City, 322000, Zhejiang Province, China
| | - Yin Fu
- Department of Cardiovascular Surgery, Yiwu Central Hospital, No.699 Jiangdong Dong Lu, Yiwu City, 322000, Zhejiang Province, China
| | - Guoliang Lou
- Department of Cardiovascular Surgery, Yiwu Central Hospital, No.699 Jiangdong Dong Lu, Yiwu City, 322000, Zhejiang Province, China.
| |
Collapse
|
10
|
Rashdan S, Iyengar P, Minna JD, Gerber DE. Narrative review: molecular and genetic profiling of oligometastatic non-small cell lung cancer. Transl Lung Cancer Res 2021; 10:3351-3368. [PMID: 34430372 PMCID: PMC8350108 DOI: 10.21037/tlcr-21-448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/28/2021] [Indexed: 11/30/2022]
Abstract
Objective The objectives of this review are to discuss: the definition, clinical and biologic features of oligometastatic non-small cell lung cancer (NSCLC), as well as the concept of treating oligoprogression in oligometastatic NSCLC. Background A substantial proportion of patients diagnosed with lung cancer present with metastatic disease, and a large portion of patients who present with localized disease later develop metastases. Oligometastatic NSCLC is defined as an intermediate state between localized and widespread metastatic disease, where there may be a role for curative localized therapy approach by treating the primary tumor and all metastases with radiotherapy or surgery. Despite the increasing application of this approach in patients with lung cancer, the identification of patients who might benefit from this approach is yet to be well characterized. Methods After a systematic review of the literature, a PubMed search was performed using the English language and the key terms: oligometastatic, non-small cell lung cancer (NSCLC), localized consolidative treatment (LCT), biomarkers, biologic features, clinical features. Over 500 articles were retrieved between 1889–2021. A total of 178 papers discussing the definition, clinical and biologic factors leading to oligometastatic NSCLC were reviewed and included in the discussion of this paper. Conclusions Oligometastatic NSCLC is a unique entity. Identifying patients who have oligometastatic NSCLC accurately using a combination of clinical and biologic features and treating them with localized consolidative approach appropriately results in improvement of outcome. Further understanding of the molecular mechanisms driving the formation of oligometastatic NSCLC is an important area of focus for future studies.
Collapse
Affiliation(s)
- Sawsan Rashdan
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Division of Hematology-Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Puneeth Iyengar
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John D Minna
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Division of Hematology-Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David E Gerber
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Division of Hematology-Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
11
|
Qiao G, Wang HB, Duan XN, Yan XF. The effect and mechanism of miR-607/CANT1 axis in lung squamous carcinoma. Anticancer Drugs 2021; 32:693-702. [PMID: 33675611 DOI: 10.1097/cad.0000000000001045] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lung squamous carcinoma (LUSC) is the second most frequent subtype of non-small cell lung cancer. Rarely gene alterations are identified in LUSC. Therefore, identifying LUSC-related genes to explain the relevant molecular mechanism is urgently needed. A potential biomarker, calcium-activated nucleotidase 1 (CANT1), was elevated in tissues of LUSC patients relative to normal cases based on the TCGA and/or GTEx database. CCK-8 and transwell tests were then implemented to measure the proliferative, invasive and migratory capacities, and showed that knockdown of CANT1 blocked LUSC cells proliferation. miR-607, predicted as an upstream factor for CANT1, was declined in LUSC using TargetScan analysis and luciferase activity test. Low miR-607 expression was related with unfavorable outcomes of LUSC patients. Moreover, miR-607 downregulation elevated cell viability, invasion and migration in LUSC cells, which was antagonized by si-CANT1. GEPIA website was accessed to estimate the relevance between CANT1 and epithelial-mesenchymal transition (EMT)-related positive factors. The protein levels of Fibronectin, Vimentin, Snail and β-catenin were altered due to the abnormal CANT1 and miR-607 expression. Together, these data unveiled that miR-607/CANT1 pair may exert a vital role in the progression of LUSC through mediating EMT process, which would furnish an available therapeutic therapy for LUSC.
