1
|
Guarín-González YA, Cabello-Guzmán G, Reyes-Gasga J, Moreno-Navarro Y, Vergara-González L, Martin-Martín A, López-Muñoz R, Cárdenas-Triviño G, Barraza LF. Dual-Action Gemcitabine Delivery: Chitosan-Magnetite-Zeolite Capsules for Targeted Cancer Therapy and Antibacterial Defense. Gels 2024; 10:672. [PMID: 39451325 PMCID: PMC11507657 DOI: 10.3390/gels10100672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Cancer and infectious diseases are two of the world's major public health problems. Gemcitabine (GEM) is an effective chemotherapeutic agent against several types of cancer. In this study, we developed macrocapsules incorporating GEM into a chitosan matrix blended with magnetite and zeolite by ionic gelation. Physicochemical characterization was performed using HRTEM-ED, XRD, FESEM-EDS, FT-IR, TGA, encapsulation efficiency (%E.E.), and release profiles at pHs 7.4 and 5.0. Cell viability tests against A549 and H1299 cell lines, and microbiological properties against staphylococcal strains were performed. Our results revealed the successful production of hemispherical capsules with an average diameter of 1.22 mm, a rough surface, and characteristic FT-IR material interaction bands. The macrocapsules showed a high GEM encapsulation efficiency of over 86% and controlled release over 24 h. Cell viability assays revealed that similar cytotoxic effects to free GEM were achieved with a 45-fold lower GEM concentration, suggesting reduced dosing requirements and potentially fewer side effects. Additionally, the macrocapsules demonstrated potent antimicrobial activity, reducing Staphylococcus epidermidis growth by over 90%. These results highlight the macrocapsules dual role as a chemotherapeutic and antimicrobial agent, offering a promising strategy for treating lung cancer in patients at risk of infectious diseases or who are immunosuppressed.
Collapse
Affiliation(s)
- Yuly Andrea Guarín-González
- Laboratorio Térmico de Nano y Macromateriales, Edificio de Procesos Sustentables, Departamento de Ingeniería en Maderas, Universidad del Bío-Bío, Concepción 4081112, Chile;
| | - Gerardo Cabello-Guzmán
- Facultad de Ciencias, Departamento de Biología y Química, Universidad del Bío-Bío, Chillán 3780000, Chile;
| | - José Reyes-Gasga
- Instituto de Física, Departamento de Materia Condensada, Universidad Autónoma de México, Coyoacán 04510, Mexico;
| | - Yanko Moreno-Navarro
- Facultad de Ciencias, Departamento de Química, Universidad de la Serena, La Serena 1720170, Chile;
| | - Luis Vergara-González
- Departamento de Ciencias Biológicas y Químicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Campus Las Tres Pascualas, Lientur 1457, Concepción 4060000, Chile;
| | - Antonia Martin-Martín
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia 5090000, Chile; (A.M.-M.); (R.L.-M.)
| | - Rodrigo López-Muñoz
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia 5090000, Chile; (A.M.-M.); (R.L.-M.)
| | - Galo Cárdenas-Triviño
- Laboratorio Térmico de Nano y Macromateriales, Edificio de Procesos Sustentables, Departamento de Ingeniería en Maderas, Universidad del Bío-Bío, Concepción 4081112, Chile;
| | - Luis F. Barraza
- Departamento de Ciencias Biológicas y Químicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, General Lagos 1163, Valdivia 5090000, Chile
| |
Collapse
|
2
|
Li Z, Huang X, Hu W, Lu H. Down-regulation of USP22 reduces cell stemness and enhances the sensitivity of pancreatic cancer cells to cisplatin by inactivating the Wnt/β-catenin pathway. Tissue Cell 2022; 77:101787. [PMID: 35623308 DOI: 10.1016/j.tice.2022.101787] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Pancreatic cancer (PC) has the worst prognosis of all common cancers worldwide. This study was intended to investigate the role of ubiquitin specific peptidase 22 (USP22) in cisplatin sensitivity of PC cells and its regulatory mechanism. METHODS The expression of USP22 and the toxicity of cisplatin to PC cells were detected. The two cell lines AsPC-1 and CAPAN-1 with the most differential drug resistance were selected. By down-expressing USP22 in CAPAN-1 cells and over-expressing USP22 in AsPC-1 cells, the survival rate of PC cells treated with cisplatin was detected. The mRNA expressions of stem cell markers, cell stemness, migration ability and apoptosis of PC cells were detected. The expression of Wnt/β-catenin pathway related proteins was detected. The role of the Wnt/β-catenin pathway in PC cell stemness and cisplatin sensitivity was explored after adding the inhibitor HLY78 and activator DKK1. RESULTS USP22 was highly-expressed in PC cells, and the sensitivity of PC cells to cisplatin was negatively-correlated with USP22 expression. Downregulation of USP22 raised the sensitivity of PC cells to cisplatin, reduced the levels of stem cell markers, reduced the tumor sphere formation and migration, and promoted apoptosis. Silencing USP22 inhibited the Wnt/β-catenin pathway. Inhibition of USP22 reduced the cell stemness and augmented the sensitivity of PC cells to cisplatin by inhibiting the Wnt/β-catenin pathway. CONCLUSION Silencing USP22 can inhibit the Wnt/β-catenin pathway to reduce cell stemness and enhance the sensitivity of PC cells to cisplatin.
