1
|
Bai S, Wang H, Bai Y, Liu P, Bi C. β-Asarone Inhibits Carboplatin Resistance in Retinoblastoma Cells Through the UCA1/miR-206/NRP1 Axis. Biochem Genet 2024:10.1007/s10528-024-10985-1. [PMID: 39718722 DOI: 10.1007/s10528-024-10985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024]
Abstract
Retinoblastoma (RB) is an aggressive form of eye cancer. β-Asarone is a bioactive component isolated from the medicinal plant Acorus tatarinowii Schott and has anticancer effects on various human cancers. However, reports regarding the role of β-Asarone in RB remain limited. Our study investigates the mechanisms of β-Asarone in regulating drug resistance in RB, providing a theoretical foundation for RB treatment. A carboplatin-resistant RB cell line was established and treated with β-Asarone, followed by overexpression of long non-coding RNA (lncRNA) urothelial carcinoma-associated 1 (UCA1). The half-maximal inhibitory concentration and cell apoptosis were determined. The levels of lncRNA UCA1/miR-206/neuropilin 1 (NRP1) were measured. The subcellular localization of lncRNA UCA1 was examined. The binding relationships between lncRNA UCA1 and microRNA (miR)-206, and between miR-206 and NRP1 were analyzed. NRP1 expression was analyzed by Western blot assay. We found that β-Asarone downregulated lncRNA UCA1 expression in carboplatin-resistant RB cells. Overexpression of lncRNA UCA1 reversed the inhibitory effect of β-Asarone on cell drug resistance and cell proliferation and reduced apoptosis. LncRNA UCA1 functioned as a sponge for miR-206, which suppressed NRP1 expression. Inhibition of miR-206 or overexpression of NRP1 could partially reverse the suppressive effect of β-Asarone on RB cell drug resistance. In conclusion, β-Asarone suppresses RB cell drug resistance through the lncRNA UCA1/miR-206/NRP1 axis.
Collapse
Affiliation(s)
- Shuwei Bai
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, No. 21 Jiefang Rd, Xi'an, 710004, Shaanxi, China
| | - Haiyan Wang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, No. 21 Jiefang Rd, Xi'an, 710004, Shaanxi, China
| | - Ye Bai
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, No. 21 Jiefang Rd, Xi'an, 710004, Shaanxi, China
| | - Peiyang Liu
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, No. 21 Jiefang Rd, Xi'an, 710004, Shaanxi, China
| | - Chunchao Bi
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, No. 21 Jiefang Rd, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
2
|
Guo Y, Ashrafizadeh M, Tambuwala MM, Ren J, Orive G, Yu G. P-glycoprotein (P-gp)-driven cancer drug resistance: biological profile, non-coding RNAs, drugs and nanomodulators. Drug Discov Today 2024; 29:104161. [PMID: 39245345 DOI: 10.1016/j.drudis.2024.104161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/07/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Drug resistance has compromised the efficacy of chemotherapy. The dysregulation of drug transporters including P-glycoprotein (P-gp) can mediate drug resistance through drug efflux. In this review, we highlight the role of P-gp in cancer drug resistance and the related molecular pathways, including phosphoinositide 3-kinase (PI3K)-Akt, phosphatase and tensin homolog (PTEN) and nuclear factor-κB (NF-κB), along with non-coding RNAs (ncRNAs). Extracellular vesicles secreted by the cells can transport ncRNAs and other proteins to change P-gp activity in cancer drug resistance. P-gp requires ATP to function, and the induction of mitochondrial dysfunction or inhibition of glutamine metabolism can impair P-gp function, thus increasing chemosensitivity. Phytochemicals, small molecules and nanoparticles have been introduced as P-gp inhibitors to increase drug sensitivity in human cancers.
Collapse
Affiliation(s)
- Yang Guo
- Department of Respiratory and Critical Care Medicine, Shenyang Tenth People's Hospital (Shenyang Chest Hospital), No. 11 Beihai Street, Dadong District, Shenyang 110044, Liaoning, China
| | - Milad Ashrafizadeh
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore.
| | - Guiping Yu
- Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Nantong University, No. 163 Shoushan Road, Jiangyin, China.
