1
|
Barragan-Galvez JC, Gonzalez-Rivera ML, Jiménez-Cruz JC, Hernandez-Flores A, de la Rosa G, Lopez-Moreno ML, Yañez-Barrientos E, Romero-Hernández M, Deveze-Alvarez MA, Navarro-Santos P, Acosta-Mata C, Isiordia-Espinoza MA, Alonso-Castro AJ. A Patent-Pending Ointment Containing Extracts of Five Different Plants Showed Antinociceptive and Anti-Inflammatory Mechanisms in Preclinical Studies. Pharmaceutics 2024; 16:1215. [PMID: 39339251 PMCID: PMC11435228 DOI: 10.3390/pharmaceutics16091215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: The antinociceptive and anti-inflammatory effects of a patent-pending ointment containing plant extracts from Eucalyptus globulus, Curcuma longa, Hamamelis virginiana, Echinacea purpurea, and Zingiber officinale were evaluated. Methods: Plant extracts were chemically characterized by gas chromatography-mass spectroscopy. The antinociceptive activity of the ointment was assessed using the hot plate, tail flick, and formalin tests, whereas the anti-inflammatory activity was measured using the acute and chronic TPA-induced ear edema tests. Mechanisms of action were evaluated using inhibitors from signaling pathways related to pain response and by using histological analysis and assessing the expression and activity of pro-inflammatory mediators. Results: The ointment showed antinociceptive and anti-inflammatory effects like those observed with diclofenac gel (1.16% v/v) and ketoprofen gel (2.5% v/v). The antinociceptive actions of the ointment are mediated by the possible participation of the opiodergic system and the nitric oxide pathway. The anti-inflammatory response was characterized by a decrease in myeloperoxidase (MPO) activity and by a reduction in ear swelling and monocyte infiltration in the acute inflammation model. In the chronic model, the mechanism of action relied on a decrease in pro-inflammatory mediators such as COX-2, IL-1β, TNF-α, and MPO. An in-silico study with myristic acid, one of the compounds identified in the ointment's plant mixture, corroborated the in vivo results. Conclusions: The ointment showed antinociceptive activities mediated by the decrease in COX-2 and NO levels, and anti-inflammatory activity due to the reduction in IL-1β and TNFα levels, a reduction in MPO activity, and a decrease in NF-κB and COX-2 expression.
Collapse
Affiliation(s)
- Juan Carlos Barragan-Galvez
- Departamento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36200, Mexico
| | - Maria Leonor Gonzalez-Rivera
- Departamento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36200, Mexico
| | - Juan C Jiménez-Cruz
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCyT)-Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolas de Hidalgo, Morelia 58030, Mexico
| | - Araceli Hernandez-Flores
- Departamento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36200, Mexico
- Instituto de Investigación Sobre la Salud Pública, Universidad de la Sierra Sur, Miahuatlán de Porfirio Díaz, Oaxaca 70800, Mexico
| | - Guadalupe de la Rosa
- División de Ciencias e Ingenierías, Universidad de Guanajuato, Campus León, León 37150, Mexico
| | - Martha L Lopez-Moreno
- Chemistry Department, University of Puerto Rico at Mayagüez, 259 Boulevard Alfonso Valdez, Mayagüez 00681, Puerto Rico
| | - Eunice Yañez-Barrientos
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36200, Mexico
| | - Michelle Romero-Hernández
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36200, Mexico
| | - Martha Alicia Deveze-Alvarez
- Departamento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36200, Mexico
| | - Pedro Navarro-Santos
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCyT)-Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolas de Hidalgo, Morelia 58030, Mexico
| | - Claudia Acosta-Mata
- Laboratorio de Patología Clínica, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Guanajuato 36000, Mexico
| | | | - Angel Josabad Alonso-Castro
- Departamento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36200, Mexico
| |
Collapse
|
2
|
Bose D, Famurewa AC, Akash A, Othman EM. The Therapeutic Mechanisms of Honey in Mitigating Toxicity from Anticancer Chemotherapy Toxicity: A Review. J Xenobiot 2024; 14:1109-1129. [PMID: 39189178 PMCID: PMC11348124 DOI: 10.3390/jox14030063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 08/28/2024] Open
Abstract
Within the domain of conventional oncochemotherapeutics, anticancer chemotherapy (AC) has emerged as a potent strategy for the treatment of cancers. AC is the mainstay strategy for solid and non-solid cancer treatment. Its mechanistic action targets the blockage of DNA transcription and the dysregulation of cell cycle machinery in cancer cells, leading to the activation of death pathways. However, the attendant side effect of toxicity inflicted by AC on healthy tissues presents a formidable challenge. The crucial culprit in the AC side effect of toxicity is unknown, although oxidative stress, mitochondrial impairment, inflammatory cascades, autophagy dysregulation, apoptosis, and certain aberrant signaling have been implicated. Honey is a natural bee product with significant health benefits and pharmacological properties. Interestingly, the literature reports that honey may proffer a protection mechanism for delicate tissue/organs against the side effect of toxicity from AC. Thus, this review delves into the prospective role of honey as an alleviator of the AC side effect of toxicity; it provides an elucidation of the mechanisms of AC toxicity and honey's molecular mechanisms of mitigation. The review endeavors to unravel the specific molecular cascades by which honey orchestrates its mitigating effects, with the overarching objective of refining its application as an adjuvant natural product. Honey supplementation prevents AC toxicity via the inhibition of oxidative stress, NF-κB-mediated inflammation, and caspase-dependent apoptosis cascades. Although there is a need for increased mechanistic studies, honey is a natural product that could mitigate the various toxicities induced by AC.
