1
|
Fu L, Cheng L, Lu J, Ye Q, Shu C, Sun C, Liu Z, Liang G, Zhao W. Bicyclol mitigates lipopolysaccharide-induced acute lung injury through myeloid differentiation factor 88 inhibition. Toxicol Appl Pharmacol 2024; 487:116958. [PMID: 38735591 DOI: 10.1016/j.taap.2024.116958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Acute lung injury (ALI) remains a significant clinical challenge due to the absence of effective treatment alternatives. This study presents a new method that employs a screening platform focusing on MyD88 affinity, anti-inflammatory properties, and toxicity. This platform was used to evaluate a 300-compound library known for its anti-inflammatory potential. Among the screened compounds, Bicyclol emerged as a standout, exhibiting MyD88 binding and a significant reduction in LPS-stimulated pro-inflammatory factors production in mouse primary peritoneal macrophages. By targeting MyD88, Bicyclol disrupts the MyD88/TLR4 complex and MyD88 polymer formation, thereby mitigating the MAPKs and NF-κB signaling pathways. In vivo experiments further confirmed Bicyclol's efficacy, demonstrating alleviated ALI symptoms, decreased inflammatory cytokines level, and reduced inflammatory cells presence in lung tissues. These findings were associated with a decrease in mortality in LPS-challenged mice. Overall, Bicyclol represents a promising treatment option for ALI by specifically targeting MyD88 and limiting inflammatory responses.
Collapse
Affiliation(s)
- Lili Fu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Linting Cheng
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Junliang Lu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Qianru Ye
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Cong Shu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Chuchu Sun
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zhiguo Liu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Guang Liang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 310012, China.
| | - Weixin Zhao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, China.
| |
Collapse
|
2
|
Jafernik K, Motyka S, Calina D, Sharifi-Rad J, Szopa A. Comprehensive review of dibenzocyclooctadiene lignans from the Schisandra genus: anticancer potential, mechanistic insights and future prospects in oncology. Chin Med 2024; 19:17. [PMID: 38267965 PMCID: PMC10809469 DOI: 10.1186/s13020-024-00879-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/01/2024] [Indexed: 01/26/2024] Open
Abstract
Cancer remains one of the leading causes of mortality worldwide. The search for novel and effective anticancer agents has been a significant area of research. Dibenzocyclooctadiene lignans (DBCLS), derived from the Schisandra genus plants like: S. chinensis, S. sphenanthera, S. henryi, S. rubriflora, S. grandiflora, S. propinqua, and S. glabra, have been traditionally used in various medicinal systems and are known for their myriad health benefits, including anticancer properties. This comprehensive review aimed to collate and critically analyse the recent literature on the anticancer properties of DBCLS, focusing on their mechanistic approaches against different cancer types. An exhaustive literature search was performed using databases like PubMed/MedLine, Scopus, Web of Science, Embase, TRIP database and Google Scholar from 1980 to 2023. Peer-reviewed articles that elucidated the mechanistic approach of these lignans on cancer cell lines, in vivo models and preliminary clinical studies were included. Studies were assessed for their experimental designs, cancer types studied, and the mechanistic insights provided. The studies demonstrate that the anticancer effects of DBCLS compounds are primarily driven by their ability to trigger apoptosis, arrest the cell cycle, induce oxidative stress, modulate autophagy, and disrupt essential signaling pathways, notably MAPK, PI3K/Akt, and NF-κB. Additionally, these lignans have been shown to amplify the impact of traditional chemotherapy treatments, suggesting their potential role as supportive adjuncts in cancer therapy. Notably, several studies also emphasise their capacity to target cancer stem cells and mitigate multi-drug resistance specifically. DBCLS from the Schisandra genus have showcased significant potential as anticancer agents. Their multi-targeted mechanistic approach makes them promising candidates for further research, potentially leading to developing of new therapeutic strategies in cancer management.
