1
|
Hong S, Lazerka N, Jeon BJ, Kim JD, Erdenebileg S, Nho CW, Yoo G. Osteogenic Effects of the Diospyros lotus L. Leaf Extract on MC3T3-E1 Pre-Osteoblasts and Ovariectomized Mice via BMP2/4 and TGF β Pathways. Nutrients 2024; 16:1247. [PMID: 38674937 PMCID: PMC11053699 DOI: 10.3390/nu16081247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Osteoporosis, a disease defined by the primary bone strength due to a low bone mineral density, is a bone disorder associated with increased mortality in the older adult population. Osteoporosis is mainly treated via hormone replacement therapy, bisphosphates, and anti-bone resorption agents. However, these agents exert severe side effects, necessitating the development of novel therapeutic agents. Many studies are focusing on osteogenic agents as they increase the bone density, which is essential for osteoporosis treatment. Here, we aimed to investigate the effects of Diospyros lotus L. leaf extract (DLE) and its components on osteoporosis in MC3T3-E1 pre-osteoblasts and ovariectomized mice and to elucidate the underlying related pathways. DLE enhanced the differentiation of MC3T3-E1 pre-osteoblasts, with a 1.5-fold elevation in ALP activity, and increased the levels of osteogenic molecules, RUNX family transcription factor 2, and osterix. This alteration resulted from the activation of bone morphogenic protein 2/4 (BMP2/4) and transformation of growth factor β (TGF β) pathways. In ovariectomized mice, DLE suppressed the decrease in bone mineral density by 50% and improved the expression of other bone markers, which was confirmed by the 3~40-fold increase in osteogenic proteins and mRNA expression levels in bone marrow cells. The three major compounds identified in DLE exhibited osteogenic and estrogenic activities with their aglycones, as previously reported. Among the major compounds, myricitrin alone was not as strong as whole DLE with all its constituents. The osteogenic activity of DLE was partially suppressed by the inhibitor of estrogen signaling, indicating that the estrogenic activity of DLE participated in its osteogenic activity. Overall, DLE suppresses osteoporosis by inducing osteoblast differentiation.
Collapse
Affiliation(s)
- Soyeon Hong
- Smart Farm Research Center, Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (S.H.); (N.L.); (B.J.J.); (J.D.K.); (S.E.); (C.W.N.)
| | - Nadzeya Lazerka
- Smart Farm Research Center, Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (S.H.); (N.L.); (B.J.J.); (J.D.K.); (S.E.); (C.W.N.)
- Division of Natural Product Applied Science, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Byeong Jun Jeon
- Smart Farm Research Center, Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (S.H.); (N.L.); (B.J.J.); (J.D.K.); (S.E.); (C.W.N.)
| | - Jeong Do Kim
- Smart Farm Research Center, Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (S.H.); (N.L.); (B.J.J.); (J.D.K.); (S.E.); (C.W.N.)
| | - Saruul Erdenebileg
- Smart Farm Research Center, Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (S.H.); (N.L.); (B.J.J.); (J.D.K.); (S.E.); (C.W.N.)
- Division of Natural Product Applied Science, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Chu Won Nho
- Smart Farm Research Center, Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (S.H.); (N.L.); (B.J.J.); (J.D.K.); (S.E.); (C.W.N.)
- Division of Natural Product Applied Science, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Gyhye Yoo
- Smart Farm Research Center, Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (S.H.); (N.L.); (B.J.J.); (J.D.K.); (S.E.); (C.W.N.)
- Division of Natural Product Applied Science, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| |
Collapse
|
2
|
Duan H, Liu G, Feng D, Wang Z, Yan W. Research Progress on New Functions of Animal and Plant Proteins. Foods 2024; 13:1223. [PMID: 38672894 PMCID: PMC11048783 DOI: 10.3390/foods13081223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Protein is composed of peptides, essential nutrients for human survival and health, and the easy absorption of peptides further promotes human health. According to the source of the protein, it can be divided into plants, animals, and micro-organisms, which have important physiological effects on the health of the body, especially in enhancing immunity. The most widely used raw materials are animal protein and plant protein, and the protein composition formed by the two in a certain proportion is called "double protein". In recent years, China's State Administration for Market Regulation has issued an announcement on the "Implementation Rules for the Technical Evaluation of New Functions and Products of Health Foods (Trial)", which provides application conditions and listing protection for the research and development of new functions of health foods. At present, some researchers and enterprises have begun to pay attention to the potential of animal and plant proteins to be used in new functions. In this article, the research progress of animal and plant proteins in the new functions of Chinese health food is reviewed in detail, and suggestions for future research on animal and plant proteins are put forward.
Collapse
Affiliation(s)
- Hao Duan
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China; (H.D.); (G.L.)
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China;
| | - Gaigai Liu
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China; (H.D.); (G.L.)
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China;
| | - Duo Feng
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China;
| | - Zhuoye Wang
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China;
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China; (H.D.); (G.L.)