Collapse
Affiliation(s)
- Debalina Bose
- P.K. Sinha Centre for Bioenergy and Renewables, Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur 721302, West Bengal, India;
| | - Ademola C. Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Alex Ekwueme Federal University, Ndufu-Alike Ikwo, P.M.B. 1010, Abakaliki 482131, Nigeria
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Aman Akash
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany;
| | - Eman M. Othman
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany;
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Cancer Therapy Research Center (CTRC), Department of Biochemistry-I, Biocenter, University of Wuerzburg, Theodor-Boveri-Weg 1, 97074 Wuerzburg, Germany
| |
Collapse
|
3
|
Sabra MS, Allam EAH, El-Aal MA, Hassan NH, Mostafa AHM, Ahmed AAN. A novel pharmacological strategy using nanoparticles with glutathione and virgin coconut oil to treat gentamicin-induced acute renal failure in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03303-4. [PMID: 39093465 DOI: 10.1007/s00210-024-03303-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024]
Abstract
In acute renal failure (ARF), the glomerular filtration rate is reduced, and nitrogenous waste products accumulate persistently, which can last anywhere from a few hours to several days. There is hope for a reversal of the rapid loss of renal function caused by this condition. This study, with gentamicin-induced acute ARF as a prospective setting, sets out to examine the reno-protective benefits of virgin coconut oil (VCO) and GSH. Furthermore, the study evaluated the effect of medication nanoparticle compositions on several kidney function markers. The induction of ARF is achieved with the intraperitoneal injection of gentamicin. To assess renal function, rats underwent 24 h of dehydration and hunger before their deaths. The study examined various aspects, including kidney function tests, markers of oxidative stress, histology of kidney tissue, inflammatory cytokines, immunohistochemistry expression of nuclear factor-kappa B (NF-κB), and specific biomarkers for kidney tissue damage, such as kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL). The results of our study indicated that the combination of VCO and GSH, using both regular and nanoparticle formulations, had a better protective impact on the kidneys compared to using either drug alone. The recovery of renal tissue and serum markers, which are symptomatic of organ damage, indicates improvement. This was also demonstrated by the reduction in tubular expression of TNF-α, IL-1β, KIM-1, and NGAL. The immunohistochemical studies showed that the combination therapy, especially with the nanoforms, greatly improved the damaged cellular changes in the kidneys, as shown by higher levels of NF-κB. The study shows that VCO and GSH, when administered individually or combined, significantly improve ARF in a gentamicin-induced rat model, highlighting potential therapeutic implications. Notably, the combined nanoparticulate formulations exhibit substantial effectiveness.
Collapse
Affiliation(s)
- Mahmoud S Sabra
- Pharmacology Department, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Essmat A H Allam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Mohamed Abd El-Aal
- Chemistry Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Nessma H Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Al-Hassan Mohammed Mostafa
- Department of Pathology and Clinical Pathology, Agricultural Research Centre, Animal Health Research Institute, Assiut, 71526, Egypt
| | - Ahmed A N Ahmed
- Pharmacology Department, Faculty of Medicine, Al-Azhar University, Assiut Branch, , Assiut, 71526, Egypt
| |
Collapse
|
4
|
Behairy A, Elkomy A, Elsayed F, Gaballa MMS, Soliman A, Aboubakr M. Antioxidant and anti-inflammatory potential of spirulina and thymoquinone mitigate the methotrexate-induced neurotoxicity. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1875-1888. [PMID: 37773524 PMCID: PMC10858838 DOI: 10.1007/s00210-023-02739-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023]
Abstract
The objective of this study was to investigate whether the neurotoxic effects caused by methotrexate (MTX), a frequently used chemotherapy drug, could be improved by administering Spirulina platensis (SP) and/or thymoquinone (TQ). Seven groups of seven rats were assigned randomly for duration of 21 days. The groups consisted of a control group that was given saline only. The second group was given 500 mg/kg of SP orally; the third group was given 10 mg/kg of TQ orally. The fourth group was given a single IP dose of 20 mg/kg of MTX on the 15th day of the experiment. The fifth group was given both SP and MTX, the sixth group was given both TQ and MTX, and the seventh group was given SP, TQ, and MTX. After MTX exposure, the study found that AChE inhibition, depletion of glutathione, and increased levels of MDA occurred. MTX also decreased the activity of SOD and CAT, as well as the levels of inflammatory mediators such as IL-1, IL-6, and tumor necrosis factor-α. MTX induced apoptosis in brain tissue. However, when MTX was combined with either SP or TQ, the harmful effects on the body were significantly reduced. This combination treatment resulted in a faster return to normal levels of biochemical, oxidative markers, inflammatory responses, and cell death. In conclusion, supplementation with SP or TQ could potentially alleviate MTX-induced neuronal injury, likely due to their antioxidant, anti-inflammatory, and anti-apoptotic effects.