Collapse
Affiliation(s)
- Karolina Jafernik
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Sara Motyka
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9 St., 30-688, Kraków, Poland
- Doctoral School of Medical and Health Sciences, Medical College, Jagiellonian University, Łazarza 16 St., 31-530, Kraków, Poland
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | | | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9 St., 30-688, Kraków, Poland.
| |
Collapse
|
3
|
Chen Y, Lin W, Zhong L, Fang Z, Ye B, Wang Z, Chattipakorn N, Huang W, Liang G, Wu G. Bicyclol Attenuates Obesity-Induced Cardiomyopathy via Inhibiting NF-κB and MAPK Signaling Pathways. Cardiovasc Drugs Ther 2023; 37:1131-1141. [PMID: 35750941 DOI: 10.1007/s10557-022-07356-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/08/2022] [Indexed: 12/19/2022]
Abstract
PURPOSE Schisandra is a well-known traditional Chinese medicine in East Asia. As a traditional Chinese medicine derivative with Schisandra chinensis as raw material, bicyclol is well known for its significant anti-inflammatory effect. Chronic inflammation plays a significant part in obesity-induced cardiomyopathy. Our purpose was to explore the effect and mechanism of bicyclol on obesity-induced cardiomyopathy. METHODS Mice fed with a high-fat diet (HFD) and cardiomyocytes stimulated by palmitic acid (PA) were used as models of obesity-related cardiomyopathy in vivo and in vitro, respectively. The therapeutic effect of bicyclol on pathological changes such as myocardial hypertrophy and fibrosis was evaluated by staining cardiac tissue sections. PCR was used to detect inflammatory factors in H9c2 cells and animal heart tissue after bicyclol treatment. Then, we used western blotting to detect the expression levels of the myocardial hypertrophy related protein, myocardial fibrosis related protein, NF-κB and MAPK pathways. RESULTS Our results indicated that bicyclol treatment significantly alleviates HFD-induced myocardial inflammation, fibrosis, and hypertrophy by inhibiting the MAPK and NF-κB pathways. Similar to animal level results, bicyclol could significantly inhibit PA-induced inflammation and prevent NF-κB and MAPK pathways from being activated. CONCLUSION Our results showed that bicyclol has potential as a drug to treat obesity-induced cardiomyopathy.
Collapse
Affiliation(s)
- Yanghao Chen
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, Wenzhou, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, 325035, Wenzhou, China
| | - Wante Lin
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, Wenzhou, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, 325035, Wenzhou, China
| | - Lingfeng Zhong
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, Wenzhou, China
| | - Zimin Fang
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, Wenzhou, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, 325035, Wenzhou, China
| | - Bozhi Ye
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, Wenzhou, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, 325035, Wenzhou, China
| | - Zhe Wang
- Department of Pharmacy, the Second Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325000, Wenzhou, China
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Weijian Huang
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, Wenzhou, China.
| | - Guang Liang
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, Wenzhou, China.
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, 325035, Wenzhou, China.
- School of Pharmaceutical Sciences, Hangzhou Medical College, Zhejiang, 311399, Hangzhou, China.
| | - Gaojun Wu
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, Wenzhou, China.
| |
Collapse
|
4
|
Endoplasmic Reticulum Stress in Renal Cell Carcinoma. Int J Mol Sci 2023; 24:ijms24054914. [PMID: 36902344 PMCID: PMC10003093 DOI: 10.3390/ijms24054914] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
The endoplasmic reticulum is an organelle exerting crucial functions in protein production, metabolism homeostasis and cell signaling. Endoplasmic reticulum stress occurs when cells are damaged and the capacity of this organelle to perform its normal functions is reduced. Subsequently, specific signaling cascades, together forming the so-called unfolded protein response, are activated and deeply impact cell fate. In normal renal cells, these molecular pathways strive to either resolve cell injury or activate cell death, depending on the extent of cell damage. Therefore, the activation of the endoplasmic reticulum stress pathway was suggested as an interesting therapeutic strategy for pathologies such as cancer. However, renal cancer cells are known to hijack these stress mechanisms and exploit them to their advantage in order to promote their survival through rewiring of their metabolism, activation of oxidative stress responses, autophagy, inhibition of apoptosis and senescence. Recent data strongly suggest that a certain threshold of endoplasmic reticulum stress activation needs to be attained in cancer cells in order to shift endoplasmic reticulum stress responses from a pro-survival to a pro-apoptotic outcome. Several endoplasmic reticulum stress pharmacological modulators of interest for therapeutic purposes are already available, but only a handful were tested in the case of renal carcinoma, and their effects in an in vivo setting remain poorly known. This review discusses the relevance of endoplasmic reticulum stress activation or suppression in renal cancer cell progression and the therapeutic potential of targeting this cellular process for this cancer.
