1
|
Chen X, Malaeb SN, Pan J, Wang L, Scafidi J. Editorial: Perinatal hypoxic-ischemic brain injury: Mechanisms, pathogenesis, and potential therapeutic strategies. Front Cell Neurosci 2022; 16:1086692. [PMID: 36582212 PMCID: PMC9793000 DOI: 10.3389/fncel.2022.1086692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/16/2022] [Indexed: 12/14/2022] Open
Affiliation(s)
- Xiaodi Chen
- Women and Infants Hospital of RI, Alpert Medical School of Brown University, Providence, RI, United States
| | | | - Jonathan Pan
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States
| | - Laishuan Wang
- Children's Hospital, Fudan University, Shanghai, China
| | - Joseph Scafidi
- Department of Neurology and Pediatrics, Kennedy Krieger Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|
2
|
Hassanein EHM, Mohamed WR, Ahmed OS, Abdel-Daim MM, Sayed AM. The role of inflammation in cadmium nephrotoxicity: NF-κB comes into view. Life Sci 2022; 308:120971. [PMID: 36130617 DOI: 10.1016/j.lfs.2022.120971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022]
Abstract
Kidney diseases are major health problem and understanding the underlined mechanisms that lead to kidney diseases are critical research points with a marked potential impact on health. Cadmium (Cd) is a heavy metal that occurs naturally and can be found in contaminated food. Kidneys are the most susceptible organ to heavy metal intoxication as it is the main route of waste excretion. The harmful effects of Cd were previously well proved. Cd induces inflammatory responses, oxidative injury, mitochondrial dysfunction and disturbs Ca2+ homeostasis. The nuclear factor-kappa B (NF-κB) is a cellular transcription factor that regulates inflammation and controls the expression of many inflammatory cytokines. Therefore, great therapeutic benefits can be attained from NF-κB inhibition. In this review we focused on certain compounds including cytochalasin D, mangiferin, N-acetylcysteine, pyrrolidine dithiocarbamate, roflumilast, rosmarinic acid, sildenafil, sinapic acid, telmisartan and wogonin and certain plants as Astragalus Polysaccharide, Ginkgo Biloba and Thymus serrulatus that potently inhibit NF-κB and effectively counteracted Cd-associated renal intoxication. In conclusion, the proposed NF-κB involvement in Cd-renal intoxication clarified the underlined inflammation associated with Cd-nephropathy and the beneficial effects of NF-κB inhibitors that make them the potential to substantially optimize treatment protocols for Cd-renal intoxication.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Osama S Ahmed
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, 41522 Ismailia, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Egypt.
| |
Collapse
|
3
|
Xiong Y, Wintermark P. The Role of Sildenafil in Treating Brain Injuries in Adults and Neonates. Front Cell Neurosci 2022; 16:879649. [PMID: 35620219 PMCID: PMC9127063 DOI: 10.3389/fncel.2022.879649] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/04/2022] [Indexed: 12/02/2022] Open
Abstract
Sildenafil is a recognized treatment for patients suffering from erectile dysfunction and pulmonary hypertension. However, new evidence suggests that it may have a neuroprotective and a neurorestorative role in the central nervous system of both adults and neonates. Phosphodiesterase type 5-the target of sildenafil-is distributed in many cells throughout the body, including neurons and glial cells. This study is a comprehensive review of the demonstrated effects of sildenafil on the brain with respect to its function, extent of injury, neurons, neuroinflammation, myelination, and cerebral vessels.
