1
|
Xu K, Wang L, Lin M, He G. Update on protease-activated receptor 2 in inflammatory and autoimmune dermatological diseases. Front Immunol 2024; 15:1449126. [PMID: 39364397 PMCID: PMC11446762 DOI: 10.3389/fimmu.2024.1449126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/03/2024] [Indexed: 10/05/2024] Open
Abstract
Protease-activated receptor 2 (PAR2) is a cell-surface receptor expressed in various cell types, including keratinocytes, neurons, immune and inflammatory cells. Activation of PAR2, whether via its canonical or biased pathways, triggers a series of signaling cascades that mediate numerous functions. This review aims to highlight the emerging roles and interactions of PAR2 in different skin cells. It specifically summarizes the latest insights into the roles of PAR2 in skin conditions such as atopic dermatitis (AD), psoriasis, vitiligo and melasma. It also considers these roles from the perspective of the cutaneous microenvironment in relation to other inflammatory and autoimmune dermatological disorders. Additionally, the review explores PAR2's involvement in associated comorbidities from both cutaneous and extracutaneous diseases. Therefore, PAR2 may serve as a key target for interactions among various cells within the local skin environment.
Collapse
Affiliation(s)
- Kejia Xu
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Mao Lin
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Gu He
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Yan X, Wei S, Yang Y, Zhao Z, Wu Q, Tang H. CTSG may inhibit disease progression in HIV-related lung cancer patients by affecting immunosuppression. Infect Agent Cancer 2024; 19:34. [PMID: 39080685 PMCID: PMC11290089 DOI: 10.1186/s13027-024-00599-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024] Open
Abstract
OBJECTIVES Lung cancer is an independent risk factor for pulmonary complications following HIV infection. This study aimed to examine the expression and clinical significance of Cathepsin G (CTSG) protein in both non-HIV and HIV-related lung cancers. METHODS The data related to lung adenocarcinoma (LUAD) and lung squamous carcinoma (LUSC) in the TCGA dataset and the data related to healthy individuals in the GTEx dataset, the GEPIA2 database was used to excavate the distinction in the expression of CTSG protein in non-small cell lung cancer (NSCLC) tissues versus normal non-cancerous tissues. The Ualcan database was used to compare the differences in CTSG expression at different stages of LUAD and LUSC. Immunohistochemistry (IHC) was used to detect the expression of CTSG proteins in the pathological tissues of patients with HIV-related lung cancer and patients with lung cancer without co-infection, the Kaplan-Meier method was used for survival analysis. RESULTS We observed that CTSG expression in NSCLC is lower compared to adjacent non-tumor tissues and correlates with NSCLC clinical stage. CTSG protein expression in HIV-related lung cancer tissues was lower than in adjacent tissues and lower than in lung cancer tissues without HIV infection, with a statistically significant difference (P < 0.05). It correlated with CD4 + T cell count and CD4+/CD8 + T cell ratio, as well as with the pathological type, distant metastasis, and clinical stage of HIV-related lung cancer, all with statistical significance (P < 0.05). CONCLUSIONS CTSG could potentially mitigate disease advancement in HIV-related lung cancer patients by inhibiting immune depletion, serving as a prospective immunotherapeutic target for both non-HIV and HIV-associated lung cancers.
Collapse
Affiliation(s)
- Xuan Yan
- Department of Respiratory and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, No 2901, Caolang Road, Jinshan District, Shanghai, 201508, China
| | - Shuoyan Wei
- Department of Respiratory and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, No 2901, Caolang Road, Jinshan District, Shanghai, 201508, China
| | - Yuexiang Yang
- Department of Pathology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhangyan Zhao
- Department of Respiratory and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, No 2901, Caolang Road, Jinshan District, Shanghai, 201508, China
| | - Qingguo Wu
- Department of Respiratory and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, No 2901, Caolang Road, Jinshan District, Shanghai, 201508, China.
| | - Haicheng Tang
- Department of Respiratory and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, No 2901, Caolang Road, Jinshan District, Shanghai, 201508, China.
