1
|
Jiang HL, Yang HH, Liu YB, Duan JX, Guan XX, Zhang CY, Zhong WJ, Jin L, Li D, Li Q, Zhou Y, Guan CX. CGRP is essential for protection against alveolar epithelial cell necroptosis by activating the AMPK/L-OPA1 signaling pathway during acute lung injury. J Cell Physiol 2024; 239:e31169. [PMID: 38193350 DOI: 10.1002/jcp.31169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024]
Abstract
Alveolar epithelial cell (AEC) necroptosis is critical to disrupt the alveolar barrier and provoke acute lung injury (ALI). Here, we define calcitonin gene-related peptide (CGRP), the most abundant endogenous neuropeptide in the lung, as a novel modulator of AEC necroptosis in lipopolysaccharide (LPS)-induced ALI. Upon LPS-induced ALI, overexpression of Cgrp significantly mitigates the inflammatory response, alleviates lung tissue damage, and decreases AEC necroptosis. Similarly, CGRP alleviated AEC necroptosis under the LPS challenge in vitro. Previously, we identified that long optic atrophy 1 (L-OPA1) deficiency mediates mitochondrial fragmentation, leading to AEC necroptosis. In this study, we discovered that CGRP positively regulated mitochondrial fusion through stabilizing L-OPA1. Mechanistically, we elucidate that CGRP activates AMP-activated protein kinase (AMPK). Furthermore, the blockade of AMPK compromised the protective effect of CGRP against AEC necroptosis following the LPS challenge. Our study suggests that CRGP-mediated activation of the AMPK/L-OPA1 axis may have potent therapeutic benefits for patients with ALI or other diseases with necroptosis.
Collapse
Affiliation(s)
- Hui-Ling Jiang
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, Sichuan, China
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan, China
| | - Hui-Hui Yang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan, China
| | - Yu-Biao Liu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan, China
| | - Jia-Xi Duan
- National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan, China
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin-Xin Guan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan, China
| | - Chen-Yu Zhang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan, China
| | - Wen-Jing Zhong
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan, China
| | - Ling Jin
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan, China
| | - Dai Li
- Phase I Clinical Research Center, Xiangya Hospital, Central South University, Changsha, China
| | - Qing Li
- Department of Physiology, Hunan University of Medicine, Huaihua, Hunan, China
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan, China
| | - Cha-Xiang Guan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan, China
| |
Collapse
|
2
|
Mishra A, Betancourt A, Vidyadharan VA, Blesson CS, Belfort M, Yallampalli C, Chauhan M. Calcitonin gene-related peptide protects from soluble fms-like tyrosine kinase-1-induced vascular dysfunction in a preeclampsia mouse model. Front Physiol 2023; 14:1221684. [PMID: 37719463 PMCID: PMC10500126 DOI: 10.3389/fphys.2023.1221684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/07/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction: Preeclampsia (PE) is a hypertensive disorder during pregnancy associated with elevated levels of soluble FMS-like tyrosine kinase (sFLT-1) and increased vascular sensitivity to angiotensin II (ATII). Calcitonin gene-related peptide (CALCA) is a potent vasodilator that inhibits the ATII-induced increase in blood pressure and protects against ATII-induced increases in oxidative stress through a mitochondrial-dependent pathway in male mice. In rodent pregnancy, CALCA facilitates pregnancy-induced vascular adaptation. Most of the vascular effects of CALCA are mediated by vascular smooth muscle cells (VSMCs). We recently reported that CALCA treatment inhibits sFLT-1-induced decreases in cAMP synthesis in omental artery smooth muscle cells (OASMCs) isolated from pregnant women and has relaxant effects in omental arteries (OAs) isolated from pregnant women with preeclamptic (PE) pregnancies. The current study was designed to assess the effects of sFLT-1 on mitochondrial bioenergetics in OASMCs isolated from pregnant women in the presence or absence of CALCA and assess the development of vascular dysfunction in sFLT-1 using a mouse model of PE pregnancy. Methods: OASMCs were isolated from pregnant women to assess the effects of sFLT-1 on mitochondrial bioenergetics and oxidative stress using the Seahorse assay and quantitative PCR. Pregnant mice overexpressing sFLT-1 via adenoviral delivery were used to assess the effects of CALCA infusion on the sFLT-1-induced increase in blood pressure, ATII hypersensitivity, fetal growth restriction, and the elevated albumin-creatinine ratio. Systemic blood pressure was recorded in conscious, freely moving mice using implantable radio telemetry devices. Results: CALCA inhibited the following sFLT-1-induced effects: 1) increased oxidative stress and the decreased oxygen consumption rate (OCR) in response to maximal respiration and ATP synthesis; 2) increases in the expression of mitochondrial enzyme complexes in OASMCs; 3) increased mitochondrial fragmentation in OASMCs; 4) decreased expression of mitophagy-associated PINK1 and DRAM1 mRNA expression in OASMCs; and 5) increased blood pressure, ATII hypersensitivity, fetal growth restriction, and the albumin-creatinine ratio in sFLT-1-overexpressing pregnant mice. Conclusion: CALCA inhibits sFLT-1-induced alterations in mitochondrial bioenergetics in vascular smooth muscle cells and development of maternal vascular dysfunction in a mouse model of PE.