Collapse
Affiliation(s)
- Alaa Behairy
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Qaliobiya, Egypt
| | - Ashraf Elkomy
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Qaliobiya, Egypt
| | - Faten Elsayed
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Qaliobiya, Egypt
| | - Mohamed M S Gaballa
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Qaliobiya, Egypt
| | - Ahmed Soliman
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mohamed Aboubakr
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Qaliobiya, Egypt.
| |
Collapse
|
5
|
Al-Naqeb G, Kalmpourtzidou A, De Giuseppe R, Cena H. Beneficial Effects of Plant Oils Supplementation on Multiple Sclerosis: A Comprehensive Review of Clinical and Experimental Studies. Nutrients 2023; 15:4827. [PMID: 38004221 PMCID: PMC10674509 DOI: 10.3390/nu15224827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Multiple sclerosis disease (MS) is a 38.5 chronic neurological autoimmune disease that affects the nervous system, and its incidence is increasing globally. At present, there is no cure for this disease, and with its severity and disabling variety, it is important to search for possibilities that could help to slow its progression. It is recognized that the mechanisms of MS pathology, its development and degree of activity can be affected by dietary factors. In this review, the beneficial health effects of 10 plants oils-mainly seed oils, including pomegranate seed oil, sesame oil, acer truncatum bunge seed oil, hemp seeds oil, evening primrose seed oil, coconut oil, walnut oil, essential oil from Pterodon emarginatus seeds, flaxseed oil and olive oil-on MS are discussed. The literature data indicate that plant oils could be effective for the treatment of MS and its related symptoms primarily through reducing inflammation, promoting remyelination, immunomodulation and inhibiting oxidative stress. Plant oils may potentially reduce MS progression. Longitudinal research including a larger sample size with a longer duration is essential to confirm the findings from the selected plant oils. Moreover, new plant oils should be studied for their potential MS benefit.
Collapse
Affiliation(s)
- Ghanya Al-Naqeb
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (A.K.); (R.D.G.); (H.C.)
- Department of Food Sciences and Nutrition, Faculty of Agriculture Food and Environment, University of Sana’a, Sana’a P.O. Box 1247, Yemen
| | - Aliki Kalmpourtzidou
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (A.K.); (R.D.G.); (H.C.)
| | - Rachele De Giuseppe
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (A.K.); (R.D.G.); (H.C.)
| | - Hellas Cena
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (A.K.); (R.D.G.); (H.C.)
- Clinical Nutrition Unit, General Medicine, ICS Maugeri IRCCS, 27100 Pavia, Italy
| |
Collapse
|
6
|
You C, Xu Q, Chen J, Xu Y, Pang J, Peng X, Tang Z, Sun W, Sun Z. Effects of Different Combinations of Sodium Butyrate, Medium-Chain Fatty Acids and Omega-3 Polyunsaturated Fatty Acids on the Reproductive Performance of Sows and Biochemical Parameters, Oxidative Status and Intestinal Health of Their Offspring. Animals (Basel) 2023; 13:ani13061093. [PMID: 36978634 PMCID: PMC10044250 DOI: 10.3390/ani13061093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/06/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The aim of the study was to investigate the comparative effects of different combinations of sodium butyrate (SB), medium-chain fatty acids (MCFAs), and omega-3 polyunsaturated fatty acids (n-3 PUFAs) on the reproductive performances of sows, as well as on the biochemical parameters, oxidative statuses, and intestinal health of the sucking piglets. A total of 30 sows were randomly allocated to five treatments: (1) control diet (CON); (2) CON with 1 g/kg of coated SB and 7.75 g/kg of coated MCFAs (SM); (3) CON with 1 g/kg of coated SB and 68.2 g/kg of coated n-3 PUFAs (SP); (4) CON with 7.75 g/kg of coated MCFAs and 68.2 g/kg of coated n-3 PUFAs (MP); (5) CON with 1 g/kg of coated SB, 7.75 g/kg of coated MCFAs and 68.2 g/kg of coated n-3 PUFA (SMP). The results showed that sows fed the SP, MP, and SMP diets had shorter weaning-to-estrus intervals than those fed the CON diet (p < 0.01). The piglets in the SM, SP, and MP groups showed higher increases in the plasma catalase and glutathione peroxidase activities than those of the CON group (p < 0.01). The diarrhea incidence of piglets in the SM, SP and SMP groups was lower than that of piglets in the CON group (p < 0.01). Additionally, the addition of SM, SP, MP, and SMP to the sow diets increased the contents of immunoglobulin A, immunoglobulin G, fat, and proteins in the colostrum (p < 0.01), as well as the plasma total superoxide dismutase activities (p < 0.01) in the suckling piglets, whereas it decreased the mRNA expressions of tumor necrosis factor-α, interleukin-1β, and toll-like receptor 4 in the jejunum mucosa of the piglets. The relative abundances of Prevotella, Coprococcus, and Blautia in the colonic digesta of the piglets were increased in the SM group (p < 0.05), and the relative abundances of Faecalibacterium increased in the SMP group (p < 0.05), compared with the CON group. The relative abundances of Collinsella, Blautia, and Bulleidia in the MP group were higher than those in the CON group (p < 0.05). Collectively, dietary combinations of fatty acids with different chain lengths have positive effects on the growth performances and intestinal health of suckling piglets.