| |
Collapse
|
3
|
Zhao X, Sun L, Wang J, Xu X, Ni S, Liu M, Hu K. Nose to brain delivery of Astragaloside IV by β-Asarone modified chitosan nanoparticles for multiple sclerosis therapy. Int J Pharm 2023; 644:123351. [PMID: 37640088 DOI: 10.1016/j.ijpharm.2023.123351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/29/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Multiple sclerosis (MS), an autoimmune disease, has been considered an inflammatory disorder of the central nervous system (CNS) with demyelination and axonal damage. Although there are certain first-line therapies to treat MS, their unsatisfactory efficacy is partly due to the limited CNS access after systemic administration. Besides, there is an urgent need to treat MS by enhancing remyelination or neuroprotection, or dampen the activity of microglia. Astragaloside IV (ASI) bears anti-inflammatory, antioxidant, remyelination and neuroprotective activity. While its poor permeability, relatively high molecular weight and low lipophilicity restrict it to reach the brain. Therefore, β-asarone modified ASI loaded chitosan nanoparticles (ASI-βCS-NP) were prepared to enhance the nose-to-brain delivery and therapeutic effects of ASI on EAE mice. The prepared ASI-βCS-NP showed mean size of about 120 nm, and zeta potential from +19 to +25 mV. DiR-βCS-NP was confirmed with good nose-to-brain targeting ability. After intranasal administration, the ASI-βCS-NP significantly reduced behavioral scores, decreased weight loss, suppressed inflammatory infiltration and astrocyte/microglial activation, reduced demyelination and increased remyelination on a mice EAE model. Our findings indicate that ASI-βCS-NP may be a potent treatment for MS after nose-to-brain drug delivery.
Collapse
Affiliation(s)
- Xiao Zhao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Lixue Sun
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Jing Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Xiaolu Xu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Shuting Ni
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Mei Liu
- Industrial Development Center of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| | - Kaili Hu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| |
Collapse
|
4
|
Shuai SY, Liu SS, Liu XJ, Zhang GS, Zheng Q, Yue PF, Yang M, Hu PY. Essential oil of Ligusticum chuanxiong Hort. Regulated P-gp protein and tight junction protein to change pharmacokinetic parameters of temozolomide in blood, brain and tumor. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115646. [PMID: 36031103 DOI: 10.1016/j.jep.2022.115646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 08/08/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The existence of the blood-brain barrier/blood tumor barrier (BBB/BTB) severely restricts the effectiveness of anti-tumor drugs, thus glioma is still an incurable disease with a high fatality rate. Chuanxiong (Ligusticum chuanxiong Hort., Umbelliferae) was used as a messenger drug to increase the distribution of drugs in brain tissue, and its application in Chinese herbal formula for treating glioma was also the highest. AIM OF THE STUDY Our previous researches showed that essential oil (EO) of chuanxiong could promote temozolomide (TMZ) entry into glioma cells in vitro and enhance TMZ-induced anticancer efficiency in vivo, and therefore, the aim of this study was to investigate whether EO could increase the concentration accumulation of TMZ in brain or tumor of C6 glioma rats and the related mechanisms. MATERIALS AND METHODS The pharmacokinetics were conducted in C6 glioma rats by administering either TMZ alone or combined with EO through oral routes. TMZ concentration in blood, brain and tumor was detected using liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) and then pharmacokinetic parameters were calculated. The changed expressions of P-gp protein, tight junction occludin, claudin-5 and zonula occludens-1 (ZO-1) in brain of glioma rats were studied by Western blot to clarify the mechanism. Finally, the chemical composition of EO was analyzed by gas chromatography-massspectrometry (GC-MS). RESULTS The results showed that EO significantly affected the pharmacokinetic parameters such as Tmax, Cmax and CL (p < 0.01), but did not significantly change the AUC(0→∞) of TMZ in blood (p > 0.05). However, EO markedly improved the AUC(0→∞)of TMZ in brain and tumor (p < 0.01). The calculate drug targeting index was greater than 1, indicating that EO could promote the distribution of TMZ to the brain and tumor. Western blot analysis showed that EO significantly inhibited the expression of P-gp, tight junction protein claudin-5, occludin and ZO-1. And meanwhile, the expressions of P-gp, claudin-5 and occludin also markedly down-regulated in EO-TMZ co-administration treatment. GC-MS analysis of the TIC component of EO was (E)-Ligustilide (36.93%), Terpinolene (7.245%), gamma-terpinene (7.225%) etc. CONCLUSION: EO could promote the distribution of TMZ in the brain and tumor of C6 glioma rats, which may attribute to down-regulate the expression of P-gp, claudin-5 and occludin.