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China;
| |
Collapse
|
3
|
Fang Y, Xiang W, Cui J, Jiao B, Su X. Anti-Inflammatory Properties of the Citrus Flavonoid Diosmetin: An Updated Review of Experimental Models. Molecules 2024; 29:1521. [PMID: 38611801 PMCID: PMC11013832 DOI: 10.3390/molecules29071521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Inflammation is an essential contributor to various human diseases. Diosmetin (3',5,7-trihydroxy-4'-methoxyflavone), a citrus flavonoid, can be used as an anti-inflammatory agent. All the information in this article was collected from various research papers from online scientific databases such as PubMed and Web of Science. These studies have demonstrated that diosmetin can slow down the progression of inflammation by inhibiting the production of inflammatory mediators through modulating related pathways, predominantly the nuclear factor-κB (NF-κB) signaling pathway. In this review, we discuss the anti-inflammatory properties of diosmetin in cellular and animal models of various inflammatory diseases for the first time. We have identified some deficiencies in current research and offer suggestions for further advancement. In conclusion, accumulating evidence so far suggests a very important role for diosmetin in the treatment of various inflammatory disorders and suggests it is a candidate worthy of in-depth investigation.
Collapse
Affiliation(s)
- Yangyang Fang
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China; (Y.F.); (W.X.); (J.C.)
| | - Wei Xiang
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China; (Y.F.); (W.X.); (J.C.)
| | - Jinwei Cui
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China; (Y.F.); (W.X.); (J.C.)
| | - Bining Jiao
- Key Laboratory of Quality and Safety Control for Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, China;
| | - Xuesu Su
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China; (Y.F.); (W.X.); (J.C.)
| |
Collapse
|
4
|
Pegoraro NS, Gehrcke M, Camponogara C, Fialho MFP, Cruz L, Oliveira SM. The Association of Oleic Acid and Dexamethasone Acetate into Nanocapsules Enables a Reduction in the Effective Corticosteroid Dose in a UVB Radiation-Induced Sunburn Model in Mice. Pharmaceutics 2024; 16:176. [PMID: 38399236 PMCID: PMC10892665 DOI: 10.3390/pharmaceutics16020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Dexamethasone has a high anti-inflammatory efficacy in treating skin inflammation. However, its use is related to the rebound effect, rosacea, purple, and increased blood glucose levels. Nanotechnology approaches have emerged as strategies for drug delivery due to their advantages in improving therapeutic effects. To reduce dexamethasone-related adverse effects and improve the anti-inflammatory efficacy of treatments, we developed nanocarriers containing this corticosteroid and oleic acid. Nanocapsules and nanoemulsion presented dexamethasone content close to the theoretical value and controlled dexamethasone release in an in vitro assay. Gellan gum-based hydrogels were successfully prepared to employ the nanostructured systems. A permeation study employing porcine skin showed that hydrogels containing non-nanoencapsulated dexamethasone (0.025%) plus oleic acid (3%) or oleic acid (3%) plus dexamethasone (0.025%)-loaded nanocapsules provided a higher amount of dexamethasone in the epidermis compared to non-nanoencapsulated dexamethasone (0.5%). Hydrogels containing oleic acid plus dexamethasone-loaded nanocapsules effectively inhibited mice ear edema (with inhibitions of 89.26 ± 3.77% and 85.11 ± 2.88%, respectively) and inflammatory cell infiltration (with inhibitions of 49.58 ± 4.29% and 27.60 ± 11.70%, respectively). Importantly, the dexamethasone dose employed in hydrogels containing the nanocapsules that effectively inhibited ear edema and cell infiltration was 20-fold lower (0.025%) than that of non-nanoencapsulated dexamethasone (0.5%). Additionally, no adverse effects were observed in preliminary toxicity tests. Our study suggests that nanostructured hydrogel containing a reduced effective dose of dexamethasone could be a promising therapeutic alternative to treat inflammatory disorders with reduced or absent adverse effects. Additionally, testing our formulation in a clinical study on patients with skin inflammatory diseases would be very important to validate our study.
Collapse
Affiliation(s)
- Natháli Schopf Pegoraro
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil; (N.S.P.); (C.C.); (M.F.P.F.)
| | - Mailine Gehrcke
- Graduate Program in Pharmaceutical Sciences, Centre of Health Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil; (M.G.); (L.C.)
| | - Camila Camponogara
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil; (N.S.P.); (C.C.); (M.F.P.F.)
| | - Maria Fernanda Pessano Fialho
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil; (N.S.P.); (C.C.); (M.F.P.F.)
| | - Letícia Cruz
- Graduate Program in Pharmaceutical Sciences, Centre of Health Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil; (M.G.); (L.C.)
| | - Sara Marchesan Oliveira
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil; (N.S.P.); (C.C.); (M.F.P.F.)
- Department of Biochemistry and Molecular Biology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| |
Collapse
|
5
|
Shin JY, Cho BO, Park JH, Kang ES, Kim YS, Jang SI. Diospyros lotus leaf extract and its main component myricitrin regulate pruritus through the inhibition of astrocyte activation. Exp Ther Med 2023; 26:323. [PMID: 37346401 PMCID: PMC10280317 DOI: 10.3892/etm.2023.12022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/29/2023] [Indexed: 06/23/2023] Open
Abstract
Diospyros lotus is a deciduous plant native to Asian countries, including Korea, Japan and China, and southeast Europe. In traditional medicine, Diospyros lotus is used as an anticancer, antidiabetic and antipyretic agent. The present study aimed to evaluate the effect of Diospyros lotus leaf extract (DLE) in ameliorating histamine-independent pruritus. Activation of signal transducer and activator of transcription 3 (STAT3) in astrocytes contributes to pruritus. In this study, the effects of DLE and its main component, myricetin (MC), on the activation of STAT3, expression of glial fibrillary acidic protein (GFAP), and production of lipocalin-2 (LCN2) in IL-6-treated astrocytes and chloroquine-injected mice were investigated through western blot, reverse transcription-quantitative PCR, and immunofluorescence staining. DLE and MC inhibited STAT3 activation, GFAP expression and LCN2 release via inositol 1,4,5-trisphosphate receptor type 1 blockade in astrocytes. DLE and MC ameliorated scratching behavior, expression of GFAP, mast cell infiltration and serum IL-6 levels in chloroquine-injected mice. These results suggested that DLE and MC can be used as oral therapeutic agents for the treatment and management of pruritus.