Collapse
Affiliation(s)
- Caiyun You
- Key Laboratory for Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| | - Qingqing Xu
- Key Laboratory for Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| | - Jinchao Chen
- Key Laboratory for Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| | - Yetong Xu
- Key Laboratory for Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| | - Jiaman Pang
- Key Laboratory for Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| | - Xie Peng
- Key Laboratory for Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| | - Zhiru Tang
- Key Laboratory for Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| | - Weizhong Sun
- Key Laboratory for Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| | - Zhihong Sun
- Key Laboratory for Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| |
Collapse
|
7
|
Moini Jazani A, Arabzadeh A, Haghi-Aminjan H, Nasimi Doost Azgomi R. The role of ginseng derivatives against chemotherapy-induced cardiotoxicity: A systematic review of non-clinical studies. Front Cardiovasc Med 2023; 10:1022360. [PMID: 36844721 PMCID: PMC9946988 DOI: 10.3389/fcvm.2023.1022360] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/12/2023] [Indexed: 02/11/2023] Open
Abstract
Aims Although chemotherapy agents are used to treating cancers, they have serious side effects, like their harmful effects on the cardiovascular system, limiting the clinical use of these chemotherapy agents. This study aimed to systematically investigate the potential role of ginseng derivatives in the prevention of chemotherapy-induced cardiac toxicity. Methods This systematic review was performed according to PRISMA guidelines strategy in databases till August 2022. First, identify studies related to using search terms in titles and abstracts. After studying and screening 209 articles, 16 articles were selected in this study according to our inclusion and exclusion criteria. Results According to the findings of this study, ginseng derivatives showed significant changes in biochemical, histological, and heart weight loss, as well as a reduction in mortality, which occurred in the groups treated with chemotherapy agents compared to the control groups. Co-administration of ginseng derivatives with chemotherapy agents inhibited or reversed these changes to near-moderate levels. The protective effects of ginseng derivatives can be due to their anti-inflammatory, anti-oxidant, and anti-apoptotic action. Conclusion This systematic review shows evidence that concomitant administration of ginseng derivatives improves chemotherapy-induced cardiac toxicity. However, for better conclusions about the practical mechanisms of ginseng derivatives in reducing the cardiac toxic effects of chemotherapy agents and evaluating the efficacy and safety of the compound simultaneously, it is necessary to design comprehensive studies.
Collapse
Affiliation(s)
- Arezoo Moini Jazani
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - AmirAhmad Arabzadeh
- Department of Surgery, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hamed Haghi-Aminjan
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran,*Correspondence: Hamed Haghi-Aminjan,✉
| | - Ramin Nasimi Doost Azgomi
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran,Ramin Nasimi Doost Azgomi,✉
| |
Collapse
|
8
|
Alikamali M, Emadi SF, Mahdizadeh M, Emami Z, Akbari H, Khodabandeh-Shahraki S. Comparing the Efficacy of Breast Milk and Coconut Oil on Nipple Fissure and Breast Pain Intensity in Primiparous Mothers: A Single-Blind Clinical Trial. Breastfeed Med 2023; 18:30-36. [PMID: 36638195 DOI: 10.1089/bfm.2022.0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background: Nipple fissure is a prevalent problem for breastfeeding mothers. Virgin coconut oil (VCO) is an herbal medicine that can heal microbial infections and wounds. Objective: This study aims to evaluate the efficacy of VCO and breast milk on nipple fissures in primiparous mothers. Design, Setting, Participants, and Intervention: A single-blind clinical trial was conducted with 106 breastfeeding primiparous mothers suffering from nipple fissures in health centers of Zarand, Kerman, from August 2020 to November 2020. The participants were selected randomly and allocated to two 60-member groups using block randomization. Mothers in the first group were asked to apply 0.5 mL of coconut oil on their nipples three times a day. Mothers in the second group were trained to apply three to four drops of their milk on their nipples after every breastfeeding session. The level of nipple fissures and pain intensity were examined using Storr's scale and visual analog scale, respectively. The results were analyzed using the chi-square test, repeated measures analysis of variance, and the independent samples t-test in SPSS 22. In this study, the significance level was set at p < 0.05. Results: Within-group comparisons revealed a significant difference between baseline scores and the scores on the 7th and 14th days (p < 0.001). Between-group comparison indicated no significant difference in nipple fissure (p = 0.419) and pain intensity (p = 0.405) at baseline. Nonetheless, there was a significant difference on the 7th day (pfissure = 0.002, ppain <0.001) and on the 14th day (pfissure <0.001, ppain = 0.036). Conclusion: Given its effect on nipple fissures, VCO may be used as a complementary substance to treat nipple fissures. Trial Registration: This trial is registered with the Iranian Registry of Clinical Trials with the identifier: IRCT20190724044318N1.