Collapse
Affiliation(s)
| | | | | | | | | | - Chandra Yallampalli
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, United States
| | - Madhu Chauhan
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
3
|
Zhou J. LncRNA MIAT promotes hypoxia-induced H9C2 cell pyroptosis via binding to SF1 to inhibit CGRP transcription. Exp Physiol 2021; 107:58-67. [PMID: 34713933 DOI: 10.1113/ep089833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/26/2021] [Indexed: 12/26/2022]
Abstract
NEW FINDINGS What is the central question of this study? How does long non-coding RNA myocardial infarction-associated transcript (lncRNA MIAT) function in hypoxia-induced H9C2 cells? What is the main finding and its importance? LncRNA MIAT inhibited transcription of calcitonin gene-related peptide by binding to splicing factor 1, thereby promoting hypoxia-induced H9C2 cell pyroptosis. This study provides a new theoretical basis for the treatment of acute myocardial infarction by using lncRNA MIAT as a molecular target to mediate cardiomyocyte pyrodeath. ABSTRACT Hypoxia induces severe cardiomyocyte pyroptosis, contributing to acute myocardial infarction. The aim of this study was to analyse the molecular mechanism of long non-coding RNA myocardial infarction-associated transcript (lncRNA MIAT) in hypoxia-induced H9C2 cell pyroptosis. A hypoxic H9C2 cell model was established. Cell viability was detected via the Cell Counting Kit-8 method. Levels of lactate dehydrogenase, malondialdehyde and superoxide dismutase and expressions of pyroptotic markers, lncRNA MIAT, splicing factor 1 (SF1) and calcitonin gene-related peptide (CGRP) were detected via qRT-PCR. The subcellular localization of lncRNA MIAT was predicted and confirmed via LncATLAS and nuclear/cytosol fractionation assay. The binding relationships between lncRNA MIAT and SF1 and between SF1 and the CGRP promotor were verified via RNA immunoprecipitation. Rescue experiments were designed to confirm the role of lncRNA MIAT/SF1/CGRP in H9C2 cell pyroptosis. LncRNA MIAT was overexpressed in hypoxia-induced H9C2 cells. Hypoxia induced pyroptosis in H9C2 cells. Silencing of lncRNA MIAT enhanced cell viability and alleviated pyroptosis. LncRNA MIAT inhibited CGRP transcription via binding to SF1. Overexpression of SF1 promoted CGRP transcription and relieved H9C2 cell pyroptosis. Downregulation of CGRP reversed the role of silencing lncRNA MIAT in H9C2 cell pyroptosis. Overall, lncRNA MIAT inhibited CGRP transcription via binding to SF1, thereby promoting hypoxia-induced H9C2 cell pyroptosis.