Collapse
Affiliation(s)
- Gang Qiao
- Department of Integrative Medicine Oncology, Zibo Bashan Wanjie Hospital, Zibo
| | - Hai-Bo Wang
- Emergency department, Rizhao Central Hospital, Rizhao
| | - Xiu-Na Duan
- Department of Nuclear Medicine, Central Hospital of Shan County, Shan County, Heze, Shandong People's Republic of China
| | - Xiao-Fang Yan
- Department of Nuclear Medicine, Central Hospital of Shan County, Shan County, Heze, Shandong People's Republic of China
| |
Collapse
|
12
|
Zhang Z, Li H, You J, Xue H, Tan X, Chao C. MicroRNA-223-5p suppresses the progression of nasopharyngeal carcinoma by targeting DCLK1. Oncol Lett 2021; 21:396. [PMID: 33777219 PMCID: PMC7988698 DOI: 10.3892/ol.2021.12657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/08/2021] [Indexed: 11/10/2022] Open
Abstract
The aim of the present study was to investigate the function of microRNA (miR)-223-5p in the malignant biological behavior of nasopharyngeal carcinoma (NPC) and elucidate the underlying molecular mechanism. The expression levels of miR-223-5p and doublecortin-like kinase 1 (DCLK1) were detected via reverse transcription-quantitative PCR analysis. Cell viability was evaluated using Cell Counting Kit-8 assay. Cell migration and invasion were measured via Transwell assays, while a luciferase reporter assay was conducted to identify the interaction between miR-223-5p and DCLK1. The results demonstrated that miR-223-5p expression was significantly downregulated, whereas DCLK1 expression was significantly upregulated in NPC tissues and cells. Moreover, both miR-223-5p overexpression and DCLK1 silencing markedly suppressed the progression of NPC. It was also observed that miR-223-5p directly targeted DCLK1 and decreased its expression. Furthermore, it was suggested that DCLK1 overexpression may partially reverse the suppressive effects of miR-223-5p on the progression of NPC. Collectively, the results of the present study indicated that miR-223-5p may suppress NPC progression by targeting DCLK1, thereby indicating a novel potential approach to the diagnosis and treatment of NPC.
Collapse
Affiliation(s)
- Zhixuan Zhang
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Haifeng Li
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Jianqiang You
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Haixiang Xue
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Xiaoye Tan
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Changjiang Chao
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| |
Collapse
|
13
|
Meng L, Chen D, Meng G, Lu L, Han C. Dysregulation of the Sirt5/IDH2 axis contributes to sunitinib resistance in human renal cancer cells. FEBS Open Bio 2021; 11:921-931. [PMID: 33455080 PMCID: PMC7931237 DOI: 10.1002/2211-5463.13090] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 01/14/2021] [Indexed: 01/01/2023] Open
Abstract
Sunitinib (Sun), a tyrosine kinase inhibitor of vascular endothelial growth factor receptor, is the standard first‐line treatment against advanced clear cell renal cell carcinoma (RCC), but resistance to therapy is inevitable. Reactive oxygen species production is associated with sensitivity to chemotherapy, but the underlying mechanisms are not completely understood. Here, we investigated the mechanisms contributing to Sun resistance using the RCC cell lines ACHN and 786‐O. We report that Sun‐resistant cells exhibited reduced apoptosis, increased cell viability, increased reactive oxygen species production and disrupted mitochondrial function. Furthermore, chronic Sun treatment resulted in an up‐regulation of Sirt5/isocitrate dehydrogenase 2 (IDH2) expression levels. Knockdown of Sirt5/IDH2 impaired mitochondrial function and partially attenuated Sun resistance. Finally, up‐regulation of Sirt5 enhanced the expression of IDH2 via modulation of succinylation at K413 and promoted protein stability. In conclusion, dysregulation of Sirt5/IDH2 partially contributes to Sun resistance in RCC cells by affecting antioxidant capacity.
Collapse
Affiliation(s)
- Liang Meng
- Department of Computer Tomography, Cangzhou Central Hospital, China
| | - Deqiang Chen
- Department of Computer Tomography, Cangzhou Central Hospital, China
| | - Gaopei Meng
- Department of Computer Tomography, Cangzhou Central Hospital, China
| | - Li Lu
- Department of Computer Tomography, Cangzhou Central Hospital, China
| | - Chenggang Han
- Department of Computer Tomography, Cangzhou Central Hospital, China
| |
Collapse
|
14
|
Li Y, Zong J, Zhao C. lncRNA CTBP1-AS2 promotes proliferation and migration of glioma by modulating miR-370-3p-Wnt7a-mediated epithelial-mesenchymal transition. Biochem Cell Biol 2020; 98:661-668. [PMID: 33150795 DOI: 10.1139/bcb-2020-0065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Glioma is one of the most common and aggressive malignant primary brain tumors, with a poor 5-year survival rate. The long noncoding RNA (lncRNA) CTBP1-AS2 has been shown to be correlated with the prognosis of cancer, but the role of CTBP1-AS2 in glioma and its concrete mechanism is fully unknown. The clinical data and tissues of glioma patients were analyzed. Cell viability and migration assays were performed. Western blotting and qRT-PCR were adopted for investigation of target protein expressions. Double luciferase assay was used to investigate the interaction between different elements. The lncRNA CTBP1-AS2 had increased expression profiles in tumor tissues, which is associated with poor prognosis. In detail, CTBP1-AS2 knockdown decreased proliferation and migration phenotypes in both U87-MG and LN229 cells. Moreover, CTBP1-AS2 knockdown suppressed the key epithelial-mesenchymal transition (EMT) markers by downregulating Wnt7a-mediated signaling. Furthermore, miR-370-3p functioned as a link that could be absorbed by CTBP1-AS2, thus regulating Wnt7a expression. Lastly, the CTBP1-AS2-miR-370-3p-Wnt7a axis modulated EMT in glioma cells in vitro and in vivo. This study provides new insights that a novel lncRNA, CTBP1-AS2, regulates EMT of glioma by modulating the miR-370-3p-Wnt7a axis.