Collapse
Affiliation(s)
- Maryam Alikamali
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyedeh Fatemeh Emadi
- Department of Midwifery, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Zahrasadat Emami
- Nursing Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hosna Akbari
- Nursing Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Sedigheh Khodabandeh-Shahraki
- Department of Community Health Nursing, Razi Faculty of Nursing and Midwifery, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
9
|
Li X, Zhu D, Mao M, Wu J, Yang Q, Tan B, Chi S. Glycerol Monolaurate Alleviates Oxidative Stress and Intestinal Flora Imbalance Caused by Salinity Changes for Juvenile Grouper. Metabolites 2022; 12:metabo12121268. [PMID: 36557306 PMCID: PMC9784515 DOI: 10.3390/metabo12121268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Groupers with an initial body weight of 9.10 ± 0.03 g were selected to investigate whether dietary addition of 0 (G0) and 1800 mg/kg glycerol monolaurate (GML, G1800) could alleviate the oxidative stress response and intestinal flora imbalance after 0, 6, 12, and 24 h of salinity change in grouper. Experimental results show that the dietary addition of GML significantly reduced the liver MDA content and increased the SOD activity of grouper. The gene expression of CAT and SOD increased and then decreased with time after adding 1800 mg/kg GML, and the highest values were significantly higher than those of the control group. Salinity change had a slight effect on the top four intestinal flora composition of grouper at 0, 12, and 24 h, with changes occurring only at 6 h when Cyanobacteria replaced Actinobacteria. The addition of dietary GML slowed down the intestinal flora disorder, inhibited the colonization of harmful bacterium Vibrio, and promoted the abundance of beneficial bacterium Bacillus. In conclusion, dietary GML significantly reduced the oxidative damage caused by sudden changes in salinity, improved the antioxidant capacity, and alleviated the intestinal flora imbalance in juvenile grouper.
Collapse
Affiliation(s)
- Xuehe Li
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
| | - Dongwenjun Zhu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
| | - Minling Mao
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
| | - Jianwei Wu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
| | - Qihui Yang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
- Correspondence:
| | - Beiping Tan
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
| | - Shuyan Chi
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
| |
Collapse
|
10
|
Favorable Effects of Virgin Coconut Oil on Neuronal Damage and Mortality after a Stroke Incidence in the Stroke-Prone Spontaneously Hypertensive Rat. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111857. [PMID: 36430992 PMCID: PMC9694050 DOI: 10.3390/life12111857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Stroke is consistently one of the top ten causes of morbidity and mortality globally, whose outcomes are quite variable, necessitating case-specific management. Prophylactic diets before the onset of stroke have been implicated to work. In this research, the effects of virgin coconut oil (VCO) on stroke were evaluated using a stroke-prone spontaneously hypertensive rat (SHRSP) model. Eight-week-old SHRSPs were subjected to the repeated oral administration (5 mL/kg/day) of either 1% Tween 80 (group A) or VCO (group B). An early stroke onset was observed due to hypertension that was aggravation by the administration of 1% NaCl in water ad libitum. The following data were collected: the days until stroke occurred, the survival rate until the animal died, and blood pressure (BP) every two weeks using the tail-cuff method. After necropsy, the organs were harvested, and the brain was processed for a routine histopathological analysis. VCO delayed the incidence of it and prolonged their survival. Compared to group A, group B showed a significantly lowered BP by 20 mmHg at four weeks after the start of VCO treatment. Lastly, the brain histopathology showed that the structurally damaged areas were smaller in group B than they were in group A. The VCO could have protective effects on the brain before and even after stroke incidence.
Collapse
|
11
|
Li X, Yi Y, Wu J, Yang Q, Tan B, Chi S. Effects of Plant-Derived Glycerol Monolaurate (GML) Additive on the Antioxidant Capacity, Anti-Inflammatory Ability, Muscle Nutritional Value, and Intestinal Flora of Hybrid Grouper (Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂). Metabolites 2022; 12:metabo12111089. [PMID: 36355172 PMCID: PMC9692394 DOI: 10.3390/metabo12111089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022] Open
Abstract
In a context where the search for plant-derived additives is a hot topic, glycerol monolaurate (GML) was chosen as our subject to study its effect on grouper (Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂). Seven gradient levels of GML (0, 600, 1200, 1800, 2400, 3000, and 3600 mg/kg) were used for the experiment. Based on our experiments, 1800 mg/kg GML significantly increased the final body weight (FBW) and weight gain rate (WGR). GML increased the activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and decreased malondialdehyde (MDA). Adding 1800 mg/kg GML also significantly increased the levels of lauric acid (C12:0) (LA), n-3 polyunsaturated fatty acids (PFA), and the n-6 PFA-to-n-3/n-6 ratio, while significantly decreasing the levels of saturated fatty acids (SFA). Dietary supplementation with GML significantly inhibited the expression of pro-inflammatory factors and reduced the occurrence of inflammation. GML improved intestinal flora and the abundance of beneficial bacteria (Bacillus, Psychrobacter, Acinetobacter, Acinetobacter, Stenotrophomonas, and Glutamicibacter). It provides a theoretical basis for the application of GML in aquafeed and greatly enhances the possibility of using GML in aquafeed. Based on the above experimental results, the optimum level of GML in grouper feed is 1800 mg/kg.