Collapse
Affiliation(s)
- Shu-Yuan Shuai
- Key Lab of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Shan-Shan Liu
- Key Lab of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Xiao-Jin Liu
- Key Lab of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Guo-Song Zhang
- Key Lab of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Qin Zheng
- Key Lab of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Peng-Fei Yue
- Key Lab of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Ming Yang
- Key Lab of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Peng-Yi Hu
- Key Lab of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| |
Collapse
|
5
|
He C, Lu S, Wang XZ, Wang CC, Wang L, Liang SP, Luo TF, Wang ZC, Piao MH, Chi GF, Ge PF. FOXO3a protects glioma cells against temozolomide-induced DNA double strand breaks via promotion of BNIP3-mediated mitophagy. Acta Pharmacol Sin 2021; 42:1324-1337. [PMID: 33879840 PMCID: PMC8285492 DOI: 10.1038/s41401-021-00663-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/17/2021] [Indexed: 02/02/2023] Open
Abstract
FOXO3a (forkhead box transcription factor 3a) is involved in regulating multiple biological processes in cancer cells. BNIP3 (Bcl-2/adenovirus E1B 19-kDa-interacting protein 3) is a receptor accounting for priming damaged mitochondria for autophagic removal. In this study we investigated the role of FOXO3a in regulating the sensitivity of glioma cells to temozolomide (TMZ) and its relationship with BNIP3-mediated mitophagy. We showed that TMZ dosage-dependently inhibited the viability of human U87, U251, T98G, LN18 and rat C6 glioma cells with IC50 values of 135.75, 128.26, 142.65, 155.73 and 111.60 μM, respectively. In U87 and U251 cells, TMZ (200 μM) induced DNA double strand breaks (DSBs) and nuclear translocation of apoptosis inducing factor (AIF), which was accompanied by BNIP3-mediated mitophagy and FOXO3a accumulation in nucleus. TMZ treatment induced intracellular ROS accumulation in U87 and U251 cells via enhancing mitochondrial superoxide, which not only contributed to DNA DSBs and exacerbated mitochondrial dysfunction, but also upregulated FOXO3a expression. Knockdown of FOXO3a aggravated TMZ-induced DNA DSBs and mitochondrial damage, as well as glioma cell death. TMZ treatment not only upregulated BNIP3 and activated autophagy, but also triggered mitophagy by prompting BNIP3 translocation to mitochondria and reinforcing BNIP3 interaction with LC3BII. Inhibition of mitophagy by knocking down BNIP3 with SiRNA or blocking autophagy with 3MA or bafilomycin A1 exacerbated mitochondrial superoxide and intracellular ROS accumulation. Moreover, FOXO3a knockdown inhibited TMZ-induced BNIP3 upregulation and autophagy activation. In addition, we showed that treatment with TMZ (100 mg·kg-1·d-1, ip) for 12 days in C6 cell xenograft mice markedly inhibited tumor growth accompanied by inducing FOXO3a upregulation, oxidative stress and BNIP3-mediated mitophagy in tumor tissues. These results demonstrate that FOXO3a attenuates temozolomide-induced DNA double strand breaks in human glioma cells via promoting BNIP3-mediated mitophagy.
Collapse
Affiliation(s)
- Chuan He
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Shan Lu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Xuan-Zhong Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Chong-Cheng Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Lei Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Shi-Peng Liang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Tian-Fei Luo
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
- Department of Neurology, First Hospital of Jilin University, Changchun, 130021, China
| | - Zhen-Chuan Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Mei-Hua Piao
- Department of Anesthesiology, First hospital of Jilin University, Changchun, 130021, China
| | - Guang-Fan Chi
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Peng-Fei Ge
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China.
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
6
|
Tan J, Duan X, Zhang F, Ban X, Mao J, Cao M, Han S, Shuai X, Shen J. Theranostic Nanomedicine for Synergistic Chemodynamic Therapy and Chemotherapy of Orthotopic Glioma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2003036. [PMID: 33344142 PMCID: PMC7740078 DOI: 10.1002/advs.202003036] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Indexed: 05/17/2023]
Abstract
Glioma is a common primary brain malignancy with a poor prognosis. Chemotherapy is the first-line treatment for brain tumors but low efficiency of drugs in crossing the blood-brain barrier (BBB) and drug resistance related to tumor hypoxia thwart its efficacy. Herein, a theranostic nanodrug (iRPPA@TMZ/MnO) is developed by incorporating oleic acid-modified manganese oxide (MnO) and temozolomide (TMZ) into a polyethylene glycol-poly(2-(diisopropylamino)ethyl methacrylate-based polymeric micelle containing internalizing arginine-glycine-aspartic acid (iRGD). The presence of iRGD provides the nanodrug with a high capacity of crossing the BBB and penetrating the tumor tissue. After accumulation in glioma, the nanodrug responds to the tumor microenvironment to simultaneously release TMZ, Mn2+, and O2. The released TMZ induces tumor cell apoptosis and the released Mn2+ causes intracellular oxidative stress that kill tumor cells via a Fenton-like reaction. The O2 produced in situ alleviates tumor hypoxia and enhances the chemotherapy/chemodynamic therapeutic effects against glioma. The Mn2+ can also serve as a magnetic resonance imaging (MRI) contrast agent for tumor imaging during therapy. The study demonstrates the great potential of this multifunctional nanodrug for MRI-visible therapy of brain glioma.