Collapse
|
5
|
Identification of a novel mechanism for reversal of doxorubicin-induced chemotherapy resistance by TXNIP in triple-negative breast cancer via promoting reactive oxygen-mediated DNA damage. Cell Death Dis 2022; 13:338. [PMID: 35414060 PMCID: PMC9005717 DOI: 10.1038/s41419-022-04783-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 12/28/2022]
Abstract
Given that triple-negative breast cancer (TNBC) lacks specific receptors (estrogen and progesterone receptors and human epidermal growth factor receptor 2) and cannot be treated with endocrine therapy, chemotherapy has remained the mainstay of treatment. Drug resistance is reportedly the main obstacle to the clinical use of doxorubicin (DOX) in this patient population. Accordingly, screening molecules related to chemoresistance and studying their specific mechanisms has clinical significance for improving the efficacy of chemotherapy in TNBC patients. Thioredoxin-interacting protein (TXNIP) is a metabolism-related protein that plays a tumor suppressor role in various malignant tumors; however, the specific role of TXNIP in tumor chemoresistance has not been reported. In the present study, we explored the potential molecular mechanism of TXNIP in the chemoresistance of TNBC for the first time. The results showed that TXNIP inhibited the proliferation of TNBC drug-resistant cells and promoted apoptosis in vitro and in vivo. Furthermore, TXNIP promoted the synthesis of reactive oxygen species (ROS) and the accumulation of DNA damage caused by DOX and increased γ-H2AX levels in a time and dose-dependent manner. Moreover, ROS scavenger pretreatment could block DNA damage induced by TXNIP and restore the resistance of TNBC resistant cells to DOX to a certain extent. In addition, we found that the small molecule c-Myc inhibitor 10058-F4 promoted TXNIP expression, increased ROS synthesis in cells, and could enhance the cytotoxicity of chemotherapy drugs in vitro and in vivo when combined with DOX. These results indicated that c-Myc inhibitor 10058-F4 could induce TXNIP upregulation in TNBC drug-resistant cells, and the upregulated TXNIP increased the accumulation of ROS-dependent DNA damage, thereby decreasing chemotherapy resistance of TNBC. Our findings reveal a new mechanism of mediating drug resistance and provide a new drug combination strategy to overcome DOX resistance in TNBC.
Collapse
|
6
|
Li XL, Cui JJ, Zheng WS, Zhang JL, Li R, Ma XL, Lin M, Guo HH, Li C, Yu XY, Du P, Zhao LM, He S, Lan P, Jiang JD, Che Y, Wang LL. Bicyclol Alleviates Atherosclerosis by Manipulating Gut Microbiota. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105021. [PMID: 35088527 DOI: 10.1002/smll.202105021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Atherosclerosis (AS) is associated with high morbidity and mortality, thus imposing a growing burden on modern society. Herb-derived bicyclol (BIC) is a versatile bioactive compound that can be used to treat AS. However, its efficacy in AS is not yet described. Here, it is shown that BIC normalizes gut microflora dysbiosis induced by a high fat diet in Apoe(-/-) mice. Metagenome-wide association study analysis verifies that the modulation on carbohydrate-active enzymes and short-chain fatty acid generating genes in gut flora is among the mechanisms. The gut healthiness, especially the gut immunity and integrity, is restored by BIC intervention, leading to improved systemic immune cell dynamic and liver functions. Accordingly, the endothelial activation, macrophage infiltration, and cholesterol ester accumulation in the aortic arch are alleviated by BIC to lessen the plaque onset. Moreover, it is proved that the therapeutic effect of BIC on AS is transmissible by fecal microbiota transplantation. The current study, for the first time, demonstrates the antiatherosclerotic effects of BIC and shows that its therapeutic value can at least partially be attributed to its manipulation of gut microbiota.