Collapse
Affiliation(s)
- Jae Young Shin
- Department of Food Science and Technology, Jeonbuk National University, Deokjin, Jeonju, Jeollabuk 54896, Republic of Korea
- Institute of Health and Science, Jeonju University, Wansan, Jeonju, Jeollabuk 55069, Republic of Korea
| | - Byoung Ok Cho
- Institute of Health and Science, Jeonju University, Wansan, Jeonju, Jeollabuk 55069, Republic of Korea
| | - Ji Hyeon Park
- Institute of Health and Science, Jeonju University, Wansan, Jeonju, Jeollabuk 55069, Republic of Korea
| | - Eun Seo Kang
- Institute of Health and Science, Jeonju University, Wansan, Jeonju, Jeollabuk 55069, Republic of Korea
| | - Young Soo Kim
- Department of Food Science and Technology, Jeonbuk National University, Deokjin, Jeonju, Jeollabuk 54896, Republic of Korea
| | - Seon Il Jang
- Institute of Health and Science, Jeonju University, Wansan, Jeonju, Jeollabuk 55069, Republic of Korea
- Department of Health Management, Jeonju University, Wansan, Jeonju, Jeollabuk 55069, Republic of Korea
| |
Collapse
|
6
|
Fareed N, El-Kersh DM, Youssef FS, Labib RM. Unveiling major ethnopharmacological aspects of genus Diospyros in context to its chemical diversity: A comprehensive overview. J Food Biochem 2022; 46:e14413. [PMID: 36136087 DOI: 10.1111/jfbc.14413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/22/2022] [Accepted: 08/30/2022] [Indexed: 01/13/2023]
Abstract
Diospyros species (DS), "Ebenaceae," were known for their therapeutic uses in folk medicine since days of yore. Thereafter, scientific evidence related their health benefits to a myriad of chemical classes, for instance, naphthoquinones, flavonoids, tannins, coumarins, norbergenin derivatives, sterols, secoiridoids, sesquiterpenes, diterpenoids, triterpenoids, volatile organic compounds (VOCs), and carotenoids. The available literature showed that more than 200 compounds were isolated and identified via spectroscopic techniques. Many pharmacological activities of DS have been previously described, such as antioxidant, neuroprotective, antibacterial, antiviral, antiprotozoal, antifungal, antiinflammatory, analgesic, antipyretic and cosmeceutical, investigated, and confirmed through versatile in vitro and in vivo assays. Previous studies proved that genus Diospyros is a rich reservoir of valuable bioactive compounds. However, further comparative studies among its different species are recommended for more precise natural source-based drug discovery and clinical application. Accordingly, this review is to recall the chemical abundance and diversity among different members of genus Diospyros and their ethnopharmacological and pharmacological uses. PRACTICAL APPLICATIONS: Practically, providing sufficient background on both secondary metabolites divergence and pharmacological properties of genus Diospyros has many fruitful aspects. As demonstrated below, extracts and many isolated compounds have significant curative properties, which can lead to the discovery of pharmaceutically relevant alternative substitutes to conventional medicine. Consequently, molecular docking on various receptors can be applied. On the grounds, Naoxinqing tablets, a standardized herbal product containing D. kaki leaves extract, have been patented and recorded in Chinese Pharmacopeia as an approved Traditional Chinese Medicine (TCM) for the treatment of cerebro- and cardiovascular diseases, although the underlying mechanism remains under advisement. Moreover, the antimicrobial applications of DS are of considerable concern; since the widespread use of antibiotics resulted in different forms of bacterial resistance, hence, limiting and compromising effective treatment. In addition, as a result of contemporary rampant memory disorders, neuroprotective activities of different extracts of DS became of great emphasis.