Collapse
Affiliation(s)
- Yongfeng Li
- Department of Neurology, Sishui County People's Hospital, Jining, Shandong Province 273200, People's Republic of China
| | - Jin Zong
- Department of Neurosurgery, Liaocheng Hospital of Traditional Chinese Medicine, Liaocheng, Shandong Province 252004, People's Republic of China
| | - Cong Zhao
- Department of Oncology, Jining No. 1 People's Hospital, Jining, Shandong Province 272000, People's Republic of China
| |
Collapse
|
15
|
Zhan Y, Abuduwaili K, Wang X, Shen Y, Nuerlan S, Liu C. Knockdown of Long Non-Coding RNA HOTAIR Suppresses Cisplatin Resistance, Cell Proliferation, Migration and Invasion of DDP-Resistant NSCLC Cells by Targeting miR-149-5p/Doublecortin-Like Kinase 1 Axis. Cancer Manag Res 2020; 12:7725-7737. [PMID: 32943921 PMCID: PMC7455504 DOI: 10.2147/cmar.s246299] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 07/05/2020] [Indexed: 12/18/2022] Open
Abstract
Background Long non-coding RNA (lncRNA) HOTAIR has been reported to be associated with cisplatin (DDP) resistance in different human cancers including non-small cell lung cancer (NSCLC). However, the mechanism of HOTAIR in cisplatin resistance of NSCLC remains largely undefined. Materials and Methods Expression of HOTAIR, miR-149-5p and doublecortin-like kinase 1 (DCLK1) was detected using real-time quantitative PCR (RT-qPCR) and Western blotting. Cisplatin resistance was determined with cell counting kit (CCK)-8 assay and transwell assays in vitro, and xenograft tumor models in vivo. The target binding between miR-149-5p and either HOTAIR or DCLK1 was predicted on Diana Tools website, and confirmed by dual-luciferase reporter assay and RNA immunoprecipitation. Results Expression of HOTAIR was upregulated in DDP-resistant NSCLC tumor tissues and cell lines (A549/DDP and H1299/DDP). Knockdown of HOTAIR decreased the acquired cisplatin resistance of A549/DDP and H1299/DDP cells, as evidenced by attenuated 50% inhibitory concentration (IC50) of DDP, cell proliferation, migration and invasion in vitro, as well as tumor growth inhibition in vivo. Mechanically, HOTAIR negatively regulated miR-149-5p expression via targeting, and DCLK1 was a downstream target for miR-149-5p. DCLK1 was indirectly regulated by HOTAIR in DDP-resistant NSCLC cells as well. Functionally, miR-149-5p deletion could counteract the inhibitory effect of HOTAIR knockdown on cisplatin resistance; contrarily, restoring miR-149-5p exhibited the similar inhibition on cisplatin resistance in DDP-resistant cells in vitro, which was then abated by DCLK1 upregulation. Conclusion Knockdown of HOTAIR enhances DDP-resistant NSCLC cells to overcome cisplatin resistance partially via regulating miR-149-5p/DCLK1 axis.