Collapse
Affiliation(s)
- Jingli Zhou
- Department of Cardiology, Shanxi Provincial People's Hospital, Taiyuan City, Shanxi Province, 030000, PR China
| |
Collapse
|
4
|
Zheng J, Mao Z, Zhang J, Jiang L, Wang N. Paeonol Pretreatment Attenuates Anoxia-Reoxygenation Induced Injury in Cardiac Myocytes via a BRCA1 Dependent Pathway. Chem Pharm Bull (Tokyo) 2021; 68:1163-1169. [PMID: 33268648 DOI: 10.1248/cpb.c20-00524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Breast cancer type 1 sensitive protein (BRCA1) is a well-known tumor suppressor and its role in oxidative stress has been confirmed. The purpose of this study is to evaluate whether paeonol has a protective effect on myocardial hypoxia-reoxygenation (A/R) injury, and to explore H9C2 cells through a mechanism-dependent pathway mediated by BRCA1. H9C2 cells were pretreated with paeonol (10 µM) for 18 h before hypoxia was induced to establish a cell model of myocardial ischemia/reperfusion (I/R) injury. Use commercial kits to detect antioxidant indicators, including relative oxygen content (ROS) levels, total antioxidant capacity (T-AOC), superoxide dismutase (SOD), lactate dehydrogenase (LDH) activity, and creatine kinase (CK-MB) and nuclear factor-kappaB (NF-κB) activity. The cell viability was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction method. Real-time fluorescent quantitative PCR was used to detect BRCA1 mRNA and protein levels. The expression levels of BRCA1, NLRP3 and ACS were determined by Western blotting. In addition, the release of interleukin (IL)-1β (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α) was also evaluated by an enzyme-linked immunosorbent assay (ELISA) kit. The results showed that paeonol (10 µM) can significantly improve the hypoxic A/R damage of H9C2 cells, and the BRCA1 expression of H9C2 cells pretreated with paeonol was significantly increased before A/R damage was induced. BRCA1 is widely known in breast and ovarian cancer. Our data proves that the down-regulation of BRCA1 participates in the decrease of cell viability and the decrease of CK-MB and LDH activities, and protects cells by inhibiting the production of ROS and the activation of Nod-like receptor protein 3 (NLRP3) inflammasomes and NF-κB. In conclusion, paeonol significantly improved the A/R damage of H9C2 cells induced by hypoxia through the BRCA1/ROS-regulated NLRP3 inflammasome/IL-1β and NF-κB/TNF-α/IL-6 pathways. It may be a potential drug against myocardial I/R injury.
Collapse
Affiliation(s)
- Jifeng Zheng
- Department of Cardiology, The Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou First People's Hospital.,Department of Cardiology, The Affiliated Second Hospital of Jiaxing Medical University
| | - Zhiyao Mao
- Department of Cardiology, The Affiliated Second Hospital of Jiaxing Medical University
| | - Jianqin Zhang
- Department of Cardiology, The Affiliated Second Hospital of Jiaxing Medical University
| | - Liqing Jiang
- Department of Cardiology, The Affiliated Second Hospital of Jiaxing Medical University
| | - Ningfu Wang
- Department of Cardiology, The Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou First People's Hospital
| |
Collapse
|
5
|
Penna C, Femminò S, Caldera F, Rubin Pedrazzo A, Cecone C, Alfì E, Comità S, Higashiyama T, Trotta F, Pagliaro P, Cavalli R. Cyclic Nigerosyl-Nigerose as Oxygen Nanocarrier to Protect Cellular Models from Hypoxia/Reoxygenation Injury: Implications from an In Vitro Model. Int J Mol Sci 2021; 22:ijms22084208. [PMID: 33921614 PMCID: PMC8073687 DOI: 10.3390/ijms22084208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/30/2021] [Accepted: 04/14/2021] [Indexed: 01/30/2023] Open
Abstract
Heart failure (HF) prevalence is increasing among the aging population, and the mortality rate remains unacceptably high despite improvements in therapy. Myocardial ischemia (MI) and, consequently, ischemia/reperfusion injury (IRI), are frequently the basis of HF development. Therefore, cardioprotective strategies to limit IRI are mandatory. Nanocarriers have been proposed as alternative therapy for cardiovascular disease. Controlled reoxygenation may be a promising strategy. Novel nanocarriers, such as cyclic nigerosyl-nigerose (CNN), can be innovative tools for oxygen delivery in a controlled manner. In this study we analyzed new CNN-based formulations as oxygen nanocarriers (O2-CNN), and compared them with nitrogen CNN (N2-CNN). These different CNN-based formulations were tested using two cellular models, namely, cardiomyoblasts (H9c2), and endothelial (HMEC) cell lines, at different concentrations. The effects on the growth curve during normoxia (21% O2, 5% CO2 and 74% N2) and their protective effects during hypoxia (1% O2, 5% CO2 and 94% N2) and reoxygenation (21% O2, 5% CO2 and 74% N2) were studied. Neither O2-CNN nor N2-CNN has any effect on the growth curve during normoxia. However, O2-CNN applied before hypoxia induces a 15–30% reduction in cell mortality after hypoxia/re-oxygenation when compared to N2-CNN. O2-CNN showed a marked efficacy in controlled oxygenation, which suggests an interesting potential for the future medical application of soluble nanocarrier systems for MI treatment.