Collapse
Affiliation(s)
- Xiao-Lin Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Jin-Jin Cui
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Wen-Sheng Zheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Jin-Lan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Rui Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Xiao-Lei Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Miao Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Hui-Hui Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Cong Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Xiao-You Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Peng Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Li-Min Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Shuwang He
- College of Pharmacy, Shandong University, Beijing, 250012, China
| | - Pei Lan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Yongsheng Che
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Lu-Lu Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
7
|
Therapeutic potential of bicyclol in liver diseases: Lessons from a synthetic drug based on herbal derivative in traditional Chinese medicine. Int Immunopharmacol 2020; 91:107308. [PMID: 33383448 DOI: 10.1016/j.intimp.2020.107308] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/06/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022]
Abstract
Bicyclol, an innovative chemical drug with proprietary intellectual property rights in China, is based on derivative of traditional Chinese medicine (TCM) Schisandra chinensis (Wuweizi) of North. Mounting data has proved that bicyclol has therapeutic potential in various pathological conditions in liver. In this narrative review, we provide the first summary of pharmacological activities, pharmacokinetic characteristics and toxicity of bicyclol, and discuss future research perspectives. Our results imply that bicyclol has a wide spectrum of pharmacological properties, including anti-viral, anti-inflammatory, immuno-regulatory, anti-oxidative, antisteatotic, anti-fibrotic, antitumor, cell death regulatory effects and modulation of heat shock proteins. Pharmacokinetic studies have indicated that bicyclol is the main substrate of CYP3A/2E1. Additionally, no obvious drug interactions have been found when bicyclol is administered simultaneously with other prescriptions. Furthermore, the results of chronic toxicity have strongly addressed that bicyclol has no noticeable toxic effects on all biochemical indices and pathological examinations of the main organs. In view of good pharmacological actions and safety, bicyclol is anticipated to be a potential candidate for various liver diseases, including acute liver injury, fulminant hepatitis, non-alcoholic fatty liver disease, fibrosis and hepatocellular carcinoma. Further studies are therefore required to delineate its molecular mechanisms and targets to confer this well-designed drug a far greater potency. We hope that bicyclol-based therapeutics for liver diseases might be broadly used in clinical practice worldwide.
Collapse
|
8
|
Yu X, Wang X, Wang X, Zhou Y, Li Y, Wang A, Wang T, An Y, Sun W, Du J, Tong X, Wang Y. TEOA Inhibits Proliferation and Induces DNA Damage of Diffuse Large B-Cell Lymphoma Cells Through Activation of the ROS-Dependent p38 MAPK Signaling Pathway. Front Pharmacol 2020; 11:554736. [PMID: 33013393 PMCID: PMC7500465 DOI: 10.3389/fphar.2020.554736] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/18/2020] [Indexed: 11/26/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of lymphoma, accounting for approximately 30% to 40% of non-Hodgkin’s lymphomas (NHL). The administration of rituximab significantly improved the outcomes of DLBCL; however, the unavoidable development of resistance limits the long-term efficacy. Therefore, a new generation of less toxic drugs with higher chemotherapy response is required to prevent or reverse chemoresistance. TEOA is a pentacyclic triterpenoid compound isolated from the roots of Actinidia eriantha. Studies have confirmed that TEOA has significant cytotoxicity on gastrointestinal cancer cells. However, there are no relevant reports on DLBCL cells. In this study, we investigated the potential molecular mechanism of the anticancer activity of TEOA in DLBCL cells. The results demonstrated that TEOA inhibited proliferation and induced apoptosis in time-and dose-dependent manners. TEOA induced reactive oxygen species (ROS) generation, which was reversed by N-acetyl cysteine (NAC). TEOA induced DNA damage, increased the level of γ-H2AX, and the phosphorylation of CHK1 and CHK2. In addition, TEOA induced the activation of the p38 MAPK pathway and pretreated with p38 inhibitor SB20358 or ROS scavenger could block TEOA-induced DNA damage. Taken together, these results suggest that ROS mediated activation of the p38 MAPK signal pathway plays an important role in initiating TEOA-induced DNA damage.