Collapse
Affiliation(s)
- Yiyi Zhan
- The Second Department of Pulmonary Medicine, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Kahaerjiang Abuduwaili
- The Second Department of Pulmonary Medicine, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Xiuli Wang
- The Second Department of Pulmonary Medicine, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Yanli Shen
- The Second Department of Pulmonary Medicine, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Saiteer Nuerlan
- The Second Department of Pulmonary Medicine, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Chunling Liu
- The Second Department of Pulmonary Medicine, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, People's Republic of China
| |
Collapse
|
16
|
Wei H, Yu K, Liu Y, Li L, Wang G. Tumor expression of miR-448 is a prognostic marker in oral squamous cell carcinoma. BMC Cancer 2020; 20:756. [PMID: 32787801 PMCID: PMC7425364 DOI: 10.1186/s12885-020-07243-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
Background Prognosis is poor for patients with malignant progression such as distant metastasis of oral squamous cell carcinoma (OSCC). Evidence indicates that miR-448 promotes the proliferation and inhibits apoptosis of OSCC cells. Therefore, we aimed to investigate the function of miR-448 to predict tumor progression and prognosis of OSCC. Methods Real-time quantitative reverse transcription PCR was used to measure miR-448 expression in 221 pairs of OSCC tissues and the corresponding noncancerous tissues. Patients were diagnosed with OSCC from 2009 through 2011 at the Tianjin Medical University Cancer Institute and Hospital. Chi-squared tests were performed to assess the associations between miR-448 expression and clinicopathological parameters. Kaplan–Meier analysis was employed to evaluate the association of overall survival (OS) and disease-free survival (DFS) with miR-448 levels. Univariate and multivariate analyses were performed using the Cox proportional hazards regression model. Results We show here that miR-448 expression was significantly up-regulated in OSCC tissues compared with noncancerous tissues (P < 0.01). High miR-448 expression was significantly associated with advanced T stage (P = 0.001), lymph node metastasis (P = 0.007) and higher TNM stage (P = 0.009). Moreover, Kaplan–Meier and univariate analyses revealed that patients with high expression of miR-448 experienced significantly shorter OS and DFS. Furthermore, multivariate analysis demonstrated that miR-448 expression was an independent prognostic factor for OS (P = 0.004) and DFS (P = 0.002). Conclusions Our present data suggests that miR-448 may play an important role in tumor progression and serves as a prognostic marker for OSCC. Further studies are required to assess the potential value of miR-448 to contribute to personalized treatment of OSCC.
Collapse
Affiliation(s)
- Hui Wei
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China.,State Key Laboratory of Medicinal Chemical Biology (Nankai University), Tianjin, 300353, People's Republic of China
| | - Kang Yu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Yongheng Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Lili Li
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China.
| | - Guowen Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China.
| |
Collapse
|
17
|
Soghli N, Qujeq D, Yousefi T, Soghli N. The regulatory functions of circular RNAs in osteosarcoma. Genomics 2020; 112:2845-2856. [DOI: 10.1016/j.ygeno.2020.03.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023]
|
18
|
Pu Y, Xiang J, Zhang J. RETRACTED: KDM5B-mediated microRNA-448 up-regulation restrains papillary thyroid cancer cell progression and slows down tumor growth via TGIF1 repression. Life Sci 2020; 250:117519. [PMID: 32147429 DOI: 10.1016/j.lfs.2020.117519] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Concern was raised about the reliability of the Transwell assay results shown in Figures 3G, 6F, and 7F, which appear to contain image similarities within some of the panels, as detailed here: https://pubpeer.com/publications/7680482DF471CF3FADB2D14154BCFF and here: https://docs.google.com/spreadsheets/d/1r0MyIYpagBc58BRF9c3luWNlCX8VUvUuPyYYXzxWvgY/edit#gid=262337249. In addition, several suspected image similarities were detected within the whole brain images in Figure 7I, and within the Transwell assays of Figure 7G. The journal requested the corresponding author comment on these concerns and provide the raw data. However, the authors were not able to satisfactorily fulfill this request and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Ying Pu
- Senile endocrinology, Xiangya Hospital Central South University, Changsha 410008, Hunan, China
| | - Juan Xiang
- Senile endocrinology, Xiangya Hospital Central South University, Changsha 410008, Hunan, China
| | - Jiani Zhang
- Senile endocrinology, Xiangya Hospital Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
19
|
Lan F, Qin Q, Yu H, Yue X. Effect of glycolysis inhibition by miR-448 on glioma radiosensitivity. J Neurosurg 2020; 132:1456-1464. [PMID: 31003211 DOI: 10.3171/2018.12.jns181798] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 12/03/2018] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Although glucose metabolism reengineering is a typical feature of various tumors, including glioma, key regulators of glycolytic reprogramming are still poorly understood. The authors sought to investigate whether glycolysis inhibition by microRNA (miR)-448 increases radiosensitivity in glioma cells. METHODS The authors used glioma tissue samples from glioma patients, cells from glioblastoma (GBM) cell lines and normal human astrocyte cells, and subcutaneous tumor-bearing U87 cells in mice to examine the effects of signaling regulation by miR-448 in the response of glioma tissues and cells to radiation treatment. Techniques used for investigation included bioinformatics analyses, biochemical assays, luciferase reporter assays, and establishment of subcutaneous tumors in a mouse model. Glucose consumption, LDH activity, and cellular ATP were measured to determine the ability of glioma cells to perform glycolysis. Expression of HIF-1α was measured as a potential target gene of miR-448 in glycolysis. RESULTS miR-448 was detected and determined to be significantly downregulated in both glioma tissues from glioma patients and GBM cell lines. Furthermore, miR-448 acted as a tumor-inhibiting factor and suppressed glycolysis in glioma by negatively regulating the activity of HIF-1α signaling and then interfering with its downstream regulators relative to glycolysis, HK1, HK2, and LDHA. Interestingly, overexpression of miR-448 increased the x-radiation sensitivity of glioma cells. Finally, in in vivo experiments, subcutaneous tumor-bearing U87 cells in a mouse model verified that high expression of miR-448 also enhanced glioma radiosensitivity via inhibiting glycolytic factors. CONCLUSIONS miR-448 can promote radiosensitivity by inhibiting HIF-1α signaling and then negatively controlling the glycolysis process in glioma. A newly identified miR-448-HIF-1α axis acts as a potentially valuable therapeutic target that may be useful in overcoming radioresistance in glioma treatment.