Collapse
Affiliation(s)
- Nada Fareed
- Pharmacognosy Department, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, 11837, Egypt
| | - Dina M El-Kersh
- Pharmacognosy Department, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, 11837, Egypt
| | - Fadia S Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, 11566, Egypt
| | - Rola M Labib
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, 11566, Egypt
| |
Collapse
|
7
|
de Araújo Andrade T, Heimfarth L, Dos Santos DM, Dos Santos MRV, de Albuquerque-Júnior RLC, Dos Santos-Neto AG, de Araujo GRS, Lira AAM, Matos SS, Frank LA, Rabelo TK, Quintans-Júnior LJ, de Souza Siqueira Quintans J, de Souza Araujo AA, Serafini MR. Hesperetin-Based Hydrogels Protect the Skin against UV Radiation-Induced Damage. AAPS PharmSciTech 2022; 23:170. [PMID: 35729366 DOI: 10.1208/s12249-022-02323-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
UV radiation can cause damages, such as erythema, skin photoaging, and carcinogenesis. The adoption of protective measures against sun exposure is essential to prevent these damages, and the interest in using natural substances as an alternative for photoprotection is growing. Thus, hesperetin with antioxidant, anti-inflammatory, and anticancer properties is a promising substance to be used with photochemopreventive action and to protect the skin from damage induced by UV radiation. Therefore, the present study aimed to develop a topical formulation based on AAMVPC gel containing hesperetin and evaluate its photoprotective effect on the skin of rats exposed to UVA-UVB radiation. The animals were submitted to the irradiation protocol UVA-UVB, and at the end, erythema, lipid peroxidation, and activity of the antioxidant enzyme catalase and superoxide dismutase were evaluated. Additionally, it evaluated the activity of myeloperoxidase and histological changes. The formulation presented a rheological and spreadability profile suitable for cutaneous application. In vivo results demonstrated that the topical formulation of AAMVPC gel containing hesperetin at a concentration of 10% protected the skin from damage induced by UVA-UVB radiation, with the absence of erythema, lipid lipoperoxidation, and inflammation (low myeloperoxidase activity), and increased catalase and superoxide dismutase activities. The morphology and architecture of the dermo-epidermal tissue of these animals were like those observed under normal conditions (non-irradiated animals). Thus, the results showed that hesperetin was able to protect the animals' skin against UV radiation-induced skin damage and the protection mechanisms may be related to the antioxidant and anti-inflammatory properties of this natural product.
Collapse
Affiliation(s)
| | - Luana Heimfarth
- Departamento de Fisiologia, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brasil
| | - Danillo Menezes Dos Santos
- Departamento de Fisiologia, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brasil.,Health Sciences Graduate Program, Universidade Federal de Sergipe, Aracaju, Sergipe, Brasil
| | - Márcio Roberto Viana Dos Santos
- Departamento de Fisiologia, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brasil.,Health Sciences Graduate Program, Universidade Federal de Sergipe, Aracaju, Sergipe, Brasil
| | | | | | | | | | - Saulo Santos Matos
- Departamento de Farmácia, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brasil
| | - Luiza Abrahão Frank
- Programa de Pós-Graduação Em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Rio Grande do Sul, Brasil.
| | - Thallita Kelly Rabelo
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
| | - Lucindo José Quintans-Júnior
- Departamento de Fisiologia, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brasil.,Health Sciences Graduate Program, Universidade Federal de Sergipe, Aracaju, Sergipe, Brasil
| | - Jullyana de Souza Siqueira Quintans
- Departamento de Fisiologia, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brasil.,Health Sciences Graduate Program, Universidade Federal de Sergipe, Aracaju, Sergipe, Brasil
| | - Adriano Antunes de Souza Araujo
- Departamento de Farmácia, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brasil.,Health Sciences Graduate Program, Universidade Federal de Sergipe, Aracaju, Sergipe, Brasil
| | - Mairim Russo Serafini
- Departamento de Farmácia, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brasil. .,Health Sciences Graduate Program, Universidade Federal de Sergipe, Aracaju, Sergipe, Brasil.
| |
Collapse
|
8
|
Exploration of sea anemone-inspired high-performance biomaterials with enhanced antioxidant activity. Bioact Mater 2021; 10:504-514. [PMID: 34901563 PMCID: PMC8637015 DOI: 10.1016/j.bioactmat.2021.08.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/09/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022] Open
Abstract
Antioxidant biomaterials have attracted much attention in various biomedical fields because of their effective inhibition and elimination of reactive oxygen species (ROS) in pathological tissues. However, the difficulty in ensuring biocompatibility, biodegradability and bioavailability of antioxidant materials has limited their further development. Novel bioavailable antioxidant materials that are derived from natural resources are urgently needed. Here, an integrated multi-omics method was applied to fabricate antioxidant biomaterials. A key cysteine-rich thrombospondin-1 type I repeat-like (TSRL) protein was efficiently discovered from among 1262 adhesive components and then used to create a recombinant protein with a yield of 500 mg L-1. The biocompatible TSRL protein was able to self-assemble into either a water-resistant coating through Ca2+-mediated coordination or redox-responsive hydrogels with tunable physical properties. The TSRL-based hydrogels showed stronger 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging rates than glutathione (GSH) and ascorbic acid (Aa) and protected cells against external oxidative stress significantly more effectively. When topically applied to mice skin, TSRL alleviated epidermal hyperplasia and suppressed the degradation of collagen and elastic fibers caused by ultraviolet radiation B (UVB) irradiation, confirming that it enhanced antioxidant activity in vivo. This is the first study to successfully characterize natural antioxidant biomaterials created from marine invertebrate adhesives, and the findings indicate the excellent prospects of these biomaterials for great applications in tissue regeneration and cosmeceuticals.
