1
|
Ciapała K, Mika J. Advances in Neuropathic Pain Research: Selected Intracellular Factors as Potential Targets for Multidirectional Analgesics. Pharmaceuticals (Basel) 2023; 16:1624. [PMID: 38004489 PMCID: PMC10675751 DOI: 10.3390/ph16111624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Neuropathic pain is a complex and debilitating condition that affects millions of people worldwide. Unlike acute pain, which is short-term and starts suddenly in response to an injury, neuropathic pain arises from somatosensory nervous system damage or disease, is usually chronic, and makes every day functioning difficult, substantially reducing quality of life. The main reason for the lack of effective pharmacotherapies for neuropathic pain is its diverse etiology and the complex, still poorly understood, pathophysiological mechanism of its progression. Numerous experimental studies, including ours, conducted over the last several decades have shown that the development of neuropathic pain is based on disturbances in cell activity, imbalances in the production of pronociceptive factors, and changes in signaling pathways such as p38MAPK, ERK, JNK, NF-κB, PI3K, and NRF2, which could become important targets for pharmacotherapy in the future. Despite the availability of many different analgesics, relieving neuropathic pain is still extremely difficult and requires a multidirectional, individual approach. We would like to point out that an increasing amount of data indicates that nonselective compounds directed at more than one molecular target exert promising analgesic effects. In our review, we characterize four substances (minocycline, astaxanthin, fisetin, and peimine) with analgesic properties that result from a wide spectrum of actions, including the modulation of MAPKs and other factors. We would like to draw attention to these selected substances since, in preclinical studies, they show suitable analgesic properties in models of neuropathy of various etiologies, and, importantly, some are already used as dietary supplements; for example, astaxanthin and fisetin protect against oxidative stress and have anti-inflammatory properties. It is worth emphasizing that the results of behavioral tests also indicate their usefulness when combined with opioids, the effectiveness of which decreases when neuropathy develops. Moreover, these substances appear to have additional, beneficial properties for the treatment of diseases that frequently co-occur with neuropathic pain. Therefore, these substances provide hope for the development of modern pharmacological tools to not only treat symptoms but also restore the proper functioning of the human body.
Collapse
Affiliation(s)
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Str., 31-343 Kraków, Poland;
| |
Collapse
|
2
|
Zheng Z, Cai D, Fu Y, Wang Y, Song Y, Lian J. Chronic Administration of COVID-19 Drugs Fluvoxamine and Lopinavir Shortens Action Potential Duration by Inhibiting the Human Ether-à-go-go-Related Gene and Cav1.2. Front Pharmacol 2022; 13:889713. [PMID: 35873575 PMCID: PMC9301601 DOI: 10.3389/fphar.2022.889713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/07/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Old drugs for new indications in the novel coronavirus disease of 2019 (COVID-19) pandemic have raised concerns regarding cardiotoxicity, especially the development of drug-induced QT prolongation. The acute blocking of the cardiac hERG potassium channel is conventionally thought to be the primary mechanism of QT prolongation induced by COVID-19 drugs fluvoxamine (FLV) and lopinavir (LPV). The chronic impact of these medications on the hERG expression has yet to be determined. Methods: To investigate the effect of long-term incubation of FLV and LPV on the hERG channel, we used electrophysiological assays and molecular experiments, such as Western blot, RT-qPCR, and immunofluorescence, in HEK-293 cells stably expressing hERG and human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Results: Compared to the acute effects, chronic incubation for FLV and LPV generated much lower half-maximal inhibitory concentration (IC50) values, along with a left-shifted activation curve and retarded channel activation. Inconsistent with the reduction in current, we unexpectedly found that the chronic effects of drugs promoted the maturation of hERG proteins, accompanied by the high expression of Hsp70 and low expression of Hsp90. Targeting Hsp70 using siRNA was able to reverse the effects of these drugs on hERG proteins. In addition, FLV and LPV resulted in a significant reduction of APD90 and triggered the early after-depolarizations (EADs), as well as inhibited the protein level of the L-type voltage-operated calcium channel (L-VOCC) in hiPSC-CMs. Conclusion: Chronic incubation with FLV and LPV produced more severe channel-blocking effects and contributed to altered channel gating and shortened action potential duration by inhibiting hERG and Cav1.2.