Collapse
Affiliation(s)
- Xuehe Li
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
| | - Yuanming Yi
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
| | - Jiahua Wu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
| | - Qihui Yang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
- Correspondence:
| | - Beiping Tan
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
| | - Shuyan Chi
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
| |
Collapse
|
12
|
Wang D, Chen J, Sun H, Chen W, Yang X. MCFA alleviate H 2 O 2 -induced oxidative stress in AML12 cells via the ERK1/2/Nrf2 pathway. Lipids 2022; 57:153-162. [PMID: 35262212 DOI: 10.1002/lipd.12339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/04/2022] [Accepted: 02/21/2022] [Indexed: 11/07/2022]
Abstract
Oxidative stress is an important factor in the occurrence and development of liver disease. Medium-chain fatty acids (MCFAs) have potential antioxidant function, whereas the exact underlying mechanism of MCFA in oxidative injury of hepatocytes remains unclear. In our present study, three different MCFAs, 8-carbon octanoic acid (OA), 10-carbon capric acid (CA), and 12-carbon lauric acid (LA), have been performed to observe their protective action for hepatocyte under the H2 O2 challenge. The result showed that MCFA treatment significantly increased the cell viability, T-AOC, and expression of antioxidant-related genes in AML12 cells under oxidative stress condition, and reduced reactive oxygen species (ROS) production. Moreover, MCFA treatment significantly increased the protein expression of Nrf2 and the phosphorylation level of ERK1/2; LA treatment significantly promoted the Nrf2 nuclear translocation. With a further test, the rescue ability of MCFA was blocked by treating with the ERK inhibitor U0126. Overall, our data suggested that MCFA treatment has positive impact on protecting AML12 cells against oxidative stress through ERK1/2/Nrf2 pathway.
Collapse
Affiliation(s)
- Danping Wang
- MOE Joint Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, PR China
| | - Jinglong Chen
- MOE Joint Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, PR China
| | - Huangbing Sun
- MOE Joint Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, PR China
| | - Wenjing Chen
- MOE Joint Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, PR China
| | - Xiaojing Yang
- MOE Joint Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, PR China
| |
Collapse
|
13
|
Aldhahrani A. Protective effects of guarana ( Paullinia cupana) against methotrexate-induced intestinal damage in mice. Food Sci Nutr 2021; 9:3397-3404. [PMID: 34262701 PMCID: PMC8269666 DOI: 10.1002/fsn3.2101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/12/2020] [Accepted: 12/17/2020] [Indexed: 12/31/2022] Open
Abstract
This study aimed to examine the effects of guarana (Paullinia cupana) on intestinal damage induced by MTX in mice. Mice were classified into four groups: control, MTX, guarana (Paullinia cupana), and guarana (Paullinia cupana) together with MTX. Total antioxidant capacity together with glutathione, superoxide dismutase, MDA, ALT, AST, myeloperoxidase, total protein and IL-1β were detected in the serum. Bax and Bcl2 expressions were detected in intestine together with histopathological examination and immunohistochemical examination of caspase-9. Intoxication with MTX inhibited antioxidant and promoted myeloperoxidase activity in experimental mouse models but pre-administration of guarana ameliorated this effect by inhibiting IL-1β. Real-time quantitative PCR (qRT-PCR) analysis found that MTX intoxication upregulated BAX expression, causing apoptosis, and downregulated Bcl2 expression. These were also brought under control following guarana pre-administration. Histological examination of intestine indicated hyperplasia and desquamation of superficial epithelium of villi in the MTX-administered group, as well as round cell infiltration in the lamina propria. Pre-administration of guarana protected against these effects. The MTX group showed that caspase-9 expression was upregulated, increasing immune-reactivity in comparison to the guarana experimental groups. These combined effects lead to the conclusion that guarana has a preventative or protective effect against MTX-induced oxidative stress in the intestinal tissue.
Collapse
Affiliation(s)
- Adil Aldhahrani
- Department of clinical laboratory sciencesTurabah University CollegeTaif UniversityTaifSaudi Arabia
| |
Collapse
|
14
|
Azubuike-Osu SO, Famurewa AC, David JC, Abi I, Ogbu PN, Oparaji CK, Nwaeze KG, Akunna GG. Virgin Coconut Oil Resists Arsenic-Induced Cerebral Neurotoxicity and Cholesterol Imbalance via Suppression of Oxidative Stress, Adenosine Deaminase and Acetylcholinesterase Activities in Rats. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211016962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Arsenic (As) is a classic neurotoxicant; its pathogenesis is associated with oxidative stress and oxidative stress-mediated cholinergic deficits. This study explored antioxidant activity of virgin coconut oil (VCO) against sodium arsenite-induced oxidative stress-mediated cerebral neurotoxicity in rats. Eighteen rats were divided into 3 groups- Normal control, As control and VCO + As. The VCO (5 mL/kg) was given once daily by oral gavage from day 1 to day 21, while As (10 mg/kg) was given once daily by oral gavage from day 15 to day 21. Cerebral superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), malondialdehyde (MDA), adenosine deaminase (ADA) and acetylcholinesterase (AchE) activities were analysed. Nitric oxide (NO), lipid profile, phospholipid (PL), and reduced glutathione (GSH) were also evaluated in cerebral homogenate. The cerebrum was sectioned for histological analysis. Administration of As induced significant depressions in antioxidant enzymes, GSH, PL, and HDL-c compared to normal control. Levels of MDA, NO, total cholesterol and activities of ADA, AchE in the cerebrum were markedly increased by As compared to normal rats. Lipid profile indices and PL were prominently altered by As. Histopathological study supported the biochemical findings through extensive cerebral damage. In contrast, oral supplementation of VCO prior to and along with As treatment significantly attenuated the As-induced biochemical alterations and restored near-normal histology. VCO attenuates cerebral neurotoxicity by strengthening endogenous antioxidant defence and cholinergic function via counteracting free-radical-mediated arsenic toxicity.