Collapse
Affiliation(s)
- Junyi Tan
- Department of RadiologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- PCFM Lab of Ministry of EducationSchool of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Xiaohui Duan
- Department of RadiologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Fang Zhang
- Department of RadiologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Xiaohua Ban
- Department of RadiologySun Yat‐sen University Cancer CentreSun Yat‐sen UniversityGuangzhou510060China
| | - Jiaji Mao
- Department of RadiologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Minghui Cao
- Department of RadiologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Shisong Han
- PCFM Lab of Ministry of EducationSchool of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Xintao Shuai
- Department of RadiologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- PCFM Lab of Ministry of EducationSchool of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Jun Shen
- Department of RadiologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| |
Collapse
|
7
|
Norouzi M, Yathindranath V, Thliveris JA, Kopec BM, Siahaan TJ, Miller DW. Doxorubicin-loaded iron oxide nanoparticles for glioblastoma therapy: a combinational approach for enhanced delivery of nanoparticles. Sci Rep 2020; 10:11292. [PMID: 32647151 PMCID: PMC7347880 DOI: 10.1038/s41598-020-68017-y] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/16/2020] [Indexed: 01/05/2023] Open
Abstract
Although doxorubicin (DOX) is an effective anti-cancer drug with cytotoxicity in a variety of different tumors, its effectiveness in treating glioblastoma multiforme (GBM) is constrained by insufficient penetration across the blood–brain barrier (BBB). In this study, biocompatible magnetic iron oxide nanoparticles (IONPs) stabilized with trimethoxysilylpropyl-ethylenediamine triacetic acid (EDT) were developed as a carrier of DOX for GBM chemotherapy. The DOX-loaded EDT-IONPs (DOX-EDT-IONPs) released DOX within 4 days with the capability of an accelerated release in acidic microenvironments. The DOX-loaded EDT-IONPs (DOX-EDT-IONPs) demonstrated an efficient uptake in mouse brain-derived microvessel endothelial, bEnd.3, Madin–Darby canine kidney transfected with multi-drug resistant protein 1 (MDCK-MDR1), and human U251 GBM cells. The DOX-EDT-IONPs could augment DOX’s uptake in U251 cells by 2.8-fold and significantly inhibited U251 cell proliferation. Moreover, the DOX-EDT-IONPs were found to be effective in apoptotic-induced GBM cell death (over 90%) within 48 h of treatment. Gene expression studies revealed a significant downregulation of TOP II and Ku70, crucial enzymes for DNA repair and replication, as well as MiR-155 oncogene, concomitant with an upregulation of caspase 3 and tumor suppressors i.e., p53, MEG3 and GAS5, in U251 cells upon treatment with DOX-EDT-IONPs. An in vitro MDCK-MDR1-GBM co-culture model was used to assess the BBB permeability and anti-tumor activity of the DOX-EDT-IONPs and DOX treatments. While DOX-EDT-IONP showed improved permeability of DOX across MDCK-MDR1 monolayers compared to DOX alone, cytotoxicity in U251 cells was similar in both treatment groups. Using a cadherin binding peptide (ADTC5) to transiently open tight junctions, in combination with an external magnetic field, significantly enhanced both DOX-EDT-IONP permeability and cytotoxicity in the MDCK-MDR1-GBM co-culture model. Therefore, the combination of magnetic enhanced convective diffusion and the cadherin binding peptide for transiently opening the BBB tight junctions are expected to enhance the efficacy of GBM chemotherapy using the DOX-EDT-IONPs. In general, the developed approach enables the chemotherapeutic to overcome both BBB and multidrug resistance (MDR) glioma cells while providing site-specific magnetic targeting.