Collapse
|
9
|
Mu J, Ma H, Chen H, Zhang X, Ye M. Luteolin Prevents UVB-Induced Skin Photoaging Damage by Modulating SIRT3/ROS/MAPK Signaling: An in vitro and in vivo Studies. Front Pharmacol 2021; 12:728261. [PMID: 34526903 PMCID: PMC8436182 DOI: 10.3389/fphar.2021.728261] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/12/2021] [Indexed: 02/03/2023] Open
Abstract
The aim of this study was to investigate the role of luteolin in the mechanism of ultraviolet radiation B (UVB)-induced photoaging. An in vivo photoaging model was established using UVB irradiation of bare skin on the back of rats, and an in vitro photoaging model was established using UVB irradiation of human dermal fibroblasts (HDF). Skin damage was observed using hematoxylin-eosin (HE) and Masson staining, skin and cellular reactive oxygen species (ROS) levels were detected by DHE and DCF fluorescent probes, mitochondrial membrane potential was detected by JC-1 staining, and protein expressions were detected by immunofluorescence and Western Blot. Results from animal experiments showed that luteolin reduced UVB-induced erythema and wrinkle formation. Results from cellular assays showed that luteolin inhibited UVB-induced decrease in cell viability. In addition, in vitro and in vivo experiments showed that luteolin reduced oxidative stress levels, decreased activation of matrix metalloproteinases (MMPs) and increased collagen expression. Continued cellular experiments using 3-TYP, an inhibitor of Sirtuin 3 (SIRT3), revealed a loss of cellular protection by luteolin and a decrease in collagen, suggesting that luteolin acts by targeting and promoting SIRT3. luteolin is involved in the protection of skin cells against UVB radiation-induced ageing via the SIRT3/ROS/mitogen-activated protein kinases (MAPK) axis and it may be a promising therapeutic agent for the prevention of UVB photoaging.
Collapse
Affiliation(s)
- Jing Mu
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Huisheng Ma
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Hong Chen
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Xiaoxia Zhang
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Mengyi Ye
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
10
|
Li Y, Xia C, Yao G, Zhang X, Zhao J, Gao X, Yong J, Wang H. Protective effects of liquiritin on UVB-induced skin damage in SD rats. Int Immunopharmacol 2021; 97:107614. [PMID: 33892299 DOI: 10.1016/j.intimp.2021.107614] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/14/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022]
Abstract
Overexposure to ultraviolet B (UVB) rays can cause damage to the skin. Liquiritin has a variety of pharmacological effects, such as anti-inflammatory and antioxidant. In the present study, the effect of liquiritin on UVB irradiated rat skin was investigated. Results showed that UVB irradiation caused erythema and wrinkles on the skin surface, as well as thickening and loss of elasticity of the epidermis and a significant increase in the level of ROS in the skin tissue. At the same time, western blot detected an increase in nuclear factor kappa-B (NF-κB) and matrix metalloproteinases (MMPs) and Elisa also detected an increase in pro-inflammatory factors. Therefore, we hypothesized that UVB irradiation-induced damage is associated with inflammation. Interestingly, application of liquiritin to exposed skin of rats reduced the increase in ROS, pro-inflammatory factors, and MMPs caused by UVB irradiation and increased the levels of Sirtuin3 (SIRT3) and Collagen α1. In addition, after intraperitoneal injection of the SIRT3 inhibitor 3-TYP in rats, the protective effect of liquiritin against UVB damage was found to be diminished. These results suggested that promotion of SIRT3 with liquiritin inhibits UVB-induced production of pro-inflammatory mediators, possibly acting through the SIRT3/ROS/NF-κB pathway. In conclusion, this study suggests that liquiritin is an effective drug candidate for the prevention of UVB damage.
Collapse
Affiliation(s)
- Yuanjie Li
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004 Ningxia, China
| | - Changbo Xia
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004 Ningxia, China
| | - Guangda Yao
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004 Ningxia, China
| | - Xia Zhang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004 Ningxia, China
| | - Jianjun Zhao
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004 Ningxia, China
| | - Xiaojuan Gao
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004 Ningxia, China
| | - Jingjiao Yong
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004 Ningxia, China
| | - Hanqing Wang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004 Ningxia, China; Ningxia Engineering and Technology Research Center for Modernization of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China; Key Laboratory of Hui Ethnic Medicine Modernisation, Ministry of Education, Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
11
|
Liang J, Lian L, Wang X, Li L. Thymoquinone, extract from Nigella sativa seeds, protects human skin keratinocytes against UVA-irradiated oxidative stress, inflammation and mitochondrial dysfunction. Mol Immunol 2021; 135:21-27. [PMID: 33857815 DOI: 10.1016/j.molimm.2021.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/22/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023]
Abstract
Ultraviolet A (UVA) irradiation caused skin keratinocytes to accumulate reactive oxygen species (ROS) leading to the skin injury. Thymoquinone (TQ) was identified as the prominent bioactive ingredient in Nigella sativa seeds which was applied in therapying various human diseases. This study aimed to illustrate the role and mechanism of TQ in UVA-induced skin injury. We pre-treated HaCaT cells with TQ and irradiated them by UVA. MTT and Elisa assays were used to evaluate cell viability and apoptosis, as well as cytokine levels. To detect the related parameters of oxidative stress and mitochondrial function, colorimetry, spectrophotometry, bioluminescence, and dual-luciferase reporter methods were used. RT-qPCR and western blotting were performed for expressions of related mRNAs and proteins. TQ significantly improved the UVA-induced cytotoxicity on HaCaT cells. TQ treatment alleviated the oxidative stress and inflammation in UVA-irradiated keratinocytes. Besides, UVA irradiation promoted mitochondrial dysregulation in HaCaT cells leading to cell apoptosis, which could be reversed by TQ treatment. More importantly, NrF2/ARE pathway was activated in TQ-treated cells, while COX-2 was depressed, and inhibiting the pathway or activating COX-2 blocked the therapeutic effect of TQ on UVA-induced skin cell injury. Our study suggested that TQ treatment attenuated the UVA-induced oxidative and inflammatory responses, as well as mitochondrial apoptosis in keratinocytes by COX-2 inhibition via activating NrF2/ARE pathway. This might be a novel sight for preventing the solar radiation damage to the skin.