Collapse
Affiliation(s)
- Sharon O. Azubuike-Osu
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, Alex Ekwueme Federal University, Ndufu-Alike, Ikwo, Nigeria
| | - Ademola C. Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Alex-Ekwueme Federal University, Ndufu-Alike, Ikwo, Nigeria
| | - Japheth C. David
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, Alex Ekwueme Federal University, Ndufu-Alike, Ikwo, Nigeria
| | - Innocent Abi
- Department of Physiology, Benue State University, Makurdi, Nigeria
| | - Patience N. Ogbu
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Alex-Ekwueme Federal University, Ndufu-Alike, Ikwo, Nigeria
| | - Chiedozie K. Oparaji
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, Alex Ekwueme Federal University, Ndufu-Alike, Ikwo, Nigeria
| | - Konyefom G. Nwaeze
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, Alex Ekwueme Federal University, Ndufu-Alike, Ikwo, Nigeria
| | - Godson G. Akunna
- Department of Anatomy, College of Medicine and Health Sciences, Bowen University, Nigeria
| |
Collapse
|
15
|
Gao C, Liu C, Chen Y, Wang Q, Hao Z. Protective effects of natural products against drug-induced nephrotoxicity: A review in recent years. Food Chem Toxicol 2021; 153:112255. [PMID: 33989732 DOI: 10.1016/j.fct.2021.112255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/03/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022]
Abstract
Drug-induced nephrotoxicity (DIN) is a major cause of kidney damage and is associated with high mortality and morbidity, which limits the clinical use of certain therapeutic or diagnostic agents, such as antineoplastic drugs, antibiotics, immunosuppressive agents, non-steroidal anti-inflammatory drugs (NSAIDs), and contrast agents. However, in recent years, a number of studies have shown that many natural products (NPs), including phytochemicals, various plants extracts, herbal formulas, and NPs derived from animals, confer protective effects against DIN through multi-targeting therapeutic mechanisms, such as inhibition of oxidative stress, inflammation, apoptosis, fibrosis, and necroptosis, regulation of autophagy, maintenance of cell polarity, etc., by regulating multiple signaling pathways and novel molecular targets. In this review, we summarize and discuss the protective effects and mechanisms underlying the action of NPs against DIN found in recent years, which will contribute to the development of promising renal protective agents.
Collapse
Affiliation(s)
- Chen Gao
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Chang Liu
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuwei Chen
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Qingtao Wang
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Zhihui Hao
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
16
|
Illam SP, Narayanankutty A, Kandiyil SP, Raghavamenon AC. Variations in natural polyphenols determine the anti-inflammatory potential of virgin coconut oils. J Food Sci 2021; 86:1620-1628. [PMID: 33864246 DOI: 10.1111/1750-3841.15705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/18/2021] [Accepted: 03/02/2021] [Indexed: 11/30/2022]
Abstract
Virgin coconut oil (VCO), an edible oil prepared from fresh coconut kernel by natural or mechanical means without undergoing chemical refining, has been in the limelight of research as functional food oil. The phenolic components in VCO have been accredited with these pharmacological benefits. The present study compared the phenolic constituents of freshly prepared fermentation processed (FVCO) and hot-pressed VCO (HVCO) and their anti-inflammatory efficacies. The biochemical analysis documented quantitative variation in the phenolic content, being higher in HVCO than FVCO (40.03 ± 5.8 µg and 25.55 ± 5.8 µg/mL of oil, respectively). In vitro studies observed nitric oxide radical scavenging efficacy (IC50 value of 14.84 ± 0.81 µg/mL) for HVCO polyphenols, which shows higher inhibition efficacy than FVCO (29.41 ± 1.7 µg/mL). In dextran and formalin mediated acute and chronic inflammation in mice, HVCO displayed more protective efficacy (40.5 and 46.4% inhibition) than FVCO (33.3 and 43.8% inhibition), which is similar to the standard diclofenac (55.6 and 59.8% inhibition). The study, thus, concludes that compared to FVCO, HVCO is a more active anti-inflammatory agent. PRACTICAL APPLICATION: Virgin coconut oil, a widely used edible oil in South Asian countries, has been shown to have health benefits possibly exerted by the natural phenolics it contains. However, different modes of preparations of VCO determine the phenolic combinations and efficacy as well. Our study compared two different VCO preparations and suggests that the VCO prepared by the traditional way (HVCO) is pharmacologically potent than that prepared by simple fermentation process (FVCO) in reducing inflammation. The efficacy is attributed to the variations in phenolic profile revealed by LC-MS analysis. Hence, the current study suggests HVCO as a potential food supplement that can reduce the incidence of degenerative diseases.