| |
Collapse
|
3
|
Zhang Y, Maskan Bermudez N, Sa B, Maderal AD, Jimenez JJ. Epigenetic mechanisms driving the pathogenesis of systemic lupus erythematosus, systemic sclerosis and dermatomyositis. Exp Dermatol 2024; 33:e14986. [PMID: 38059632 DOI: 10.1111/exd.14986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/27/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
Autoimmune connective tissue disorders, including systemic lupus erythematosus, systemic sclerosis (SSc) and dermatomyositis (DM), often manifest with debilitating cutaneous lesions and can result in systemic organ damage that may be life-threatening. Despite recent therapeutic advancements, many patients still experience low rates of sustained remission and significant treatment toxicity. While genetic predisposition plays a role in these connective tissue disorders, the relatively low concordance rates among monozygotic twins (ranging from approximately 4% for SSc to about 11%-50% for SLE) have prompted increased scrutiny of the epigenetic factors contributing to these diseases. In this review, we explore some seminal studies and key findings to provide a comprehensive understanding of how dysregulated epigenetic mechanisms can contribute to the development of SLE, SSc and DM.
Collapse
Affiliation(s)
- Yusheng Zhang
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Narges Maskan Bermudez
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Brianna Sa
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Andrea D Maderal
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Joaquin J Jimenez
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
4
|
Zhao L, Shen C, Xie S, Zhou J, Zhang H, Zhu H, Li Y, Gao S. The role and mechanism of myeloperoxidase in dermatomyositis. Int Immunopharmacol 2023; 124:110803. [PMID: 37625367 DOI: 10.1016/j.intimp.2023.110803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/24/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023]
Abstract
OBJECTIVE Dermatomyositis (DM) is the best known subtype of idiopathic inflammatory myopathies. The hallmarks of DM muscle pathology including microangiopathy, inflammatory infiltration, and perifascicular atrophy. Recent findings have revealed pathogenetic effects of myeloperoxidase (MPO) by causing oxidative damage and regulating abnormal immunity in multiple disease conditions. In this study, we aimed to explore the role of MPO in the pathogenesis of DM. METHODS The peripheral blood mononuclear cell (PBMC) mRNA expression and DNA methylation of MPO were verified using real-time qPCR and bisulfite pyrosequencing, respectively. Plasma MPO levels were measured with enzyme-linked immunosorbent assay, and their relationships with clinical characteristics were analyzed. The expression and distribution of MPO in muscle were tested by immunofluorescence. Purified human native MPO protein was used to stimulate human dermal microvascular endothelial cells (HDMECs) and skeletal muscle myotubes. The cell viability, tube forming capacity, permeability, adhesion molecule expressions in HDMECs, and atrophy and programmed cell death pathways in myotubes were then observed. RESULTS MPO gene methylation was decreased, while mRNA expression and plasma levels were increased in DM. Plasma MPO of DM patients was positively correlated with serum creatine kinase (CK). MPO mainly distributed around endomysia capillaries and perifascicular atrophy in DM muscle biopsies, and was co-localized with CD4+, CD8+ T cells and CD19+ B cells. MPO not only could influence the cell viability, tube forming capacity, permeability and expression of adhesion molecules (including ICAM 1, VCAM 1 and E-selectin) of HDMECs, but also could cause atrophy of myotubes. CONCLUSIONS Our study disclosed, for the first time, that MPO plays an important role in promoting inflammatory infiltration and inducing muscle damage in DM patients. MPO may be a potential biomarker for DM muscle involvement and MPO targeted drugs may be promising in DM treatment.
Collapse
Affiliation(s)
- Lijuan Zhao
- Department of Nephrology and Rheumatology, The Third Xiangya Hospital of Central South University, Changsha, PR China; Department of Rheumatology, Xiangya Hospital of Central South University, Changsha, PR China
| | - Chuyu Shen
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Shasha Xie
- Department of Rheumatology, Xiangya Hospital of Central South University, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, PR China; Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital of Central South University, Changsha, PR China
| | - Junyu Zhou
- Department of Rheumatology, Xiangya Hospital of Central South University, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, PR China; Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital of Central South University, Changsha, PR China
| | - Huali Zhang
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, PR China
| | - Honglin Zhu
- Department of Rheumatology, Xiangya Hospital of Central South University, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, PR China; Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital of Central South University, Changsha, PR China
| | - Yisha Li
- Department of Rheumatology, Xiangya Hospital of Central South University, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, PR China; Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital of Central South University, Changsha, PR China.