Collapse
Affiliation(s)
- Junfang Liang
- Department of Traditional Chinese Medicine Cosmetology, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi 712000, China
| | - Liyang Lian
- Department of Dermatological, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi 712000, China
| | - Xiaoli Wang
- Department of Dermatological, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi 712000, China
| | - Liang Li
- Department of Traditional Chinese Medicine Pain Area of Orthopedic, Honghui Hospital, Xi'an Jiaotong University, Xianyang, Shaanxi 710064, China.
| |
Collapse
|
12
|
Camponogara C, Brum ES, Pegoraro NS, Brusco I, Brucker N, Oliveira SM. Diosmetin, a novel transient receptor potential vanilloid 1 antagonist, alleviates the UVB radiation-induced skin inflammation in mice. Inflammopharmacology 2021; 29:879-895. [PMID: 33751333 DOI: 10.1007/s10787-021-00802-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/06/2021] [Indexed: 02/07/2023]
Abstract
UVB radiation-mediated inflammation and the oxidative process involve the transient receptor potential vanilloid 1 (TRPV1) channel activation in neuronal and non-neuronal cells. Once diosmetin has been identified as a novel TRPV1 antagonist, we evaluated the action of diosmetin from the inflammatory [ear oedema, myeloperoxidase (MPO) activity, histological changes, and cytokines levels] and oxidative [nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and SOD activities] parameters in mice exposed to UVB radiation (0.5 j/cm2). We also verified the action of diosmetin on UVB radiation-induced inflammatory parameters after cutaneous nerve fibers denervation by RTX (50 µg/kg s.c.). The topical treatment with the novel TRPV1 antagonist, diosmetin (1%; 15 mg/ear), reduced ear oedema, MPO activity, and MIP-2 and IL-1β cytokines levels by 82 ± 8%, 59 ± 10%, 40 ± 12%, and 85 ± 9%, respectively. The action of diosmetin on ear oedema and inflammatory cell infiltration was histologically confirmed. Topical diosmetin (1%) also reduced NADPH oxidase activity by 67 ± 10% and reverted SOD activity by 81 ± 13%. After cutaneous nerve fibers denervation using RTX, diosmetin reduced ear oedema, but not the inflammatory cell infiltration in mice exposed to UVB radiation. Diosmetin can be a promising molecule against skin inflammatory disorders as a result of sunburn induced by UVB radiation exposure.
Collapse
Affiliation(s)
- Camila Camponogara
- Laboratory Neurotoxicity and Psychopharmacology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Evelyne S Brum
- Laboratory Neurotoxicity and Psychopharmacology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Natháli S Pegoraro
- Laboratory Neurotoxicity and Psychopharmacology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Indiara Brusco
- Laboratory Neurotoxicity and Psychopharmacology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Natália Brucker
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Laboratory Neurotoxicity and Psychopharmacology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil. .,Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Av. Roraima 1000, Camobi, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
13
|
Tian Y, Du H, Wang L, Li S, Zhang L, Zhang L. Nitrite Scavenging and Inhibition of N-Nitrosamines Formation by Phenolic Extracts From Diospyros lotus L. Leaves and Active Ingredients. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20961186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Diospyros lotus L. leaves are used as a functional tea and folk medicine in several Asian countries. This study aimed to evaluate the effects of phenolic extracts of the leaves on scavenging nitrite and inhibiting N-nitrosamines (NAs) formation and to determine the active ingredients responsible for these effects. Of the 7 fractions (Fr1-Fr7) prepared from the extract of D. lotus leaves, Fr5 contained the highest phenolic content and exhibited the strongest activity. Five active ingredients of Fr5 were discovered, and 4 of them were identified as myricitrin (Mytr), myricetin (Myt), myricetin-3- O-β-d-glucoside (Myt-Glc), and myricetin-3- O-β-d-galactoside (Myt-Gal). The content of Mytr was much higher than those of the other 3 ingredients, both in Fr5 and extracts of D. lotus leaves. Finally, Mytr and Myt were proved to have stronger activities by the 1,1-diphenyl-2-trinitrophenyl hydrazine scavenging, nitrite scavenging, and inhibition of NAs formation assays. These results indicated that Mytr was the main active ingredient of D. lotus leaves. Myt, Mytr, and Fr5 from the leaves could be used as natural agents for antioxidant, nitrite scavenging, and inhibition of NAs formation in food and the human body.