Collapse
Affiliation(s)
- Zhenlu Li
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xing Huang
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Weiming Hu
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Huimin Lu
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
3
|
Huang TH, Hsu SH, Chang SW. Molecular interaction mechanisms of glycol chitosan self-healing hydrogel as a drug delivery system for gemcitabine and doxorubicin. Comput Struct Biotechnol J 2022; 20:700-709. [PMID: 35140889 PMCID: PMC8803946 DOI: 10.1016/j.csbj.2022.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 12/15/2022] Open
Abstract
Glycol chitosan is a derivative of chitosan that has attracted attention in recent years due to its biocompatibility and biodegradability. Due to its unique biological characteristics, it has been widely used in hydrogels and biomaterials. In this study, we explored the loading efficiency of a self-healing hydrogel (GC-DP) comprising glycol chitosan (GC) and telechelic difunctional poly(ethylene glycol) (DF-PEG) for delivering the anticancer drugs gemcitabine and doxorubicin through full atomistic simulations. We also constructed full atomistic models of the two drug delivery systems at three drug concentrations of 10%, 40%, and 80% to understand how the drug concentration affects the loading efficiency and molecular structure of the GC-DP hydrogels. Through the analysis of the results, we show that the GC-DP hydrogel exhibits excellent loading efficiency for both gemcitabine and doxorubicin at all drug concentrations (10%, 40% and 80%). Our results reveal that the main mechanism of interaction between the GC-DP hydrogels and gemcitabine is van der Waals adsorption and that the dominant interactions between the GC-DP hydrogel and doxorubicin are hydrogen bonds for the D10 model and van der Waals adsorption for the D40 and D80 models. Our results provide molecular insights into how drug molecules are carried by hydrogel materials and indicate that the GC-DP hydrogel is a promising candidate for carrying both gemcitabine and doxorubicin, and thus serving as a novel drug carrier for cancer treatment.
Collapse
|
4
|
Ding N, Zhao Z, Yin N, Xu Y, Yin T, Gou J, He H, Wang Y, Zhang Y, Tang X. Co-delivery of gemcitabine and cisplatin via Poly (L-glutamic acid)-g-methoxy poly (ethylene glycol) micelle to improve the in vivo stability and antitumor effect. Pharm Res 2021; 38:2091-2108. [PMID: 34893950 DOI: 10.1007/s11095-021-03139-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 11/10/2021] [Indexed: 01/09/2023]
Abstract
PURPOSE The intention of the study was to co-delivery gemcitabine and cisplatin with totally different nature by prodrug and micelle strategy to improve its in vivo stability and antitumor effect. METHODS A prodrug of gemcitabine (mPEG-PLG-GEM) was synthesized through the covalent conjugation between the primary amino group of gemcitabine and the carboxylic group of poly (L-glutamic acid)-g-methoxy poly (ethylene glycol) (mPEG-PLG). It was prepared into micelles by a solvent diffusion method, and then combined with cisplatin through chelation to prepare gemcitabine and cisplatin co-loaded mPEG-PLG micelles (mPEG-PLG-GEM@CDDP micelles). RESULTS Gemcitabine and cisplatin in each micelle group were released more slowly than in solutions. In addition, pharmacokinetics behaviors of them were improved after encapsulated in prodrug micelles. T1/2z of gemcitabine and cisplatin encapsulated in micelles were prolonged to 6.357 h (mPEG-PLG-GEM), 10.490 h (mPEG-PLG@CDDP), 5.463 h and 12.540 h (mPEG-PLG-GEM@CDDP) compared with GEM@CDDP solutions (T1/2z = 1.445 h and 7.740 h). The ratio of synergy between gemcitabine and cisplatin (3:1 ~ 1:1(n/n)) was guaranteed in the systemic circulation, thus improving its antitumor effect. The results of biochemical analysis showed that GEM@CDDP-Sol was more toxic to kidneys and marrow compared with mPEG-PLG-GEM@CDDP micelles. CONCLUSIONS By prodrug strategy, gemcitabine and cisplatin with totally different nature were prepared into micelles and obtained a better pharmacokinetic behavior. And the dual drug delivery system performed a better in vivo stability and antitumor effect compared with each single drug delivery system in the experiment. Scheme. Schematic of mPEG-PLG-GEM@CDDP micelles' formation and action process.
Collapse
Affiliation(s)
- Ning Ding
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China
| | - Zhiqing Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China
| | - Na Yin
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China
| | - Ying Xu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China.
| | - Yanjiao Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China
| |
Collapse
|
5
|
Sadoughi F, Mansournia MA, Mirhashemi SM. The potential role of chitosan-based nanoparticles as drug delivery systems in pancreatic cancer. IUBMB Life 2020; 72:872-883. [PMID: 32057169 DOI: 10.1002/iub.2252] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/03/2020] [Indexed: 12/20/2022]
Abstract
Pancreatic cancer (PC) is one of the most lethal cancers and 12th most common cancer in the world. Due to the inaccessible anatomical position of the pancreas and asymptomatic early stages of this disease, PC has a high mortality rate. Therefore, providing reliable diagnostic and therapeutic tools are the keys to increase the PC survival rate. Nanotechnology is an inchoate field of science that previously scientists' tendency to enhance the efficacy of current preventive, diagnostic, and therapeutic methods has oriented them to build a bridge between this science and medicine. In the case of PC, nanotechnology suggests using drug delivery devices for a more effective and targeted therapy. Chitosan is a natural polymer that recently has attracted a lot of attention for being renewable, nontoxic, and bioabsorbable. In this article, we tend to look for the answer to this question: has nanotechnology been successful in using chitosan-based nanoformulations as carriers for preventing more individuals from suffering or at least increasing the 5-year survival of the PC patients?
Collapse
Affiliation(s)
- Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyyed Mehdi Mirhashemi
- Metabolic Diseases Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|