| | - Siming Gao
- Department of Rheumatology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, PR China.
| |
Collapse
|
5
|
Yakupu A, Zhang D, Guan H, Jiang M, Dong J, Niu Y, Tang J, Liu Y, Ma X, Lu S. Single-cell analysis reveals melanocytes may promote inflammation in chronic wounds through cathepsin G. Front Genet 2023; 14:1072995. [PMID: 36755572 PMCID: PMC9900029 DOI: 10.3389/fgene.2023.1072995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
During acute wound (AW) healing, a series of proper communications will occur between different epidermal cells at precise temporal stages to restore the integrity of the skin. However, it is still unclear what variation happened in epidermal cell interaction in the chronic wound environment. To provide new insights into chronic wound healing, we reconstructed the variations in the epidermal cell-cell communication network that occur in chronic wound healing via single-cell RNA-seq (scRNA-seq) data analysis. We found that the intricate cellular and molecular interactions increased in pressure ulcer (PU) compared to AW, especially the PARs signaling pathways were significantly upregulated. It shows that the PARs signaling pathways' main source was melanocytes and the CTSG-F2RL1 ligand-receptor pairs were its main contributor. Cathepsin G (CatG or CTSG) is a serine protease mainly with trypsin- and chymotrypsin-like specificity. It is synthesized and secreted by some immune or non-immune cells. Whereas, it has not been reported that melanocytes can synthesize and secrete the CTSG. F2R Like Trypsin Receptor 1 (F2RL1) is a member of proteinase-activated receptors (PARs) that are irreversibly activated by proteolytic cleavage and its stimulation can promote inflammation and inflammatory cell infiltration. In this study, we found that melanocytes increased in pressure ulcers, melanocytes can synthesize and secrete the CTSG and may promote inflammation in chronic wounds through CTSG-F2RL1 pairs, which may be a novel potential target and a therapeutic strategy in the treatment of chronic wounds.
Collapse
Affiliation(s)
- Aobuliaximu Yakupu
- Department of Burn, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Wound Healing Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Di Zhang
- Department of Burn, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Wound Healing Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Haonan Guan
- Department of Burn, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Wound Healing Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Minfei Jiang
- Department of Burn, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Wound Healing Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiaoyun Dong
- Department of Burn, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Wound Healing Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yiwen Niu
- Department of Burn, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Wound Healing Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiajun Tang
- Department of Burn, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Wound Healing Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yingkai Liu
- Department of Burn, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Wound Healing Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xian Ma
- Department of Burn, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Wound Healing Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,*Correspondence: Xian Ma, ; Shuliang Lu,
| | - Shuliang Lu
- Department of Burn, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Wound Healing Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,*Correspondence: Xian Ma, ; Shuliang Lu,
| |
Collapse
|
6
|
Muntyanu A, Le M, Ridha Z, O’Brien E, Litvinov IV, Lefrançois P, Netchiporouk E. Novel role of long non-coding RNAs in autoimmune cutaneous disease. J Cell Commun Signal 2022; 16:487-504. [PMID: 34346026 PMCID: PMC9733767 DOI: 10.1007/s12079-021-00639-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/22/2021] [Indexed: 12/13/2022] Open
Abstract
Systemic autoimmune rheumatic diseases (SARDs) are a heterogeneous group of chronic multisystem inflammatory disorders that are thought to have a complex pathophysiology, which is not yet fully understood. Recently, the role of non-coding RNAs, including long non-coding RNA (lncRNA), has been of particular interest in the pathogenesis of SARDs. We aimed to summarize the potential roles of lncRNA in SARDs affecting the skin including, systemic sclerosis (SSc), dermatomyositis (DM) and cutaneous lupus erythematosus (CLE). We conducted a narrative review summarizing original articles published until July 19, 2021, regarding lncRNA associated with SSc, DM, and CLE. Several lncRNAs were hypothesized to play an important role in disease pathogenesis of SSc, DM and CLE. In SSc, Negative Regulator of IFN Response (NRIR) was thought to modulate Interferon (IFN) response in monocytes, anti-sense gene to X-inactivation specific transcript (TSIX) to regulate increased collagen stability, HOX transcript antisense RNA (HOTAIR) to increase numbers of myofibroblasts, OTUD6B-Anti-Sense RNA 1 to decrease fibroblast apoptosis, ncRNA00201 to regulate pathways in SSc pathogenesis and carcinogenesis, H19X potentiating TGF-β-driven extracellular matrix production, and finally PSMB8-AS1 potentiates IFN response. In DM, linc-DGCR6-1 expression was hypothesized to target the USP18 protein, a type 1 IFN-inducible protein that is considered a key regulator of IFN signaling. Additionally, AL136018.1 is suggested to regulate the expression Cathepsin G, which increases the permeability of vascular endothelial cells and the chemotaxis of inflammatory cells in peripheral blood and muscle tissue in DM. Lastly, lnc-MIPOL1-6 and lnc-DDX47-3 in discoid CLE were thought to be associated with the expression of chemokines, which are significant in Th1 mediated disease. In this review, we summarize the key lncRNAs that may drive pathogenesis of these connective tissue diseases and could potentially serve as therapeutic targets in the future.