Collapse
Affiliation(s)
- Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy; (C.P.); (S.F.); (E.A.); (S.C.)
| | - Saveria Femminò
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy; (C.P.); (S.F.); (E.A.); (S.C.)
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Fabrizio Caldera
- Department of Chemistry, University of Turin, 10125 Turin, Italy; (F.C.); (A.R.P.); (C.C.)
| | - Alberto Rubin Pedrazzo
- Department of Chemistry, University of Turin, 10125 Turin, Italy; (F.C.); (A.R.P.); (C.C.)
| | - Claudio Cecone
- Department of Chemistry, University of Turin, 10125 Turin, Italy; (F.C.); (A.R.P.); (C.C.)
| | - Edoardo Alfì
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy; (C.P.); (S.F.); (E.A.); (S.C.)
| | - Stefano Comità
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy; (C.P.); (S.F.); (E.A.); (S.C.)
| | - Takanobu Higashiyama
- Hayashibara CO., LTD./Nagase Group 675-1 Fujisaki, Naka-ku, Okayama 702-8006, Japan;
| | - Francesco Trotta
- Department of Chemistry, University of Turin, 10125 Turin, Italy; (F.C.); (A.R.P.); (C.C.)
- Correspondence: (F.T.); (P.P.); (R.C.)
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy; (C.P.); (S.F.); (E.A.); (S.C.)
- Correspondence: (F.T.); (P.P.); (R.C.)
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy
- Correspondence: (F.T.); (P.P.); (R.C.)
| |
Collapse
|
6
|
Cardiovascular Therapeutic Potential of the Redox Siblings, Nitric Oxide (NO•) and Nitroxyl (HNO), in the Setting of Reactive Oxygen Species Dysregulation. Handb Exp Pharmacol 2020; 264:311-337. [PMID: 32813078 DOI: 10.1007/164_2020_389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Reactive oxygen species (ROS) dysregulation is a hallmark of cardiovascular disease, characterised by an imbalance in the synthesis and removal of ROS. ROS such as superoxide (•O2-), hydrogen peroxide (H2O2), hydroxyl (OH•) and peroxynitrite (ONOO-) have a marked impact on cardiovascular function, contributing to the vascular impairment and cardiac dysfunction associated with diseases such as angina, hypertension, diabetes and heart failure. Central to the vascular dysfunction is a reduction in bioavailability and/or physiological effects of vasoprotective nitric oxide (NO•), leading to vasoconstriction, inflammation and vascular remodelling. In a cardiac context, increased ROS generation can also lead to modification of key proteins involved in cardiac contractility. Whilst playing a key role in the pathogenesis of cardiovascular disease, ROS dysregulation also limits the clinical efficacy of current therapies, such as nitrosovasodilators. As such, alternate therapies are sought. This review will discuss the impact of ROS dysregulation on the therapeutic utility of NO• and its redox sibling, nitroxyl (HNO). Both nitric oxide (NO) and nitroxyl (HNO) donors signal through soluble guanylyl cyclase (sGC). NO binds to the Fe(II) form of sGC and nitroxyl possibly to both sGC heme and thiol groups. In the vasculature, nitroxyl can also signal through voltage-dependent (Kv) and ATP-sensitive (KATP) K+ channels as well as calcitonin gene-related peptide (CGRP). In the heart, HNO directly targets critical thiols to increase myocardial contractility, an effect not seen with NO. The qualitative effects via elevation of cGMP are similar, i.e. lusitropic in the heart and inhibitory on vasoconstriction, inflammation, aggregation and vascular remodelling. Of pathophysiological significance is the fact the efficacy of NO donors is impaired by ROS, e.g. through chemical scavenging of NO, to generate reactive nitrogen oxide species (RNOS), whilst nitroxyl is apparently not.