Collapse
Affiliation(s)
- Mohammad Norouzi
- Department of Biomedical Engineering, University of Manitoba, Winnipeg, MB, Canada.,Department of Pharmacology and Therapeutics, University of Manitoba, A205 Chown Bldg., 753 McDermot Avenue, Winnipeg, MB, Canada
| | - Vinith Yathindranath
- Department of Pharmacology and Therapeutics, University of Manitoba, A205 Chown Bldg., 753 McDermot Avenue, Winnipeg, MB, Canada
| | - James A Thliveris
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
| | - Brian M Kopec
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Teruna J Siahaan
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Donald W Miller
- Department of Biomedical Engineering, University of Manitoba, Winnipeg, MB, Canada. .,Department of Pharmacology and Therapeutics, University of Manitoba, A205 Chown Bldg., 753 McDermot Avenue, Winnipeg, MB, Canada.
| |
Collapse
|
8
|
Salinomycin-Loaded Iron Oxide Nanoparticles for Glioblastoma Therapy. NANOMATERIALS 2020; 10:nano10030477. [PMID: 32155938 PMCID: PMC7153627 DOI: 10.3390/nano10030477] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 12/11/2022]
Abstract
Salinomycin is an antibiotic introduced recently as a new and effective anticancer drug. In this study, magnetic iron oxide nanoparticles (IONPs) were utilized as a drug carrier for salinomycin for potential use in glioblastoma (GBM) chemotherapy. The biocompatible polyethylenimine (PEI)-polyethylene glycol (PEG)-IONPs (PEI-PEG-IONPs) exhibited an efficient uptake in both mouse brain-derived microvessel endothelial (bEnd.3) and human U251 GBM cell lines. The salinomycin (Sali)-loaded PEI-PEG-IONPs (Sali-PEI-PEG-IONPs) released salinomycin over 4 days, with an initial release of 44% ± 3% that increased to 66% ± 5% in acidic pH. The Sali-IONPs inhibited U251 cell proliferation and decreased their viability (by approximately 70% within 48 h), and the nanoparticles were found to be effective in reactive oxygen species-mediated GBM cell death. Gene studies revealed significant activation of caspases in U251 cells upon treatment with Sali-IONPs. Furthermore, the upregulation of tumor suppressors (i.e., p53, Rbl2, Gas5) was observed, while TopII, Ku70, CyclinD1, and Wnt1 were concomitantly downregulated. When examined in an in vitro blood–brain barrier (BBB)-GBM co-culture model, Sali-IONPs had limited penetration (1.0% ± 0.08%) through the bEnd.3 monolayer and resulted in 60% viability of U251 cells. However, hyperosmotic disruption coupled with an applied external magnetic field significantly enhanced the permeability of Sali-IONPs across bEnd.3 monolayers (3.2% ± 0.1%) and reduced the viability of U251 cells to 38%. These findings suggest that Sali-IONPs combined with penetration enhancers, such as hyperosmotic mannitol and external magnetic fields, can potentially provide effective and site-specific magnetic targeting for GBM chemotherapy.
Collapse
|
9
|
Wang N, Wang H, Li L, Li Y, Zhang R. β-Asarone Inhibits Amyloid-β by Promoting Autophagy in a Cell Model of Alzheimer's Disease. Front Pharmacol 2020; 10:1529. [PMID: 32009952 PMCID: PMC6979317 DOI: 10.3389/fphar.2019.01529] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 11/26/2019] [Indexed: 01/08/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most common types of dementia that causes memory, thinking, and behavior problems. The most important feature of AD is the gradual irreversible loss of cognitive ability through the formation of amyloid β (Aβ) plaques and neurofibrillary tangles composed of tau protein. The metabolism of Aβ and tau proteins is closely related to and is affected by autophagy. Current research speculates that autophagy dysfunction leads to an increase in harmful proteins in AD. β-Asarone is the main constituent of Acorus tatarinowii Schott and has important effects on the central nervous system. In this paper, we primarily explored the effects of β-asarone on the clearance of noxious proteins and the associated potential mechanisms via autophagy in a PC12 cell AD model. A CCK-8 assay and LDH experiments were used to assess cell viability/toxicity, and SPiDER-βGal was used to detect cellular senescence. The important proteins associated with the pathogenesis of AD including APP, PS1, Aβ, BACE1, and SYN1 were analyzed by immunofluorescence (IF) and Western blot analysis. Antimycin A (A3) and cyclosporine A (CSA) were selected as the activators and inhibitors of autophagy, respectively. LC3, BECN, P62, PINK1, and Parkin protein expression were also examined by IF and Western blot analysis. The data showed that β-asarone administration significantly dose-dependently increased cell proliferation and decreased cytotoxicity; moreover, β-asarone inhibited SA-βGal and improved cell senescence. The results further showed that, compared to the model, APP, PS1, Aβ, BACE1, and p62 were reduced, while SYN1, BECN1, and LC3 were increased after treatment with β-asarone. The results of Canonical Correlation Analysis (CCA) showed a highly significant relationship between the pathological factors of AD and the protein expression of autophagy. In conclusion, our study demonstrated that β-asarone can inhibit Aβ, and this effect may occur by promoting autophagy in a cell model of AD.