Collapse
Affiliation(s)
- YanHua Tian
- Institute of Molecular Science, Modern Research Center for Traditional Chinese Medicine, Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi Province, P. R. China
- Department of Food Engineering, Shanxi Pharmaceutical Vocational College, Taiyuan, Shanxi Province, P. R. China
| | - HuiZhi Du
- Institute of Molecular Science, Modern Research Center for Traditional Chinese Medicine, Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi Province, P. R. China
| | - Li Wang
- Institute of Molecular Science, Modern Research Center for Traditional Chinese Medicine, Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi Province, P. R. China
| | - ShiFei Li
- Institute of Molecular Science, Modern Research Center for Traditional Chinese Medicine, Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi Province, P. R. China
| | - Lu Zhang
- Institute of Molecular Science, Modern Research Center for Traditional Chinese Medicine, Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi Province, P. R. China
| | - LiWei Zhang
- Institute of Molecular Science, Modern Research Center for Traditional Chinese Medicine, Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi Province, P. R. China
| |
Collapse
|
14
|
Effects of picking time and drying methods on contents of eight flavonoids and antioxidant activity of leaves of Diospyros lotus L. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00396-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Kim YJ, Lim HS, Kim JH, Na M, Jeong SJ. Quantitative Analysis of 7 Compounds in Diospyros lotus Leaf Extract and Its Biological Effects on Neuroprotection and Antineuroinflammation. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20924859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Diospyros lotus L. (Ebenaceae) is a deciduous plant that was traditionally used to treat various diseases such as sedation, constipation, and hypertension. However, its effects on Alzheimer’s diseases (AD) have not been reported. We investigated the potent biological effects of D. lotus on AD and performed quantitative analysis of 7 standard compounds in D. lotus leaves. First, two parts leaf and branch of D. lotus were compared to examine the effects on amyloid-β (Aβ) aggregation and oxidative stress. Ethanol extract of D. lotus leaves (EDLL) had higher activities on the Aβ disaggregation and antioxidation compared with ethanol extract of D. lotus branches (EDLB). Second, we have focused on the biological activities of EDLL for neurocellular analyses. In HT22 neuronal cells, EDLL reversed hydrogen peroxide (H2O2)-damaged cell death. In BV-2 microglia, EDLL suppressed lipopolysaccharide-stimulated productions of nitric oxide (NO) and prostaglandin E2. Third, we performed quantitative analyses of 7 standard compounds in D. lotus using high-performance liquid chromatography. Among 7 compounds, myricitrin (44.189 mg/g) was the most abundant compound in EDLL. Myricetin presented the marked inhibitory effect on Aβ aggregation, indicating its potential as a bioactive compound to control Aβ aggregation. Overall, this study suggests that EDLL may be a promising therapeutic agent for AD via Aβ disaggregation, and inhibition of neuronal cell damage and inflammation.
Collapse
Affiliation(s)
- Yu Jin Kim
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Hye-Sun Lim
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Joo-Hwan Kim
- Department of Life Science, Gachon University, Seongnam, Gyeonggi-do, Republic of Korea
| | - MinKyun Na
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Soo-Jin Jeong
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| |
Collapse
|
16
|
Piao MJ, Kang KA, Zhen AX, Kang HK, Koh YS, Kim BS, Hyun JW. Horse Oil Mitigates Oxidative Damage to Human HaCaT Keratinocytes Caused by Ultraviolet B Irradiation. Int J Mol Sci 2019; 20:ijms20061490. [PMID: 30934595 PMCID: PMC6471125 DOI: 10.3390/ijms20061490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 12/24/2022] Open
Abstract
Horse oil products have been used in skin care for a long time in traditional medicine, but the biological effects of horse oil on the skin remain unclear. This study was conducted to evaluate the protective effect of horse oil on ultraviolet B (UVB)-induced oxidative stress in human HaCaT keratinocytes. Horse oil significantly reduced UVB-induced intracellular reactive oxygen species and intracellular oxidative damage to lipids, proteins, and DNA. Horse oil absorbed light in the UVB range of the electromagnetic spectrum and suppressed the generation of cyclobutane pyrimidine dimers, a photoproduct of UVB irradiation. Western blotting showed that horse oil increased the UVB-induced Bcl-2/Bax ratio, inhibited mitochondria-mediated apoptosis and matrix metalloproteinase expression, and altered mitogen-activated protein kinase signaling-related proteins. These effects were conferred by increased phosphorylation of extracellular signal-regulated kinase 1/2 and decreased phosphorylation of p38 and c-Jun N-terminal kinase 1/2. Additionally, horse oil reduced UVB-induced binding of activator protein 1 to the matrix metalloproteinase-1 promoter site. These results indicate that horse oil protects human HaCaT keratinocytes from UVB-induced oxidative stress by absorbing UVB radiation and removing reactive oxygen species, thereby protecting cells from structural damage and preventing cell death and aging. In conclusion, horse oil is a potential skin protectant against skin damage involving oxidative stress.
Collapse
Affiliation(s)
- Mei Jing Piao
- School of Medicine, Jeju National University, Jeju 63243, Korea.
| | - Kyoung Ah Kang
- School of Medicine, Jeju National University, Jeju 63243, Korea.
| | - Ao Xuan Zhen
- School of Medicine, Jeju National University, Jeju 63243, Korea.
| | - Hee Kyoung Kang
- School of Medicine, Jeju National University, Jeju 63243, Korea.
| | - Young Sang Koh
- School of Medicine, Jeju National University, Jeju 63243, Korea.
| | - Bong Seok Kim
- Bio Convergence Center, Jeju Technopark, Jeju 63243, Korea.
| | - Jin Won Hyun
- School of Medicine, Jeju National University, Jeju 63243, Korea.