Collapse
Affiliation(s)
- Fengming Lan
- 1Department of Radiation Oncology, National Cancer Center/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen
| | - Qing Qin
- 2Neuro-oncology Chemotherapy Center, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing
| | - Huiming Yu
- 3Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Radiotherapy, Beijing University Cancer Hospital and Institute, Beijing; and
| | - Xiao Yue
- 4Department of Neurosurgery, The Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, People's Republic of China
| |
Collapse
|
20
|
Xu F, Xu F, Xie S, Zuo W, Wen G, Zhao T, Wan X. MicroRNA-448 overexpression inhibits fibroblast proliferation and collagen synthesis and promotes cell apoptosis via targeting ABCC3 through the JNK signaling pathway. J Cell Physiol 2019; 235:1374-1385. [PMID: 31506947 DOI: 10.1002/jcp.29056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/12/2019] [Indexed: 01/14/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a condition that results in the progressive deterioration of lung function with poor prognosis. The current study is aimed at exploring how microRNA-448 (miR-448) targeting ABCC3 affects fibroblast proliferation, apoptosis, and collagen synthesis of mice with IPF via the Jun N-terminal kinase (JNK) signaling pathway. Bioinformatics and dual-luciferase polymerase chain reaction were used to predict the relationship of miR-448 and ABCC3. The expression of miR-448 and ABCC3 was detected in IPF tissues. Using IPF mouse models, lung fibroblasts for the experiments were treated with miR-448 mimic, miR-448 inhibitor, si-ABCC3, or SP600125 (inhibitor of JNK) to evaluate the cell proliferation and apoptosis in response to miR-448. Reverse transcription quantitative polymerase chain reaction and western blot analysis were used to identify the expression of miR-448, ABCC3, and the activation of the JNK signaling pathway. ABCC3 was targeted and downregulated by miR-448 based on bioinformatics prediction and dual-luciferase reporter gene assay. Additionally, miR-448 was found to be highly expressed in IPF lung tissues with low expression levels of ABCC3. In response to the treatment of miR-448 mimic or si-ABCC3, lung fibroblasts exhibited decreased cell proliferation and increased apoptotic rates, whereas the miR-448 inhibitor reversed the conditions. Notably, we also found that miR-448 mimic inhibited the JNK signaling pathway. In conclusion, by using miR-448 to target and downregulate ABCC3 to block the JNK signaling pathway in mice with IPF, we found an increase in fibroblast apoptosis, inhibited cell proliferation, and decreased collagen synthesis of fibroblasts.
Collapse
Affiliation(s)
- Feihong Xu
- Clinical Medicine, Queen Mary College, Nanchang University, Nanchang, China
| | - Fei Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shiguang Xie
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Zuo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guilan Wen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tiantian Zhao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuan Wan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
21
|
Qi H, Wang H, Pang D. miR-448 promotes progression of non-small-cell lung cancer via targeting SIRT1. Exp Ther Med 2019; 18:1907-1913. [PMID: 31410153 DOI: 10.3892/etm.2019.7738] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 11/14/2018] [Indexed: 12/24/2022] Open
Abstract
Deregulation of microRNAs (miRs) has been demonstrated to be involved in both the initiation and the development of non-small-cell lung cancer (NSCLC). miR-448 has been identified as a tumor suppressor in several cancer types. The aim of the present study was to explore the role of miR-448 in NSCLC. Tumor tissues and paired normal tissues were obtained from patients with NSCLC. The viability and migration of A549 cells were determined by the Cell Counting kit-8 and wound-healing assays, respectively. Gene and protein levels were detected by reverse transcription-quantitative polymerase chain reaction analysis and western blotting, respectively. The interaction between the 3' untranslated region of sirtuin1 (SIRT1) and miR-448 was predicted by TargetScan and verified by dual luciferase reporter assay. miR-448 levels were revealed to be decreased whereas SIRT1 levels were increased in NSCLC tissues compared with normal tissues. Pearson's correlation analysis demonstrated that there was a negative correlation between miR-448 and SIRT1 mRNA levels. Overexpression of miR-448 led to reduced growth and migration ability of A549 cells. In addition, overexpression of miR-448 decreased SIRT1 mRNA and protein levels, thereby inhibiting epithelial-mesenchymal transition (EMT) and affecting EMT-associated molecules, including vimentin and E-cadherin. Dual luciferase reporter assay confirmed that SIRT1 was a direct target of miR-448. Notably, activation of SIRT1 by resveratrol treatment partially reversed the cell growth inhibition induced by miR-448 mimics. These findings suggested that the progression of NSCLC may be controlled by miR-448, which appears to hold promise as a therapeutic target for patients with NSCLC.