Collapse
Affiliation(s)
- Xingxing Yu
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,Department of Hematology, Fuyang Hospital of Anhui Medical University, Fuyang, China
| | - Xin Wang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xu Wang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.,Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yi Zhou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,Wangjiangshan Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yanchun Li
- The Second Clinical Medical School of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Aiwei Wang
- Department of Hematology, The First People's Hospital of Fuyang, Hangzhou, China
| | - Tongtong Wang
- Wangjiangshan Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yihan An
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Weidong Sun
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jing Du
- Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xiangmin Tong
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.,The Second Clinical Medical School of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Phase I Clinical Research Center, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ying Wang
- Phase I Clinical Research Center, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
9
|
Zheng L, Fang S, Hui J, Rajamanickam V, Chen M, Weng Q, Wu X, Zhao Z, Ji J. Triptonide Modulates MAPK Signaling Pathways and Exerts Anticancer Effects via ER Stress-Mediated Apoptosis Induction in Human Osteosarcoma Cells. Cancer Manag Res 2020; 12:5919-5929. [PMID: 32765093 PMCID: PMC7373419 DOI: 10.2147/cmar.s258203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/10/2020] [Indexed: 12/24/2022] Open
Abstract
Background Osteosarcoma (OS) is the most common primary malignancy arise from bone and is one of the causes of cancer-related deaths. Triptonide (TN), a diterpenoid epoxide presented in Tripterygium wilfordii, is shown to possess a broad spectrum of biological properties. Methods In this study, we investigate the growth inhibitory effect of TN against human OS cells and its underlying molecular mechanism of action. Results Findings of our in vitro study revealed that TN exhibited a dose-dependent cytotoxic effect in MG63 and U-2OS cells. ROS-mediated cytotoxic effect was achieved in OS cells treated with TN which was reversed upon NAC treatment. Significantly, increased expression of PERK, p-EIF2, GRP78, ATF4 and CHOP in TN-treated OS cells unfolds the molecular mechanism of TN targets ER stress-mediated apoptosis. Modulation of ERK MAPK pathway was also observed as evidenced by the increased phosphorylation of ERK (p-ERK) and p-p38 in TN-treated OS cells. Conclusion Altogether, the outcome of the study for the first time revealed that TN exhibited its potential chemotherapeutic effects through ROS-mediated ER stress-induced apoptosis via p38 and ERK MAPK signaling pathways.
Collapse
Affiliation(s)
- Liyun Zheng
- Interventional Diagnosis and Treatment Center, Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, People's Republic of China.,Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, People's Republic of China
| | - Shiji Fang
- Interventional Diagnosis and Treatment Center, Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, People's Republic of China.,Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, People's Republic of China
| | - Junguo Hui
- Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, People's Republic of China
| | - Vinothkumar Rajamanickam
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, People's Republic of China
| | - Minjiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, People's Republic of China
| | - Qiaoyou Weng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, People's Republic of China
| | - Xulu Wu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, People's Republic of China
| | - Zhongwei Zhao
- Interventional Diagnosis and Treatment Center, Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, People's Republic of China
| | - Jiansong Ji
- Interventional Diagnosis and Treatment Center, Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, People's Republic of China.,Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, People's Republic of China.,Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, People's Republic of China
| |
Collapse
|
10
|
Liu W, Chai Y, Hu L, Wang J, Pan X, Yuan H, Zhao Z, Song Y, Zhang Y. Polyphyllin VI Induces Apoptosis and Autophagy via Reactive Oxygen Species Mediated JNK and P38 Activation in Glioma. Onco Targets Ther 2020; 13:2275-2288. [PMID: 32214827 PMCID: PMC7078907 DOI: 10.2147/ott.s243953] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 03/02/2020] [Indexed: 12/16/2022] Open