Collapse
Affiliation(s)
- Zequn Zheng
- Department of Cardiovascular, Lihuili Hospital Facilitated to Ningbo University, Ningbo University, Ningbo, China
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
- Department of Cardiovascular Medicine, First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Dihui Cai
- Department of Cardiovascular, Lihuili Hospital Facilitated to Ningbo University, Ningbo University, Ningbo, China
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
| | - Yin Fu
- Department of Cardiovascular, Lihuili Hospital Facilitated to Ningbo University, Ningbo University, Ningbo, China
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
| | - Ying Wang
- Department of Cardiovascular, Lihuili Hospital Facilitated to Ningbo University, Ningbo University, Ningbo, China
| | - Yongfei Song
- Department of Cardiovascular, Lihuili Hospital Facilitated to Ningbo University, Ningbo University, Ningbo, China
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
- *Correspondence: Yongfei Song , ; Jiangfang Lian,
| | - Jiangfang Lian
- Department of Cardiovascular, Lihuili Hospital Facilitated to Ningbo University, Ningbo University, Ningbo, China
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
- *Correspondence: Yongfei Song , ; Jiangfang Lian,
| |
Collapse
|
3
|
Alberola-Die A, Encinar JA, Cobo R, Fernández-Ballester G, González-Ros JM, Ivorra I, Morales A. Peimine, an Anti-Inflammatory Compound from Chinese Herbal Extracts, Modulates Muscle-Type Nicotinic Receptors. Int J Mol Sci 2021; 22:ijms222011287. [PMID: 34681946 PMCID: PMC8539251 DOI: 10.3390/ijms222011287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
Fritillaria bulbs are used in Traditional Chinese Medicine to treat several illnesses. Peimine (Pm), an anti-inflammatory compound from Fritillaria, is known to inhibit some voltage-dependent ion channels and muscarinic receptors, but its interaction with ligand-gated ion channels remains unexplored. We have studied if Pm affects nicotinic acetylcholine receptors (nAChRs), since they play broad functional roles, both in the nervous system and non-neuronal tissues. Muscle-type nAChRs were incorporated to Xenopus oocytes and the action of Pm on the membrane currents elicited by ACh (IAChs) was assessed. Functional studies were combined with virtual docking and molecular dynamics assays. Co-application of ACh and Pm reversibly blocked IACh, with an IC50 in the low micromolar range. Pm inhibited nAChR by: (i) open-channel blockade, evidenced by the voltage-dependent inhibition of IAch, (ii) enhancement of nAChR desensitization, revealed by both an accelerated IACh decay and a decelerated IACh deactivation, and (iii) resting-nAChR blockade, deduced from the IACh inhibition elicited by Pm when applied before ACh superfusion. In good concordance, virtual docking and molecular dynamics assays demonstrated that Pm binds to different sites at the nAChR, mostly at the transmembrane domain. Thus, Pm from Fritillaria bulbs, considered therapeutic herbs, targets nAChRs with high affinity, which might account for its anti-inflammatory actions.
Collapse
Affiliation(s)
- Armando Alberola-Die
- División de Fisiología, Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain; (A.A.-D.); (R.C.); (I.I.)
| | - José Antonio Encinar
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, E-03202 Elche, Spain; (J.A.E.); (G.F.-B.); (J.M.G.-R.)
| | - Raúl Cobo
- División de Fisiología, Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain; (A.A.-D.); (R.C.); (I.I.)
| | - Gregorio Fernández-Ballester
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, E-03202 Elche, Spain; (J.A.E.); (G.F.-B.); (J.M.G.-R.)
| | - José Manuel González-Ros
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, E-03202 Elche, Spain; (J.A.E.); (G.F.-B.); (J.M.G.-R.)
| | - Isabel Ivorra
- División de Fisiología, Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain; (A.A.-D.); (R.C.); (I.I.)
| | - Andrés Morales
- División de Fisiología, Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain; (A.A.-D.); (R.C.); (I.I.)