Collapse
Affiliation(s)
- Hongfeng Qi
- Department of Cardiothoracic Surgery, Changyi People's Hospital, Weifang, Shandong 261300, P.R. China
| | - Haifeng Wang
- Department of Endoscopy, Shouguang Hospital of TCM, Shouguang, Shandong 262700, P.R. China
| | - Dabin Pang
- Department of Cardiothoracic Surgery, Changyi People's Hospital, Weifang, Shandong 261300, P.R. China
| |
Collapse
|
22
|
MicroRNA in Lung Cancer Metastasis. Cancers (Basel) 2019; 11:cancers11020265. [PMID: 30813457 PMCID: PMC6406837 DOI: 10.3390/cancers11020265] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 12/12/2022] Open
Abstract
Tumor metastasis is a hallmark of cancer, with distant metastasis frequently developing in lung cancer, even at initial diagnosis, resulting in poor prognosis and high mortality. However, available biomarkers cannot reliably predict cancer spreading sites. The metastatic cascade involves highly complicated processes including invasion, migration, angiogenesis, and epithelial-to-mesenchymal transition that are tightly controlled by various genetic expression modalities along with interaction between cancer cells and the extracellular matrix. In particular, microRNAs (miRNAs), a group of small non-coding RNAs, can influence the transcriptional and post-transcriptional processes, with dysregulation of miRNA expression contributing to the regulation of cancer metastasis. Nevertheless, although miRNA-targeted therapy is widely studied in vitro and in vivo, this strategy currently affords limited feasibility and a few miRNA-targeted therapies for lung cancer have entered into clinical trials to date. Advances in understanding the molecular mechanism of metastasis will thus provide additional potential targets for lung cancer treatment. This review discusses the current research related to the role of miRNAs in lung cancer invasion and metastasis, with a particular focus on the different metastatic lesions and potential miRNA-targeted treatments for lung cancer with the expectation that further exploration of miRNA-targeted therapy may establish a new spectrum of lung cancer treatments.
Collapse
|
23
|
Cheng D, Bao C, Zhang X, Lin X, Huang H, Zhao L. LncRNA PRNCR1 interacts with HEY2 to abolish miR-448-mediated growth inhibition in non-small cell lung cancer. Biomed Pharmacother 2018; 107:1540-1547. [DOI: 10.1016/j.biopha.2018.08.105] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 08/08/2018] [Accepted: 08/22/2018] [Indexed: 01/17/2023] Open
|
24
|
Zhang JZ, Chen D, Lv LQ, Xu Z, Li YM, Wang JY, Han KW, Yu MK, Huang CG, Hou LJ. miR-448-3p controls intracranial aneurysm by regulating KLF5 expression. Biochem Biophys Res Commun 2018; 505:1211-1215. [PMID: 30322616 DOI: 10.1016/j.bbrc.2018.10.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 02/07/2023]
Abstract
microRNAs (miRNAs) control several processes known to be involved in progression of aneurysm. Here, intracranial aneurysms (IAs) were surgically induced in Sprague-Dawley rats, and we found that miR-448-3p was downregulated and KLF5 was upregulated in IA rats. We identified Klf5 as a direct target of miR-448-3p in smooth muscle cells (SMCs). In addition, aneurysms size and the lumen area of the aneurysms were smaller 4 weeks after IA induction in the miR-448-3p-treated group. miR-448-3p treatment protected the wall thickness ratio and suppressed macrophage infiltration after IA induction. IAs caused a significant increase in KLF5 expression and were alleviated by miR-448-3p. Moreover, the anti-inflammatory effect of miR-448-3p was verified in lipopolysaccharide -stimulated RAW 264.7 macrophage cells. The expression levels of KLF5, MMP2, and MMP9 levels were elevated by LPS, and were attenuated by miR-448-3p. These data suggest that miR-448-3p plays the inhibitory role in IA progression, indicating that miR-448-3p overexpression is crucial for preventing the development of IA through downregulation of macrophage-mediated inflammation.