Abstract
Background Polyphyllin VI (PPVI), a bioactive component derived from a traditional Chinese herb Paris polyphylla, exhibits potential antitumor activity against hepatocellular carcinoma, as well as breast and lung cancers. However, its effect on glioma remains unknown. Methods Five glioma cell lines (U251, U343, LN229, U87 and HEB) and an animal model were employed in the study. Anti-proliferation effects of PPVI were first determined using CCK-8 cell proliferation and clone formation assays, then reactive oxygen species (ROS), cell cycle progression and apoptosis effects measured by flow cytometry. The effect of PPVI on protein expression was quantified by Western blot analysis. Results Data showed that PPVI inhibited the proliferation of glioma cell lines by modulating the G2/M phase. Additionally, incubation of cells with PPVI promoted apoptosis, autophagy, increased accumulation of ROS and activated ROS-modulated JNK and p38 pathways. On the other hand, N-acetyl cysteine, a ROS inhibitor, attenuated PPVI-triggered effects. Furthermore, JNK and p38 inhibitors ameliorated PPVI-triggered autophagy and apoptosis in glioma cells. In vivo assays showed that PPVI inhibited tumor growth of U87 cell line in nude mice. Conclusion Overall, these data suggested that PPVI might be an effective therapeutic agent for glioma.
Collapse
Affiliation(s)
- Wei Liu
- School of Clinical Medicine, Tsinghua University, Beijing 10084, People's Republic of China
| | - Yi Chai
- School of Clinical Medicine, Tsinghua University, Beijing 10084, People's Republic of China
| | - Libo Hu
- School of Clinical Medicine, Tsinghua University, Beijing 10084, People's Republic of China
| | - Junhua Wang
- Department of Neurosurgery, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100040, People's Republic of China
| | - Xin Pan
- Department of Neurosurgery, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100040, People's Republic of China
| | - Hongyu Yuan
- State Key Laboratory of Molecular Oncology, National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Zitong Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Yuqi Zhang
- School of Clinical Medicine, Tsinghua University, Beijing 10084, People's Republic of China
| |
Collapse
|
11
|
Miyata Y, Matsuo T, Sagara Y, Ohba K, Ohyama K, Sakai H. A Mini-Review of Reactive Oxygen Species in Urological Cancer: Correlation with NADPH Oxidases, Angiogenesis, and Apoptosis. Int J Mol Sci 2017; 18:ijms18102214. [PMID: 29065504 PMCID: PMC5666894 DOI: 10.3390/ijms18102214] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/17/2017] [Accepted: 10/17/2017] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress refers to elevated reactive oxygen species (ROS) levels, and NADPH oxidases (NOXs), which are one of the most important sources of ROS. Oxidative stress plays important roles in the etiologies, pathological mechanisms, and treatment strategies of vascular diseases. Additionally, oxidative stress affects mechanisms of carcinogenesis, tumor growth, and prognosis in malignancies. Nearly all solid tumors show stimulation of neo-vascularity, termed angiogenesis, which is closely associated with malignant aggressiveness. Thus, cancers can be seen as a type of vascular disease. Oxidative stress-induced functions are regulated by complex endogenous mechanisms and exogenous factors, such as medication and diet. Although understanding these regulatory mechanisms is important for improving the prognosis of urothelial cancer, it is not sufficient, because there are controversial and conflicting opinions. Therefore, we believe that this knowledge is essential to discuss observations and treatment strategies in urothelial cancer. In this review, we describe the relationships between members of the NOX family and tumorigenesis, tumor growth, and pathological mechanisms in urological cancers including prostate cancer, renal cell carcinoma, and urothelial cancer. In addition, we introduce natural compounds and chemical agents that are associated with ROS-induced angiogenesis or apoptosis.
Collapse
Affiliation(s)
- Yasuyoshi Miyata
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Tomohiro Matsuo
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Yuji Sagara
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Kojiro Ohba
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Kaname Ohyama
- Department of Pharmaceutical Science, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Hideki Sakai
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| |
Collapse
|