Collapse
Affiliation(s)
- Nanbu Wang
- The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Haoyu Wang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Lingyu Li
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yunchuan Li
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Ronghua Zhang
- The First Affiliated Hospital, Jinan University, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
10
|
Dong H, Cong W, Guo X, Wang Y, Tong S, Li Q, Li C. β-asarone relieves chronic unpredictable mild stress induced depression by regulating the extracellular signal-regulated kinase signaling pathway. Exp Ther Med 2019; 18:3767-3774. [PMID: 31616508 PMCID: PMC6781814 DOI: 10.3892/etm.2019.8018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/29/2018] [Indexed: 12/29/2022] Open
Abstract
The present study aimed to investigate the effect of β-asarone treatment in a rat model of depression induced by chronic unpredictable mild stress (CUMS) and to further explore the underlying molecular mechanisms. A rat model of depression was established by subjecting rat to CUMS and treated with various concentrations of β-asarone (12.5, 25 and 50 mg/kg/day) and fluoxetine (20 mg/kg/day). Next, behavioral tests, including an open field, sucrose preference and forced swimming tests, were performed. In addition, the apoptosis of hippocampal neuronal cells was determined by flow cytometry, gene expression levels were detected by reverse transcription-quantitative polymerase chain reaction and protein levels were determined by western blot assay. The results revealed that β-asarone significantly mitigated CUMS-induced depression-like behavior, evidenced by the increased sucrose intake, crossing and rearing numbers, and decreased immobility time in the forced swimming test. Furthermore, β-asarone significantly decreased the apoptosis rate of hippocampal neuronal cells in rats subjected to CUMS. β-asarone was also found to enhance CREB, BDNF, Trk-B and Bcl-2 levels, and reduce Bad level in the hippocampus of CUMS-treated rats. In addition, the activation of extracellular signal-regulated kinase pathway inhibited by CUMS was promoted by β-asarone treatment. In conclusion, the present study findings indicated the antidepressant-like effects of β-asarone on CUMS-induced depression in rats.
Collapse
Affiliation(s)
- Haiying Dong
- Institute of Pathology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Weiliang Cong
- Department of Anaesthesiology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Xiwen Guo
- School of Mental Health, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Yuhua Wang
- School of Mental Health, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Shengju Tong
- Department of General Surgery, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Qiang Li
- Department of Cardiology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Chengchong Li
- School of Mental Health, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| |
Collapse
|
11
|
Yan T, Zhuang J, He L. Carboxamide derivatives induce apoptosis in the U251 glioma cell line. Oncol Lett 2019; 18:1409-1414. [PMID: 31423205 DOI: 10.3892/ol.2019.10434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/08/2019] [Indexed: 12/11/2022] Open
Abstract
Glioma is a malignant tumor that is frequently treated using chemotherapy. The aim of the present study was to examine the antitumor activity of two novel carboxamide derivatives in glioma, and investigate the underlying mechanisms. Two previously designed and synthesized carboxamide derivatives were selected and their effects on glioma cells were evaluated. Specifically, assays to evaluate proliferation, apoptosis, oxidation, caspase-3, -8 and -9 activity, and the expression of Bcl-2 and surviving in glioma cells were conducted. The carboxamide derivatives were revealed to inhibit proliferation, as well as to induce apoptosis and oxidative damage in glioma U251 cells. In addition, the carboxamide derivatives increased the activity of caspase-3, -8 and -9, and suppressed the expression of Bcl-2 and survivin. These findings demonstrate that the carboxamide derivatives displayed antitumor activity against glioma in vitro, which may have been mediated via the induction of oxidative damage and apoptosis.