Collapse
Affiliation(s)
- Jian-Zhong Zhang
- Department of Neurosurgery, Neurosurgery Research Institution of Shanghai, Changzheng Hospital, Naval Military Medical University (The Second Military Medical University), Shanghai 200003, China; Department of Neurosurgery, No.455 Hospital of the Chinese People's Liberation Army, Shanghai 200052, China
| | - Dan Chen
- Department of Orthopedics, No.455 Hospital of the Chinese People's Liberation Army, Shanghai 200052, China
| | - Li-Quan Lv
- Department of Neurosurgery, Neurosurgery Research Institution of Shanghai, Changzheng Hospital, Naval Military Medical University (The Second Military Medical University), Shanghai 200003, China
| | - Zheng Xu
- Department of Neurosurgery, Neurosurgery Research Institution of Shanghai, Changzheng Hospital, Naval Military Medical University (The Second Military Medical University), Shanghai 200003, China
| | - Yi-Ming Li
- Department of Neurosurgery, Neurosurgery Research Institution of Shanghai, Changzheng Hospital, Naval Military Medical University (The Second Military Medical University), Shanghai 200003, China
| | - Jun-Yu Wang
- Department of Neurosurgery, Neurosurgery Research Institution of Shanghai, Changzheng Hospital, Naval Military Medical University (The Second Military Medical University), Shanghai 200003, China
| | - Kai-Wei Han
- Department of Neurosurgery, Neurosurgery Research Institution of Shanghai, Changzheng Hospital, Naval Military Medical University (The Second Military Medical University), Shanghai 200003, China
| | - Ming-Kun Yu
- Department of Neurosurgery, Neurosurgery Research Institution of Shanghai, Changzheng Hospital, Naval Military Medical University (The Second Military Medical University), Shanghai 200003, China
| | - Cheng-Guang Huang
- Department of Neurosurgery, Neurosurgery Research Institution of Shanghai, Changzheng Hospital, Naval Military Medical University (The Second Military Medical University), Shanghai 200003, China.
| | - Li-Jun Hou
- Department of Neurosurgery, Neurosurgery Research Institution of Shanghai, Changzheng Hospital, Naval Military Medical University (The Second Military Medical University), Shanghai 200003, China.
| |
Collapse
|
25
|
Wu W, Wang X, Shan C, Li Y, Li F. Minichromosome maintenance protein 2 correlates with the malignant status and regulates proliferation and cell cycle in lung squamous cell carcinoma. Onco Targets Ther 2018; 11:5025-5034. [PMID: 30174440 PMCID: PMC6109654 DOI: 10.2147/ott.s169002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Minichromosome maintenance protein 2 (MCM2), which is a member of MCM family, has been found to be a relevant marker for progression and prognosis in a variety of human cancers. Due to lack of effective therapeutic target in lung squamous cell carcinoma (LUSC) patients, the aim of our study was to screen and identify biomarkers which are associated to clinicopathological characteristics including prognosis in LUSC patients. Methods The expression status of MCM2 in lung cancer was analyzed using the publicly available Gene Expression Omnibus databases (GSE3268 and GSE10245). The mRNA and protein expression of MCM2 in lung cancer tissues and cell lines was detected by quantitative real-time PCR and Western blot, and the association between MCM2 expression and clinicopathological factors was analyzed by immunohistochemistry. The loss-of-function study of MCM2 was conducted in LUSC cell lines. Results In our study, we found MCM2 expression was increased in LUSC tissues compared with paired adjacent normal lung tissues or lung adenocarcinoma tissues through analyzing microarray data sets (GSE3268 and GSE10245), which confirmed that MCM2 mRNA and protein were overexpressed in LUSC tissues and cell lines. Meanwhile, we analyzed the association between MCM2 protein expression and clinicopathological characteristics of LUSC patients, and found high expression of MCM2 protein was obviously associated with malign differentiated degree, advanced clinical stage, large tumor size, more lymph node metastasis and present distant metastasis. The survival analysis showed MCM2 overexpression was an independent unfavorable prognostic factor for LUSC patients. Conclusion MCM2 is involved in the development and progression of LUSC as an oncogene, and thereby may act as a potential therapeutic target for LUSC patients.