Collapse
|
7
|
Schiffer JA, Servello FA, Heath WR, Amrit FRG, Stumbur SV, Eder M, Martin OMF, Johnsen SB, Stanley JA, Tam H, Brennan SJ, McGowan NG, Vogelaar AL, Xu Y, Serkin WT, Ghazi A, Stroustrup N, Apfeld J. Caenorhabditis elegans processes sensory information to choose between freeloading and self-defense strategies. eLife 2020; 9:e56186. [PMID: 32367802 PMCID: PMC7213980 DOI: 10.7554/elife.56186] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/21/2020] [Indexed: 12/20/2022] Open
Abstract
Hydrogen peroxide is the preeminent chemical weapon that organisms use for combat. Individual cells rely on conserved defenses to prevent and repair peroxide-induced damage, but whether similar defenses might be coordinated across cells in animals remains poorly understood. Here, we identify a neuronal circuit in the nematode Caenorhabditis elegans that processes information perceived by two sensory neurons to control the induction of hydrogen peroxide defenses in the organism. We found that catalases produced by Escherichia coli, the nematode's food source, can deplete hydrogen peroxide from the local environment and thereby protect the nematodes. In the presence of E. coli, the nematode's neurons signal via TGFβ-insulin/IGF1 relay to target tissues to repress expression of catalases and other hydrogen peroxide defenses. This adaptive strategy is the first example of a multicellular organism modulating its defenses when it expects to freeload from the protection provided by molecularly orthologous defenses from another species.
Collapse
Affiliation(s)
| | | | - William R Heath
- Biology Department, Northeastern UniversityBostonUnited States
| | | | | | - Matthias Eder
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Olivier MF Martin
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Sean B Johnsen
- Biology Department, Northeastern UniversityBostonUnited States
| | | | - Hannah Tam
- Biology Department, Northeastern UniversityBostonUnited States
| | - Sarah J Brennan
- Biology Department, Northeastern UniversityBostonUnited States
| | | | | | - Yuyan Xu
- Biology Department, Northeastern UniversityBostonUnited States
| | | | - Arjumand Ghazi
- Department of Pediatrics, University of Pittsburgh School of MedicinePittsburghUnited States
- Departments of Developmental Biology and Cell Biology and Physiology, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Nicholas Stroustrup
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Javier Apfeld
- Biology Department, Northeastern UniversityBostonUnited States
| |
Collapse
|
8
|
Hou J, He H, Huang S, Qian M, Wang J, Tan X, Han G, Song Y, Xu Z, Liu Y. A mitochondria-targeted nitric oxide donor triggered by superoxide radical to alleviate myocardial ischemia/reperfusion injury. Chem Commun (Camb) 2019; 55:1205-1208. [DOI: 10.1039/c8cc07304j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We report a mitochondria-targeted and superoxide-responsive nitric oxide donor with good protection against ischemia/reperfusion injury in H9c2 cells and isolated rat hearts.
Collapse
|
9
|
Guo Z, Liu N, Chen L, Zhao X, Li MR. Independent roles of CGRP in cardioprotection and hemodynamic regulation in ischemic postconditioning. Eur J Pharmacol 2018; 828:18-25. [DOI: 10.1016/j.ejphar.2018.03.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 11/26/2022]
|
10
|
Li H, Xiao CS, Bian YF, Bai R, Gao F. Intermedin attenuates high-glucose exacerbated simulated hypoxia/reoxygenation injury in H9c2 cardiomyocytes via ERK1/2 signaling. EUR J INFLAMM 2017. [DOI: 10.1177/1721727x17744096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective: This study investigated whether and how intermedin (IMD) exerted a protective effect against simulated hypoxia/reoxygenation (H/R) injury in high-glucose-treated H9c2 cells. Methods: Cellular viability was assessed via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Oxidative stress was determined by malondialdehyde and superoxide dismutase content in the culture medium supernatant. Flow cytometry with Annexin V/propidium iodide staining was used to detect the cardiomyocyte apoptosis rate. The protein expression of Bax, Bcl-2, caspase-3, and ERK1/2 was determined by western blot. Results: IMD administration to H9c2 cells during H/R injury decreased oxidative stress product generation and inhibited apoptosis ( P < 0.05 or P < 0.01) while these effects were blocked by the ERK1/2 inhibitor ( P < 0.05 or P < 0.01). Through the application of a specific ERK1/2 inhibitor, it was demonstrated that IMD mitigates high-glucose-induced oxidative stress and apoptosis via ERK1/2 signaling. Conclusion: Intermedin may be a novel therapeutic agent for mitigating diabetic cardiovascular injury in the clinical setting.
Collapse
Affiliation(s)
- Hong Li
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chuan-Shi Xiao
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yun-Fei Bian
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Rui Bai
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Fen Gao
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|