Collapse
Affiliation(s)
- Tao Yan
- Department of Pharmacy, Tianjin Huanhu Hospital, Tianjin 300350, P.R. China
| | - Junxue Zhuang
- Department of Pharmacy, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin 301800, P.R. China
| | - Lu He
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, P.R. China
| |
Collapse
|
12
|
Wei Y, Xia H, Zhang F, Wang K, Luo P, Wu Y, Liu S. Theranostic Nanoprobe Mediated Simultaneous Monitoring and Inhibition of P-Glycoprotein Potentiating Multidrug-Resistant Cancer Therapy. Anal Chem 2019; 91:11200-11208. [DOI: 10.1021/acs.analchem.9b02118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuanqing Wei
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Hongping Xia
- Department of Pathology, School of Basic Medical Sciences & The Affiliated Sir Run Run Hospital, Nanjing Medical University, Nanjing 21116, China
| | - Fen Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Kan Wang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Peicheng Luo
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yafeng Wu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
13
|
Das BK, Swamy AV, Koti BC, Gadad PC. Experimental evidence for use of Acorus calamus (asarone) for cancer chemoprevention. Heliyon 2019; 5:e01585. [PMID: 31193009 PMCID: PMC6513775 DOI: 10.1016/j.heliyon.2019.e01585] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 04/20/2019] [Accepted: 04/24/2019] [Indexed: 11/25/2022] Open
Abstract
Cancer is one of the major non-communicable diseases posing substantial challenges in both developing and developed countries. The options available for treatment of different cancer are associated with various limitations, including severe toxicity, drug resistance, poor outcomes and a high risk of relapse. Hence, an increased attention and necessity for screening of various phytochemicals from natural sources for superior and safer alternative has been ongoing for several decades. In recent years, phytochemicals like galantamine, erwinaze, rivastigmine, resveratrol from natural sources have been found to be important therapeutic targets for the treatment of various diseases including cancer, neurodegeneration, diabetes, and cardiovascular effects. Acorus calamus (Sweet flag), and/or its bioactive phytochemical alpha (α)-and beta (β)-asarone, is a well-known drug in the traditional system of medicine which possesses anti-tumor and chemo-preventive activities as evident from numerous pre-clinical studies both in-vitro and in-vivo. In this article, we critically review the current available scientific evidences of A. calamus and/or asarone for cancer chemoprevention based on preclinical in-vitro and in-vivo models. In addition, we also have compiled and discussed the molecular targets of mechanism(s) involved in the anti-cancer activity of A. calamus/asarone. Still, extensive in-vivo studies are necessary using various animal models to understand the molecular mechanism behind the pharmacological activity of the bioactive phytochemicals derived from A. calamus. It is strongly believed that the comprehensive evidence presented in this article could deliver a possible source for researchers to conduct future studies pertaining to A. calamus and/or its bioactive phytochemicals asarone for cancer chemoprevention.
Collapse
Affiliation(s)
- Bhrigu Kumar Das
- KLE College of Pharmacy (A Constituent Unit of KLE Academy of Higher Education and Research, Belagavi), Vidyanagar, Hubballi, 580 031, Karnataka, India.,Off-campus Basic and Applied Sciences Research Centre of KLE Academy of Higher Education and Research at KLE College of Pharmacy, Vidyanagar, Hubballi, 580 031, Karnataka, India
| | - Ahm Viswanatha Swamy
- KLE College of Pharmacy (A Constituent Unit of KLE Academy of Higher Education and Research, Belagavi), Vidyanagar, Hubballi, 580 031, Karnataka, India
| | - Basavaraj C Koti
- KLE College of Pharmacy (A Constituent Unit of KLE Academy of Higher Education and Research, Belagavi), Vidyanagar, Hubballi, 580 031, Karnataka, India
| | - Pramod C Gadad
- KLE College of Pharmacy (A Constituent Unit of KLE Academy of Higher Education and Research, Belagavi), Vidyanagar, Hubballi, 580 031, Karnataka, India.,Off-campus Basic and Applied Sciences Research Centre of KLE Academy of Higher Education and Research at KLE College of Pharmacy, Vidyanagar, Hubballi, 580 031, Karnataka, India
| |
Collapse
|
14
|
β-asarone induces cell apoptosis, inhibits cell proliferation and decreases migration and invasion of glioma cells. Biomed Pharmacother 2018; 106:655-664. [DOI: 10.1016/j.biopha.2018.06.169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/29/2018] [Accepted: 06/29/2018] [Indexed: 02/08/2023] Open
|
15
|
Zhu Y, Han Y, Ma Y, Yang P. ADME/toxicity prediction and antitumor activity of novel nitrogenous heterocyclic compounds designed by computer targeting of alkylglycerone phosphate synthase. Oncol Lett 2018; 16:1431-1438. [PMID: 30008821 PMCID: PMC6036461 DOI: 10.3892/ol.2018.8873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 02/15/2018] [Indexed: 12/24/2022] Open
Abstract