Collapse
Affiliation(s)
- Anastasiya Muntyanu
- Division Dermatology, McGill University Health Centre, 1650 Cedar Ave, Montreal, QC H3G 1A4 Canada
| | - Michelle Le
- Division Dermatology, McGill University Health Centre, 1650 Cedar Ave, Montreal, QC H3G 1A4 Canada
| | - Zainab Ridha
- Faculty of Medicine, Université de Laval, Québec, QC Canada
| | - Elizabeth O’Brien
- Division Dermatology, McGill University Health Centre, 1650 Cedar Ave, Montreal, QC H3G 1A4 Canada
| | - Ivan V. Litvinov
- Division Dermatology, McGill University Health Centre, 1650 Cedar Ave, Montreal, QC H3G 1A4 Canada
| | - Philippe Lefrançois
- Division Dermatology, McGill University Health Centre, 1650 Cedar Ave, Montreal, QC H3G 1A4 Canada
| | - Elena Netchiporouk
- Division Dermatology, McGill University Health Centre, 1650 Cedar Ave, Montreal, QC H3G 1A4 Canada
| |
Collapse
|
7
|
Exploring the Mechanism of Aspirin in the Treatment of Kawasaki Disease Based on Molecular Docking and Molecular Dynamics. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9828518. [PMID: 35990842 PMCID: PMC9391120 DOI: 10.1155/2022/9828518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/26/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
Purpose The research aims to investigate the mechanism of action of aspirin in the treatment of Kawasaki disease. Methods We predicted the targets of aspirin with the help of the Drugbank and PharmMapper databases, the target genes of Kawasaki disease were mined in the GeneCards and Disgenet databases, the intersection targets were processed in the Venny database, and the gene expression differences were observed in the GEO database. The Drugbank and PharmMapper databases were used to predict the target of aspirin, and the target genes of Kawasaki disease were explored in the GeneCards and Disgenet databases, and the Venny was used for intersection processing. We observed the gene expression differences in the GEO database. The disease-core gene target-drug network was established and molecular docking was used for verification. Molecular dynamics simulation verification was carried out to combine the active ingredient and the target with a stable combination. The supercomputer platform was used to measure and analyze the binding free energy, the number of hydrogen bonds, the stability of the protein target at the residue level, the radius of gyration, and the solvent accessible surface area. Results Aspirin had 294 gene targets, Kawasaki disease had 416 gene targets, 42 intersecting targets were obtained, we screened 13 core targets by PPI; In the GO analysis, we learned that the biological process of Kawasaki disease involved the positive regulation of chemokine biosynthesis and inflammatory response; pathway enrichment involved PI3K-AKT signaling pathway, tumor necrosis factor signaling pathway, etc. After molecular docking, the data showed that CTSG, ELANE, and FGF1 had the best binding degree to aspirin. Molecular dynamics was used to prove and analyze the binding stability of active ingredients and protein targets, and Aspirin/ELANE combination has the strongest binding energy. Conclusion In the treatment of Kawasaki disease, aspirin may regulate inflammatory response and vascular remodeling through CTSG, ELANE, and FGF1.