- Correspondence: ; Tel.: +34-96-590-3949
| |
Collapse
|
4
|
Stalin A, Lin D, Senthamarai Kannan B, Feng Y, Wang Y, Zhao W, Ignacimuthu S, Wei DQ, Chen Y. An in-silico approach to identify the potential hot spots in SARS-CoV-2 spike RBD to block the interaction with ACE2 receptor. J Biomol Struct Dyn 2021; 40:7408-7423. [PMID: 33685364 DOI: 10.1080/07391102.2021.1897682] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A novel acute viral pneumonia induced by SARS-CoV-2 exploded at the end of 2019, causing a severe medical and economic crisis. For developing specific pharmacotherapy against SARS-CoV-2, an in silico virtual screening was developed for the available in-house molecules. The conserved domain analysis was performed to identify the highly conserved and exposed amino acid regions in the SARS-CoV-2-S RBD sites. The Protein-Protein interaction analyses demonstrated the higher affinity between the SARS-CoV-2-S and ACE2 due to varieties of significant interactions between them. The computational alanine scanning mutation study has recognized the highly stabilized amino acids in the SARS-CoV-2-S RBD/ACE2 complex. The cumulative sequence investigations have inferred that Lys417, Phe486, Asn487, Tyr489, and Gln493 are perhaps the iconic target amino acids to develop a drug molecule or vaccine against SARS-CoV-2 infection. Most of the selected compounds include luteolin, zhebeirine, 3-dehydroverticine, embelin, andrographolide, ophiopogonin D, crocin-1, sprengerinin A, B, C, peimine, etc. were exhibited distinguish drug actions through the strong hydrogen bonding with the hot spots of the RBD. Besides, the 100 ns molecular dynamics simulation and free energy binding analysis showed the significant efficacy of luteolin to inhibit the infection of SARS-CoV-2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Antony Stalin
- State Key Laboratory of Subtropical Silviculture, Department of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | - Ding Lin
- State Key Laboratory of Subtropical Silviculture, Department of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | | | - Yue Feng
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanjing Wang
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Wei Zhao
- State Key Laboratory of Subtropical Silviculture, Department of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | | | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China.,Peng Cheng Laboratory, Shenzhen, Guangdong, P.R China
| | - Yuan Chen
- State Key Laboratory of Subtropical Silviculture, Department of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
5
|
Cardiac toxicity of Triptergium wilfordii Hook F . may correlate with its inhibition to hERG channel. Heliyon 2019; 5:e02527. [PMID: 31667381 PMCID: PMC6812191 DOI: 10.1016/j.heliyon.2019.e02527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/25/2019] [Accepted: 09/23/2019] [Indexed: 11/20/2022] Open
Abstract
Tripterygium wilfordii Hook F. (TWHF) is a Chinese traditional medicine with cardiac toxicities. However, the mechanism of acute cardiac toxicity is not very clear. By using patch clamp techniques, we found that 0.05 mg/ml and 0.1 mg/ml of the aqueous crude extract of TWHF inhibit 21.4 ± 1.6% and 86.7 ± 5.7% (n = 5) of hERG current Amplitudes (IhERG) respectively. We further found that Celastrol, one of main components of TWHF, inhibits hERG with an IC50 of 0.83 μM. Additional mutagenesis studies show that mutations of T623A, S624A and F656A significantly alter the inhibition and S624A has the strongest effect, supported by our docking model. Our data suggest that inhibition of hERG channel activity by Celastrol contributed to TWHF cardiotoxicity.
Collapse
|
6
|
Pharmacological Effects of Verticine: Current Status. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2394605. [PMID: 30956677 PMCID: PMC6431433 DOI: 10.1155/2019/2394605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/18/2019] [Accepted: 02/27/2019] [Indexed: 12/14/2022]
Abstract
Verticine is the major bioactive constituent of Fritillaria as a kind of Traditional Chinese Medicine. Pharmacological researches have reported various benefits of verticine, including anticancer, anti-inflammatory, protecting against acute lung injury, tracheobronchial relaxation, antitussive, expectorant, sedative, and analgesic activities, in addition to inhibiting proliferation of cultured orbital fibroblast, angiotensin converting enzyme (ACE), and acetylcholinesterase (AChE) and inhibiting hERG potassium channels. The underlying mechanisms of verticine are still under investigation. This review will comprehensively summarize the metabolism, biological activities, and possible mechanism of verticine.
Collapse
|