| |
Collapse
|
17
|
Che DN, Kang HJ, Cho BO, Shin JY, Jang SI. Combined effects of Diospyros lotus leaf and grape stalk extract in high-fat-diet-induced obesity in mice. Food Sci Biotechnol 2019; 28:1207-1215. [PMID: 31275721 DOI: 10.1007/s10068-018-00551-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/20/2018] [Accepted: 12/28/2018] [Indexed: 12/17/2022] Open
Abstract
The aim of this study was to investigate the combined effects of Diospyros lotus leaves extracts (DLE) and Muscat Bailey A grape stalk extracts (MGSE) in obesity induced by high-fat diet (HFD) in mice. The mice were fed with HFD and orally administered daily with DLE, MGSE, a mixture of DLE and MGSE, and Garcinia cambogia extract over a period of 16 weeks. The results revealed that daily administration of DLE and MGSE mixtures markedly prevented HFD-induced weight gain, plasma lipid profile, hepatic steatosis, hepatic fibrosis, diabetic symptoms, and the risk of developing cardiovascular diseases. Also, DLE and MGSE mixtures administration greatly prevented oxidative stress and liver toxicity. The combined effects of DLE and MGSE mixtures were higher than effects of the single extracts and of G. cambogia, a plant known for its anti-obesity effects. In summary, these findings demonstrated that DLE and MGSE mixtures, exhibit anti-obesity activity in HFD-fed mice.
Collapse
Affiliation(s)
- Denis Nchang Che
- 1Department of Health Management, Jeonju University, 303 Cheonjam-ro, Wansan-gu, Jeonju, Jeollabuk-do 55069 Republic of Korea
- 2Department of Food Science and Technology, Chonbuk National University, Jeonju, Jeollabuk-do 54896 Republic of Korea
| | - Hyun Ju Kang
- Research Institute, Ato Q&A Co., LTD, Jeonju, Jeollabuk-do 54840 Republic of Korea
| | - Byoung Ok Cho
- 1Department of Health Management, Jeonju University, 303 Cheonjam-ro, Wansan-gu, Jeonju, Jeollabuk-do 55069 Republic of Korea
- Research Institute, Ato Q&A Co., LTD, Jeonju, Jeollabuk-do 54840 Republic of Korea
| | - Jae Young Shin
- 1Department of Health Management, Jeonju University, 303 Cheonjam-ro, Wansan-gu, Jeonju, Jeollabuk-do 55069 Republic of Korea
| | - Seon Il Jang
- 1Department of Health Management, Jeonju University, 303 Cheonjam-ro, Wansan-gu, Jeonju, Jeollabuk-do 55069 Republic of Korea
- Research Institute, Ato Q&A Co., LTD, Jeonju, Jeollabuk-do 54840 Republic of Korea
| |
Collapse
|
18
|
Zhou Y, Yang W, Li Z, Luo D, Li W, Zhang Y, Wang X, Fang M, Chen Q, Jin X. Moringa oleifera stem extract protect skin keratinocytes against oxidative stress injury by enhancement of antioxidant defense systems and activation of PPARα. Biomed Pharmacother 2018; 107:44-53. [DOI: 10.1016/j.biopha.2018.07.152] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/11/2018] [Accepted: 07/30/2018] [Indexed: 01/10/2023] Open
|
19
|
Kim BM, Cho BO, Jang SI. Anti-obesity effects of Diospyros lotus leaf extract in mice with high-fat diet-induced obesity. Int J Mol Med 2018; 43:603-613. [PMID: 30365061 DOI: 10.3892/ijmm.2018.3941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/27/2018] [Indexed: 11/06/2022] Open
Abstract
Diospyros (D.) lotus has been demonstrated to have antioxidant and anti‑inflammatory properties. The purpose of the present study was to evaluate the effect of D. lotus leaf water extract (DLE) on high‑fat diet (HFD)‑induced obesity in C57BL/6 mice. The present study first investigated the effect of DLE on the lipid accumulation and triglyceride (TG) contents in 3T3‑L1 cells, and the results revealed that treatment with DLE suppressed the lipid accumulation and TG level. Subsequently, the anti‑obesity effects of DLE were investigated in vivo. Oral administration of DLE reduced the body weight gain, food efficiency ratio, and liver and visceral fat weight in mice fed with a HFD. DLE administration in these mice also reduced TG, total cholesterol, low‑density lipoprotein cholesterol, glucose, insulin and leptin levels, as well as the atherogenic index. Furthermore, DLE administration decreased hepatic steatosis, as well as serum aspartate transaminase, alanine transaminase and alkaline phosphatase levels in mice fed with HFD. It was further observed that treatment of the HFD‑fed mice with DLE prevented lipid peroxidation, while it recovered glutathione depletion and the activities of superoxide dismutase, catalase and glutathione peroxidase. In conclusion, the current study suggests that the anti‑obesity effect of DLE may provide positive insights as a potential functional food ingredient for the prevention of obesity.
Collapse
Affiliation(s)
- Bo-Mi Kim
- Department of Chemical Engineering, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Byoung Ok Cho
- Research Institute, Ato Q&A Co., Ltd., Jeonju, Jeonbuk 54840, Republic of Korea
| | - Seon Il Jang
- Research Institute, Ato Q&A Co., Ltd., Jeonju, Jeonbuk 54840, Republic of Korea
| |
Collapse
|