Collapse
Affiliation(s)
- Ying Xiong
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Pia Wintermark
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Newborn Medicine, Department of Pediatrics, Montreal Children’s Hospital, Montreal, QC, Canada
| |
Collapse
|
4
|
Liu S, Kang Y, Zhang C, Lou Y, Li X, Lu L, Qi Z, Jian H, Zhou H. Isobaric Tagging for Relative and Absolute Protein Quantification (iTRAQ)-Based Quantitative Proteomics Analysis of Differentially Expressed Proteins 1 Week After Spinal Cord Injury in a Rat Model. Med Sci Monit 2020; 26:e924266. [PMID: 33144554 PMCID: PMC7650090 DOI: 10.12659/msm.924266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Background Spinal cord injury (SCI) is a devastating trauma of the central nervous system (CNS), with high levels of morbidity, disability, and mortality. One week after SCI may be a critical time for treatment. Changes in protein expression have crucial functions in nervous system diseases, although the effects of changes occurring 1 week after SCI on patient outcomes are unclear. Material/Methods Protein expression was examined in a rat contusive SCI model 1 week after SCI. Differentially expressed proteins (DEPs) were identified by isobaric tagging for relative and absolute protein quantification (iTRAQ)-coupled liquid chromatography tandem-mass spectrometry (LC-MS/MS) proteomics analysis. Gene Ontology (GO) analysis was performed to identify the biological processes, molecular functions, and cellular component terms of the identified DEPs, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) was used to identify key enriched pathways. Protein–protein interaction (PPI) networks were analyzed to identify the top 10 high-degree core proteins. Results Of the 295 DEPs identified, 204 (69.15%) were upregulated and 91 (30.85%) were downregulated 1 week after injury. The main cellular components, molecular functions, biological processes, and pathways identified may be crucial mechanisms involved in SCI. The top 10 high-degree core proteins were complement component C3 (C3), alpha-2-HS-glycoprotein (Ahsg), T-kininogen 1 (Kng1), Serpinc1 protein (Serpinc1), apolipoprotein A-I (Apoa1), serum albumin (Alb), disulfide-isomerase protein (P4hb), transport protein Sec61 subunit alpha isoform 1 (Sec61a1), serotransferrin (Tf), and 60S ribosomal protein L15 (Rpl15). Conclusions The proteins identified in this study may provide potential targets for diagnosis and treatment 1 week after SCI.
Collapse
Affiliation(s)
- Shen Liu
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China (mainland)
| | - Yi Kang
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China (mainland)
| | - Chi Zhang
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China (mainland)
| | - Yongfu Lou
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China (mainland)
| | - Xueying Li
- Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Department of Immunology, Tianjin Medical University, Tianjin, China (mainland)
| | - Lu Lu
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China (mainland)
| | - Zhangyang Qi
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China (mainland)
| | - Huan Jian
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China (mainland)
| | - Hengxing Zhou
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China (mainland)
| |
Collapse
|
5
|
Phosphatidylethanolamine-Binding Protein 1 Ameliorates Ischemia-Induced Inflammation and Neuronal Damage in the Rabbit Spinal Cord. Cells 2019; 8:cells8111370. [PMID: 31683736 PMCID: PMC6912576 DOI: 10.3390/cells8111370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 01/29/2023] Open
Abstract
In a previous study, we utilized a proteomic approach and found a significant reduction in phosphatidylethanolamine-binding protein 1 (PEBP1) protein level in the spinal cord at 3 h after ischemia. In the present study, we investigated the role of PEBP1 against oxidative stress in NSC34 cells in vitro, and ischemic damage in the rabbit spinal cord in vivo. We generated a PEP-1-PEBP1 fusion protein to facilitate the penetration of blood-brain barrier and intracellular delivery of PEBP1 protein. Treatment with PEP-1-PEBP1 significantly decreased cell death and the induction of oxidative stress in NSC34 cells. Furthermore, administering PEP-1-PEBP1 did not show any significant side effects immediately before and after ischemia/reperfusion. Administration of PEP-PEBP1 improved the Tarlov’s neurological score at 24 and 72 h after ischemia, and significantly improved neuronal survival at 72 h after ischemia based on neuronal nuclei (NeuN) immunohistochemistry, Flouro-Jade B staining, and western blot study for cleaved caspase 3. PEP-1-PEBP1 administration decreased oxidative stress based on malondialdehyde level, advanced oxidation protein products, and 8-iso-prostaglandin F2α in the spinal cord. In addition, inflammation based on myeloperoxidase level, tumor necrosis factor-α level, and high mobility group box 1 level was decreased by PEP-1-PEBP1 treatment at 72 h after ischemia. Thus, PEP-1-PEBP1 treatment, which decreases oxidative stress, inflammatory cytokines, and neuronal death, may be an effective therapeutic strategy for spinal cord ischemia.