Collapse
|
8
|
Zhao L, Wang Q, Zhou B, Zhang L, Zhu H. The Role of Immune Cells in the Pathogenesis of Idiopathic Inflammatory Myopathies. Aging Dis 2021; 12:247-260. [PMID: 33532139 PMCID: PMC7801271 DOI: 10.14336/ad.2020.0410] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/10/2020] [Indexed: 12/15/2022] Open
Abstract
Idiopathic inflammatory myopathies (IIMs) are chronic autoimmune disorders involving multiple organs, such as the muscle, skin, lungs and joints. Although the detailed pathogenesis of IIMs remains unclear, immune mechanisms have long been recognised as of key importance. Immune cells contribute to many inflammatory processes via intercellular interactions and secretion of inflammatory factors, and many studies have demonstrated the participation of a variety of immune cells, such as T cells and B cells, in the development of IIMs. Here, we summarise the current knowledge regarding immune cells in IIM patients and discuss their potential roles in IIM pathogenesis.
Collapse
Affiliation(s)
- Lijuan Zhao
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Qi Wang
- Department of Radiology, Hunan Provincial People's Hospital and The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China.
| | - Bin Zhou
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Lihua Zhang
- Department of Rheumatology, Hunan Provincial People's Hospital and The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China.
| | - Honglin Zhu
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
9
|
Peng Y, Sun X, Liang Y. Role of DNA methylation on human CTSG in dermatomyositic myoideum. Cell Biol Int 2020; 44:2409-2415. [PMID: 32813288 DOI: 10.1002/cbin.11447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/11/2020] [Accepted: 08/16/2020] [Indexed: 11/05/2022]
Abstract
Dermatomyositis (DM) is a multifactorial chronic autoimmune disorder with characteristic skin and muscle pathological changes and involvement of other organ systems. Cathepsin G (CTSG) contributes to the risk of developing DM, which is likely to be associated with inflammatory cytokines. Differential DNA methylation on CTSG has been determined to be implicated in DM in vivo. However, the underlying mechanism of this epigenetic regulation on CTST in DM is poorly explored. In this study, we investigated DNA methylation signature on CTSG at single-nucleotide resolution in quadriceps femoris of six DM patients and paracancerous muscles of three patients with rhabdomyosarcoma on inner thigh using pyrosequencing and observed that the overall DNA methylation level of CTSG was increased in DM compared with control, in which CpG loci at third and fourth exons but not promoter contributed to the significant hypermethylation. Furthermore, we observed that transcription and DNA methylation of CTSG were both declined in DNMT3a knockdown compared with DNMT1 and DNMT3b knockdown in human skeletal muscle SJCRH30 and A-204 cell lines exposed to tumor necrosis factor-α. Furthermore, Bortezomib (NF-κB inhibitor) and Brevilin A (JAK/STAT inhibitor) were employed to treat SJCRH30 and A-204 cells, respectively, and we observed that CTSG was hypomethylated and silenced after Bortezomib treatment compared with untreatment and Brevilin A. Finally, chromatin immunoprecipitation-quantitative polymerase chain reaction indicated that DNMT3a could bind to the coding regions of CTSG and the interaction was dependent on NF-κB activity. Taken together, our results determined a novel regulatory mechanism of DNA methylation on CTSG in DM.
Collapse
Affiliation(s)
- Yue Peng
- Department of Rheumatology, Yantai Yuhuangding Hospital, Yantai, China
| | - Xiaofeng Sun
- Department of Rheumatology, Yantai Yuhuangding Hospital, Yantai, China
| | - Ying Liang
- Department of Rheumatology, Yantai Yuhuangding Hospital, Yantai, China
| |
Collapse
|
10
|
Chen D, Hu G, Zhang S, Zhang H, Teng X. Ammonia-triggered apoptosis via immune function and metabolic process in the thymuses of chickens by proteomics analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 198:110619. [PMID: 32344265 DOI: 10.1016/j.ecoenv.2020.110619] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Ammonia (NH3), an environmental pollutant with a pungent odor, is not only an important volatile in fertilizer production and ranching, but also main basic component of haze. In present study, we found that ultrastructural changes and 3167 differentially expressed proteins (DEPs) using proteomics analysis in the thymuses of chickens exposed to NH3 on day 42. Obtained DEPs were enriched using GO and KEGG; and 66 DEPs took part in immune function, metabolic process, and apoptosis in the thymuses of chickens treated with NH3. 9 genes of DEPs were validated using qRT-PCR, and mRNA expression of 2 immune-related genes (CTSG and NFATC2), 3 metabolic process-related genes (APOA1, GOT1, and GOLGA3), and 4 apoptosis-related genes (PIK3CD, CTSS, CAMP, and NSD2) were consistent with DEPs in chicken thymuses. Our results indicated that excess NH3 led to immunosuppression, metabolic disorder, and apoptosis in chicken thymuses. Present study gives a novel insight into the mechanism of NH3 toxicity and demonstrated that immune response, metabolism process, and apoptosis were important in the mechanism of NH3 toxicity of chicken exposure to high concentration of NH3.