Alkylglycerone phosphate synthase (AGPS) is an oncogene and can be considered as an antitumor drug target. The aim of the present study was to design novel nitrogenous heterocyclic compound improving targetability by computer-aided drug design technology targeting AGPS. A total of 12 nitrogenous heterocyclic compounds were designed and predicted the absorption, distribution, metabolism and excretion parameters/toxicity. Their activity in terms of proliferation inhibition, cell cycle arrest and apoptosis induction was then measured using an MTS assay and a high-content screening system in U251 cells. The results showed that anti-glioma activity was present in compounds N4, N5, N6, N7, N8 and N12, which was in accordance with the computer prediction. Therefore, these compounds may be suitable for the development of a novel glioma therapeutic drug.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Clinical Laboratory, Tianjin Key Laboratory of Cerebral Vessels and Neural Degeneration, Tianjin Huanhu Hospital, Tianjin 300350, P.R. China
| | - Yuan Han
- Department of Clinical Laboratory, Tianjin Key Laboratory of Cerebral Vessels and Neural Degeneration, Tianjin Huanhu Hospital, Tianjin 300350, P.R. China
| | - Ying Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Ping Yang
- Department of Clinical Laboratory, Tianjin Key Laboratory of Cerebral Vessels and Neural Degeneration, Tianjin Huanhu Hospital, Tianjin 300350, P.R. China
| |
Collapse
|
16
|
Li XM, Liu J, Pan FF, Shi DD, Wen ZG, Yang PL. Quercetin and aconitine synergistically induces the human cervical carcinoma HeLa cell apoptosis via endoplasmic reticulum (ER) stress pathway. PLoS One 2018; 13:e0191062. [PMID: 29324796 PMCID: PMC5764366 DOI: 10.1371/journal.pone.0191062] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/26/2017] [Indexed: 12/28/2022] Open
Abstract
Up till now, studies have not been conducted on how the combination of Quercetin (Q), Aconitine (A) and apoptosis induction affects human cervical carcinoma HeLa cells. The result of our findings shows that the combination of Q and A (QA) is capable of synergistically inhibiting the proliferation of HeLa cells in a number of concentrations. QA synergistically inhibits the proliferation of MDR1 gene in the HeLa cells. It is concluded based on our result that QA induces apoptosis and ER stress just as QA-induced ER stress pathway may mediate apoptosis by upregulating mRNA expression levels of eIF2α, ATF4, IRE1, XBP1, ATF6, PERK and CHOP in the HeLa cells. The up-regulating of mRNA expression level of GRP78 and activation of UPR are a molecular basis of QA-induced ER stress.
Collapse
Affiliation(s)
- Xiu-Mei Li
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fang-Fang Pan
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Dong-Dong Shi
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhi-Guo Wen
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pei-Long Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
17
|
Wang N, Zhang Q, Luo L, Ning B, Fang Y. β-asarone inhibited cell growth and promoted autophagy via P53/Bcl-2/Bclin-1 and P53/AMPK/mTOR pathways in Human Glioma U251 cells. J Cell Physiol 2017; 233:2434-2443. [PMID: 28776671 DOI: 10.1002/jcp.26118] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/01/2017] [Indexed: 12/21/2022]
Abstract
Glioma is the most common type of primary brain tumor and has an undesirable prognosis. Autophagy plays an important role in cancer therapy, but it is effect is still not definite. P53 is an important tumor suppressor gene and protein that is closely to autophagy. Our aim was to study the effect of β-asarone on inhibiting cell proliferation in human glioma U251 cells and to detect the effect of the inhibition on autophagy through the P53 signal pathway. For cell growth, the cells were divided into four groups: the model, β-asarone, temozolomide (TMZ), and co-administration groups. For cell autoghapy and the P53 pathway, the cells were divided into six groups: the model, β-asarone, 3MA, Rapa, Pifithrin-µ, and NSC groups. The counting Kit-8 assay and flow cytometry (FCM) were then used to measure the cell proliferation and cycle. Electron microscopy was used to observe autophagosome formation. Cell immunohistochemistry/-immunofluorescence, FCM and Western blot (WB) were used to examine the expression of Beclin-1 and P53. The levels of P53 and GAPDH mRNA were detected by RT-PCR. Using WB, we determined autophagy-related proteins Beclin-1, LC3-II/I, and P62 and those of the P53 pathway-related proteins P53, Bcl-2, mTOR, P-mTOR, AMPK, P-AMPK, and GAPDH. We got the results that β-asarone changed the cellular morphology, inhibited cell proliferation, and enhanced the expression of P53, LC3-II/I, Beclin-1, AMPK, and pAMPK while inhibiting the expression of P62, Bcl-2, mTOR, and pmTOR. All the data suggested that β-asarone could reduce the cell proliferation and promote autophagy possible via the P53 pathway in U251 cells.
Collapse
Affiliation(s)
- Nanbu Wang
- Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Qinxin Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Laiyu Luo
- Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Baile Ning
- Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Yongqi Fang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| |
Collapse
|