Collapse
|
6
|
Chen F, Li X, Li Z, Zhou Y, Qiang Z, Ma H. The roles of chemokine (C-X-C motif) ligand 13 in spinal cord ischemia-reperfusion injury in rats. Brain Res 2019; 1727:146489. [PMID: 31589828 DOI: 10.1016/j.brainres.2019.146489] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 12/20/2022]
Abstract
Spinal cord ischemia-reperfusion injury (SCII) remains an unresolved complication and its underlying mechanism has not been fully elucidated. In this study, we studied the role of chemokine (C-X-C motif) ligand 13 (CXCL13) in a rat model of SCII. We examined the time course and cellular distribution of CXCL13 protein in rats after SCII. The effects of siRNA targeting CXCL13 or C-X-C chemokine receptor type 5 (CXCR5) in SCII were also investigated. Neurological function, histological assessment, and disruption of the blood-spinal cord barrier (BSCB) were evaluated. The expression levels of CXCL13, CXCR5, phosphorylated extracellular signal-regulated kinase (p-ERK), caspase-3, interleukin 6 (IL-6), TNF-α, and IL-1β were determined. We found that SCII resulted in impaired hind limb function and increased the expression of CXCL13. In addition, CXCL13 expression demonstrated the most pronounced effect at 24 h after SCII. We reveal that CXCL13 protein was co-expressed with the mature neuron marker NeuN and the microglial marker IBA-1 in spinal cord tissues of model rats. SCII also increased the expression of CXCR5, p-ERK, caspase-3, IL-6, TNF-α, and IL-1β at 24 h after SCII. Pre-treatment with CXCL13 siRNA protected the rats against SCII and decreased the expression of signalling pathway proteins and proinflammatory cytokines mentioned above. CXCR5 siRNA also showed similar protective effects. These findings indicate that CXCL13 is involved in SCII. The CXCL13/CXCR5 axis promotes the development of SCII, possibly via ERK-mediated pathways. Targeting the mechanism of CXCL13 involved in the development of SCII might be a potential approach for the treatment of this condition.
Collapse
Affiliation(s)
- Fengshou Chen
- Department of Anesthesiology, The First Hospital of China Medical University, No. 155 Nangjing North Street, Shenyang, Liaoning Province, China
| | - Xiaoqian Li
- Department of Anesthesiology, The First Hospital of China Medical University, No. 155 Nangjing North Street, Shenyang, Liaoning Province, China
| | - Zhe Li
- Department of Anesthesiology, The First Hospital of China Medical University, No. 155 Nangjing North Street, Shenyang, Liaoning Province, China
| | - Yongjian Zhou
- Department of Anesthesiology, The First Hospital of China Medical University, No. 155 Nangjing North Street, Shenyang, Liaoning Province, China
| | - Ziyun Qiang
- Department of Anesthesiology, The First Hospital of China Medical University, No. 155 Nangjing North Street, Shenyang, Liaoning Province, China
| | - Hong Ma
- Department of Anesthesiology, The First Hospital of China Medical University, No. 155 Nangjing North Street, Shenyang, Liaoning Province, China.
| |
Collapse
|
7
|
Zahavi A, Weiss S, Vieyra M, Nicholson JD, Muhsinoglu O, Barinfeld O, Zadok D, Goldenberg-Cohen N. Ocular Effects of Sildenafil in Naïve Mice and a Mouse Model of Optic Nerve Crush. ACTA ACUST UNITED AC 2019; 60:1987-1995. [DOI: 10.1167/iovs.18-26333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Alon Zahavi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Ophthalmology, Rabin Medical Center, Beilinson Hospital, Petach Tikva, Israel
| | - Shirel Weiss
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Krieger Eye Research Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Mark Vieyra
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - James D. Nicholson
- The Krieger Eye Research Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Orkun Muhsinoglu
- Department of Ophthalmology, Rabin Medical Center, Beilinson Hospital, Petach Tikva, Israel
| | - Orit Barinfeld
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Krieger Eye Research Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel
| | - David Zadok
- Department of Ophthalmology, Shaare Zedek Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University Medical Center, Jerusalem, Israel
| | - Nitza Goldenberg-Cohen
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Krieger Eye Research Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel
- Department of Ophthalmology, Bnai Zion Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|