Collapse
Affiliation(s)
- Dechun Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China; College of Life Science and Technology, Southwest University for Nationalities, Chengdu, 610041, China
| | - Guanghui Hu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Shuai Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
11
|
Wu S, Peng W, Zhang Y, Guo J, Fu J, Wang W. Correlation of PMN elastase and PMN elastase-to-neutrophil ratio with disease activity in patients with myositis. J Transl Med 2019; 17:420. [PMID: 31842908 PMCID: PMC6912949 DOI: 10.1186/s12967-019-02176-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/10/2019] [Indexed: 12/26/2022] Open
Abstract
Background Polymorphonuclear (PMN) elastase plays an important role in a variety of inflammatory disorders. Our aim was to analyse PMN elastase in idiopathic inflammatory myopathies (IIMs) and its association with disease activity. Methods PMN elastase levels were measured using enzyme-linked immunosorbent assay in serum samples obtained from 74 patients with myositis (58 with dermatomyositis [DM] and 16 with polymyositis [PM]) and 22 healthy controls. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the discriminant capacity of PMN elastase level and PMN elastase-to-neutrophil ratio (ENR) in patients with active and remission myositis. The association of serum PMN elastase level and ENR with disease variables was evaluated in patients with IIMs. The disease specificity of PMN elastase level and ENR was further examined in 60 patients with other systemic autoimmune diseases. Results PMN elastase level and ENR were significantly higher in patients with active IIMs, DM, and PM than in patients with remission. ROC curve analysis revealed that PMN elastase level and ENR both outperformed creatine kinase (CK), the currently used laboratory marker, and strongly discriminated patients with active disease and those with remission of IIMs, DM, and PM (area under the ROC curve [AUC] 0.9, 0.9, and 0.88 for PMN elastase; AUC 0.96, 0.96, and 1.0 for ENR; AUC 0.72, 0.70, and 0.80 for CK, respectively). PMN elastase level and ENR were positively correlated with myositis disease activity assessment, CK, lactate dehydrogenase, aspartate aminotransferase, alanine aminotransferase, C-reactive protein, and erythrocyte sedimentation rate. PMN elastase level and ENR were higher in the anti-PM-Scl positive myositis group than those in the anti-PM-Scl negative myositis group. Nevertheless, PMN elastase was not a specific disease marker for IIMs when compared with other autoimmune diseases. Conclusions PMN elastase, particularly ENR, were significantly correlated with disease activity and could serve as useful biochemical markers for evaluating the disease activity of patients with IIMs. Thus, they are potentially helpful in monitoring disease progression and guiding treatment.
Collapse
Affiliation(s)
- Siyu Wu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, People's Republic of China
| | - Wanchan Peng
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, People's Republic of China
| | - Yunli Zhang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, People's Republic of China
| | - Jingjing Guo
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, People's Republic of China
| | - Jinfang Fu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, People's Republic of China
| | - Wei Wang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
12
|
Tabrez S, Jabir NR, Khan MI, Khan MS, Shakil S, Siddiqui AN, Zaidi SK, Ahmed BA, Kamal MA. Association of autoimmunity and cancer: An emphasis on proteolytic enzymes. Semin Cancer Biol 2019; 64:19-28. [PMID: 31100322 DOI: 10.1016/j.semcancer.2019.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/24/2022]
Abstract
Cancer and autoimmune diseases are the two devastating conditions that together constitute a leading health problem worldwide. The rising burden of these disorders in the developing world demands a multifaceted approach to address the challenges it poses. Understanding the root causes and specific molecular mechanisms by which the progression of the diseases takes place is need of the hour. A strong inflammatory background and common developmental pathways, such as activation of immune cells, proliferation, increased cell survival and migration which are controlled by growth factors and inflammatory cytokines have been considered as the critical culprits in the progression and complications of these disorders. Enzymes are the potential immune modulators which regulate various inflammatory events and can break the circulating immune complexes via macrophages production. In the current manuscript, we have uncovered the possible role of proteolytic enzymes in the pathogenesis and progression of cancer and autoimmune diseases. In the light of the available scientific literature, we advocate in-depth comprehensive studies which will shed light towards the role of proteolytic enzymes in the modulation of inflammatory responses in cancer and autoimmune diseases together.