Collapse
Affiliation(s)
- Wei Wu
- Department of Respiratory Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, People's Republic of China,
| | - Xianwei Wang
- Department of Respiratory Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, People's Republic of China,
| | - Changting Shan
- Department of Respiratory Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, People's Republic of China,
| | - Yong Li
- Department of Emergency, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, People's Republic of China
| | - Fengzhu Li
- Department of Paediatric Surgery, Jining No 1 People's Hospital, Jining, Shandong 272011, People's Republic of China
| |
Collapse
|
26
|
Wang J, Wang S, Zhou J, Qian Q. miR-424-5p regulates cell proliferation, migration and invasion by targeting doublecortin-like kinase 1 in basal-like breast cancer. Biomed Pharmacother 2018; 102:147-152. [PMID: 29550638 DOI: 10.1016/j.biopha.2018.03.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/05/2018] [Accepted: 03/05/2018] [Indexed: 12/17/2022] Open
Abstract
Our previous study has showed doublecortin like kinase 1 (DCLK1) serves as an oncogene to regulate basal-like breast cancer cell proliferation, migration and invasion, and is associated with malignant status and poor prognosis. The aim of this study is to identify microRNAs (miRNAs), which target DCLK1 to regulate basal-like breast cancer cell proliferation, migration and invasion. In our results, we observed that miR-424-5p expression was decreased in basal-like breast cancer tissues and cell lines. Furthermore, we found 3'-UTR of DCLK1 had binding site of miR-424-5p based on microRNA target databases, and there was an inverse correlation between miR-424-5p and DCLK1 in basal-like breast cancer tissues. Moreover, we confirmed miR-424-5p directly targeted to 3'-UTR of DCLK1 through luciferase reporter assay, and miR-424-5p negatively regulated DCLK1 mRNA and protein expressions through qRT-PCR and western blot. The gain-of-function studies showed that miR-424-5p suppressed basal-like breast cancer cell proliferation, migration and invasion. The rescued-function studies suggested up-regulation of DCLK1 could rescue inhibition of miR-424-5p mimics in the regulation of basal-like breast cancer cell proliferation, migration and invasion. Finally, low-expression of miR-424-5p was associated with advanced clinical stage, large tumor size, more metastatic lymph nodes, present distant metastasis and poor histological grade in basal-like breast cancer patients. In conclusion, miR-424-5p is a tumor suppressive microRNA to regulate tumor cell proliferation, migration and invasion via binding to the functional target DCLK1, and associated with malignant status in basal-like breast cancer.
Collapse
Affiliation(s)
- Jianling Wang
- Department of Thyroid and Breast Surgery, Jining No. 1 People's Hospital, No. 6 Jiankang Road, Jining 272011, Shandong, China
| | - Shibing Wang
- Department of Thyroid and Breast Surgery, Jining No. 1 People's Hospital, No. 6 Jiankang Road, Jining 272011, Shandong, China
| | - Jijun Zhou
- Department of General Surgery, Chengwu People's Hospital, Shandong Provincial Qianfoshan Hospital Group, No. 66 Bole Road, Heze 274200, Shandong, China
| | - Qian Qian
- Department of Thyroid and Breast Surgery, Jining No. 1 People's Hospital, No. 6 Jiankang Road, Jining 272011, Shandong, China.
| |
Collapse
|
27
|
Detassis S, Grasso M, Del Vescovo V, Denti MA. microRNAs Make the Call in Cancer Personalized Medicine. Front Cell Dev Biol 2017; 5:86. [PMID: 29018797 PMCID: PMC5614923 DOI: 10.3389/fcell.2017.00086] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/08/2017] [Indexed: 12/13/2022] Open
Abstract
Since their discovery and the advent of RNA interference, microRNAs have drawn enormous attention because of their ubiquitous involvement in cellular pathways from life to death, from metabolism to communication. It is also widely accepted that they possess an undeniable role in cancer both as tumor suppressors and tumor promoters modulating cell proliferation and migration, epithelial-mesenchymal transition and tumor cell invasion and metastasis. Moreover, microRNAs can even affect the tumor surrounding environment influencing angiogenesis and immune system activation and recruitment. The tight association of microRNAs with several cancer-related processes makes them undoubtedly connected to the effect of specific cancer drugs inducing either resistance or sensitization. In this context, personalized medicine through microRNAs arose recently with the discovery of single nucleotide polymorphisms in the target binding sites, in the sequence of the microRNA itself or in microRNA biogenesis related genes, increasing risk, susceptibility and progression of multiple types of cancer in different sets of the population. The depicted scenario implies that the overall variation displayed by these small non-coding RNAs have an impact on patient-specific pharmacokinetics and pharmacodynamics of cancer drugs, pushing on a rising need of personalized treatment. Indeed, microRNAs from either tissues or liquid biopsies are also extensively studied as valuable biomarkers for disease early recognition, progression and prognosis. Despite microRNAs being intensively studied in recent years, a comprehensive review describing these topics all in one is missing. Here we report an up-to-date and critical summary of microRNAs as tools for better understanding personalized cancer biogenesis, evolution, diagnosis and treatment.
Collapse
Affiliation(s)
| | | | | | - Michela A. Denti
- Laboratory of RNA Biology and Biotechnology, Centre for Integrative Biology, University of TrentoTrento, Italy
| |
Collapse
|