Collapse
Affiliation(s)
- Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Nasimudeen R Jabir
- Department of Biochemistry, Centre for Research and Development, PRIST University, Vallam, Thanjavur, Tamil Nadu, India
| | - Mohammad Imran Khan
- Protein Research Chair, Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohd Shahnawaz Khan
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shazi Shakil
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Syed Kashif Zaidi
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bakrudeen Ali Ahmed
- Department of Biochemistry, Centre for Research and Development, PRIST University, Vallam, Thanjavur, Tamil Nadu, India
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
13
|
Xiao Y, Zhu H, Li L, Gao S, Liu D, Dai B, Li Q, Duan H, Yang H, Li Q, Zhang H, Luo H, Zuo X. Global analysis of protein expression in muscle tissues of dermatomyositis/polymyosisits patients demonstrated an association between dysferlin and human leucocyte antigen A. Rheumatology (Oxford) 2019; 58:kez085. [PMID: 30907425 DOI: 10.1093/rheumatology/kez085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/04/2019] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES DM and PM are characterized by myofibre damage with inflammatory cell infiltration due to the strong expressions of MHC class I HLA-A and monocyte chemoattractant protein-1 (MCP-1). Dysferlin (DYSF) is a transmembrane glycoprotein that anchors in the sarcolemma of myofibres. DYSF mutation is closely associated with inherited myopathies. This study aimed to determine the role of DYSF in the development of DM/PM. METHODS Mass spectrometry was performed in muscle tissues from DM/PM patients and controls. The DYSF levels in muscle tissue, peripheral blood cells and serum were detected by Western blotting, IF, flow cytometry or ELISA. Double IF and co-immunoprecipitation were used to investigate the relationship between DYSF and HLA-A. RESULTS Mass spectrometry and bioinformatics analysis findings suggested the dysregulated proteins in DM/PM patients participated in common biological processes and pathways, such as the generation of precursor metabolites and energy. DYSF was upregulated in the muscle tissue and serum of DM/PM patients. DYSF was mainly expressed in myofibres and co-localized with HLA-A and MCP-1. DYSF and HLA-A expressions were elevated in myocytes and endothelial cells after being stimulated by patient serum and IFN-β. However, no direct interactions were found between DYSF and HLA-A by co-immunoprecipitation. CONCLUSION Our study revealed the dysregulated proteins involved in common and specific biological processes in DM/PM patient samples. DYSF is upregulated and exhibits a potential role along with that of HLA-A and MCP-1 in inflammatory cell infiltration and muscle damage during the development of DM/PM.
Collapse
Affiliation(s)
- Yizhi Xiao
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Rheumatology and Immunology, Central South University, Changsha, China
| | - Honglin Zhu
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Rheumatology and Immunology, Central South University, Changsha, China
| | - Liya Li
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Rheumatology and Immunology, Central South University, Changsha, China
| | - Siming Gao
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Rheumatology and Immunology, Central South University, Changsha, China
| | - Di Liu
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Rheumatology and Immunology, Central South University, Changsha, China
| | - Bingying Dai
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Rheumatology and Immunology, Central South University, Changsha, China
| | - Qiuxiang Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Huiqian Duan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Quanzhen Li
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Huali Zhang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Hui Luo
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Rheumatology and Immunology, Central South University, Changsha, China
| | - Xiaoxia Zuo
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Rheumatology and Immunology, Central South University, Changsha, China
| |
Collapse
|
14
|
Gao S, Zhang H, Zuo X, Xiao Y, Liu D, Zhu H, Luo H. Integrated comparison of the miRNAome and mRNAome in muscles of dermatomyositis and polymyositis reveals common and specific miRNA–mRNAs. Epigenomics 2019; 11:23-33. [PMID: 30523707 DOI: 10.2217/epi-2018-0064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: Dermatomyositis (DM) and polymyositis (PM) are refractory systemic autoimmune diseases with unknown pathogenesis. miRNAs is an important epigenetic mechanism to regulate gene expression. Methods: We performed whole miRNAs analysis, transcription analysis and the association between miRNAome and mRNAome. Results: For transcription and miRNAs analysis, there were common and specific mRNAs and miRNAs in the muscles of DM and PM. Among them, the expression levels of miR-196a-5p and CPM were negatively correlated in PM, miR-193b-3p and NECAP2 were negatively correlated in DM and PM. Protein carboxypeptidase M (CPM) plays roles in the degradation of extracellular proteins and in the migration and invasion of cancer cells, and protein NECAP2 plays roles in adaptor protein AP-1-mediated fast recycling from early endosomes. The functions of them in the pathogenesis of DM/PM need further studies. Conclusion: Our study identified and confirmed differentially miRNAs and mRNAs in DM and PM. Our observations have laid the groundwork for further diagnostic and mechanistic studies of DM and PM.
Collapse
Affiliation(s)
- Siming Gao
- Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China
| | - Huali Zhang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China
| | - Xiaoxia Zuo
- Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China
| | - Yizhi Xiao
- Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China
| | - Di Liu
- Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China
| | - Honglin Zhu
- Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China
| | - Hui Luo
- Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China
| |
Collapse
|
15
|
The roles of neutrophil serine proteinases in idiopathic inflammatory myopathies. Arthritis Res Ther 2018; 20:134. [PMID: 29976235 PMCID: PMC6034343 DOI: 10.1186/s13075-018-1632-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 05/24/2018] [Indexed: 12/13/2022] Open
Abstract
Background Dermatomyositis and polymyositis are the best known idiopathic inflammatory myopathies (IIMs). Classic histopathologic findings include the infiltration of inflammatory cells into muscle tissues. Neutrophil serine proteinases (NSPs) are granule-associated enzymes and play roles in inflammatory cell migration by increasing the permeability of vascular endothelial cells. In this study, we aimed to find the roles of NSPs in pathogenesis of IIMs. Methods RNA and DNA were isolated to measure the relative expression of NSPs and their methylation levels. The expression of NSPs in serum and muscle tissues was tested by enzyme-linked immunosorbent assay, immunohistochemistry, and immunofluorescence, respectively. Serum from patients was used to culture the human dermal microvascular endothelial cells (HDMECs), and then we observed the influence of serum on expression of VE-cadherin, endothelial cell tube formation, and transendothelial migration of peripheral blood mononuclear cells (PBMCs). Results We found that the expression of NSPs was increased in PBMCs, serum, and muscle tissues of IIM patients; these NSPs were hypomethylated in the PBMCs of patients. Serum NSPs were positively correlated with clinical indicators of IIM patients, including lactic dehydrogenase, erythrocyte sedimentation rate, C-reactive protein, immunoglobulin G, immunoglobulin M, and immunoglobulin A. Patients with anti-Jo-1, with anti-Ro-52, or without interstitial lung disease had lower levels of proteinase 3. Serum NSPs degraded the VE-cadherin of HDMECs, and serum NSP application increased the permeability of HDMECs. Conclusions Our studies indicate, for the first time, that NSPs play an important role in muscle inflammatory cell infiltration by increasing the permeability of vascular endothelial cells in IIM patients. Electronic supplementary material The online version of this article (10.1186/s13075-018-1632-x) contains supplementary material, which is available to authorized users.
Collapse
|
16
|
Cathepsin G and Its Role in Inflammation and Autoimmune Diseases. Arch Rheumatol 2018; 33:498-504. [PMID: 30874236 DOI: 10.5606/archrheumatol.2018.6595] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/23/2017] [Indexed: 01/01/2023] Open
Abstract
Cathepsin G belongs to the neutrophil serine proteases family, known for its function in killing pathogens. Studies over the past several years indicate that cathepsin G has important effects on inflammation and immune reaction, and may be a key factor in the pathogenesis of some autoimmune diseases. In this article, we discuss the roles of cathepsin G in inflammation, immune reaction, and autoimmune diseases. To our knowledge, this is the first study providing important information about cathepsin G in the pathogenesis of autoimmune diseases and suggesting that cathepsin G may be a new biomarker or treatment target.
Collapse
|