Collapse
|
17
|
Deen A, Visvanathan R, Wickramarachchi D, Marikkar N, Nammi S, Jayawardana BC, Liyanage R. Chemical composition and health benefits of coconut oil: an overview. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2182-2193. [PMID: 33022082 DOI: 10.1002/jsfa.10870] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 08/10/2020] [Accepted: 10/06/2020] [Indexed: 05/27/2023]
Abstract
Coconut oil is an integral part of Sri Lankan and many South Asian diets. Initially, coconut oil was classified along with saturated fatty acid food items and criticized for its negative impact on health. However, research studies have shown that coconut oil is a rich source of medium-chain fatty acids. Thus, this has opened new prospects for its use in many fields. Beyond its usage in cooking, coconut oil has attracted attention due to its hypocholesterolemic, anticancer, antihepatosteatotic, antidiabetic, antioxidant, anti-inflammatory, antimicrobial and skin moisturizing properties. Despite all the health benefits, consumption of coconut oil is still underrated due to a lack of supportive scientific evidence. Even though studies done in Asian countries claim a favorable impact on cardiac health and serum lipid profile, the limitations in the number of studies conducted among Western countries impede the endorsement of the real value of coconut oil. Hence, long-term extensive studies with proper methodologies are suggested to clear all the controversies and misconceptions of coconut oil consumption. This review discusses the composition and functional properties of coconut oils extracted using various processing methods. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Afka Deen
- Laboratory of Nutritional Biochemistry, National Institute of Fundamental Studies, Kandy, Sri Lanka
- Postgraduate Institute of Science, University of Peradeniya, Kandy, Sri Lanka
| | - Rizliya Visvanathan
- Laboratory of Nutritional Biochemistry, National Institute of Fundamental Studies, Kandy, Sri Lanka
| | | | - Nazrim Marikkar
- Laboratory of Nutritional Biochemistry, National Institute of Fundamental Studies, Kandy, Sri Lanka
| | - Sirinivas Nammi
- Laboratory of Nutritional Biochemistry, National Institute of Fundamental Studies, Kandy, Sri Lanka
- School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia
- National Institute of Complementary Medicine (NICM), Western Sydney University, Penrith, New South Wales, Australia
| | - Barana C Jayawardana
- Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Kandy, Sri Lanka
| | - Ruvini Liyanage
- Laboratory of Nutritional Biochemistry, National Institute of Fundamental Studies, Kandy, Sri Lanka
| |
Collapse
|
18
|
Cytotoxic and antioxidant activities of Tamarindus indica pulp extract from Brazil. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00855-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Gunyeli I, Saygin M, Ozmen O. Methotrexate-induced toxic effects and the ameliorating effects of astaxanthin on genitourinary tissues in a female rat model. Arch Gynecol Obstet 2021; 304:985-997. [PMID: 33608803 DOI: 10.1007/s00404-021-06000-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 02/02/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE The purpose of the study was to explore the possible deleterious effects of Methotrexate (MTX) treatment on the urogenital tissues and the potential protective effects of Astaxanthin (AXA). METHODS Twenty-four female Wistar Albino rats (12 months old) were divided into 3 groups as follows: Group I (Control group): rats received a single dose of 0.1 ml saline by gavage and intraperitoneal injection. Group II (MTX group): rats received a single dose of 20 mg/kg MTX, i.p, on the 2nd day. Group III (MTX + AXA group): rats received 100 mg/kg AXA orally for 7 days in addition to a single dose of MTX. The levels of total oxidant status (TOS), total antioxidant status (TAS), oxidative stress index (OSI), and histopathological and immunohistochemical markers (Caspase-3, iNOS, CRP, G-CSF) were evaluated in urogenital tissues. RESULTS In ovarian tissues, a statistically significant increase in TOS levels (p = 0.001) and OSI index (p = 0.028) were observed in Group II compared to Group I. TAS level was significantly higher in Group III compared to Group II and I (p = 0.009 and 0.002, respectively). However, a significant decrease in OSI level was observed in Group III compared to Group II (p = 0.035). In fallopian tube tissues, TAS level was significantly decreased in Group II compared to Group I (p = 0.047). Histopathologically, marked hyperemia was observed in MTX group. AXA treatment ameliorated all the pathological findings. Immunohistochemically, all the studied markers were considerably increased in Group II, however, they were decreased by AXA. CONCLUSION These findings revealed that MTX treatment caused oxidative stress, apoptosis, and inflammation in the urogenital tissue. We found that AXA significantly ameliorated the damage caused by MTX in the urogenital tissue. The results of the study have indicated that AXA may be a promising nutritional support substance against the damage caused by chemotherapeutic and cytotoxic agents, such as MTX, to the urogenital tissue.
Collapse
Affiliation(s)
- Ilker Gunyeli
- Department of Gynecology and Obstetrics, Faculty of Medicine, Suleyman Demirel University, 32260, Cunur-Isparta, Turkey.
| | - Mustafa Saygin
- Department of Physiology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Ozlem Ozmen
- Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| |
Collapse
|
20
|
Wang Y, Liu Y, Ma L, Li H, Wang Z, Xu J, Xue C. The oxidation mechanism of phospholipids in Antarctic krill oil promoted by metal ions. Food Chem 2020; 333:127448. [DOI: 10.1016/j.foodchem.2020.127448] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/02/2020] [Accepted: 06/27/2020] [Indexed: 01/06/2023]
|
21
|
The role of taurine on chemotherapy-induced cardiotoxicity: A systematic review of non-clinical study. Life Sci 2020; 265:118813. [PMID: 33275984 DOI: 10.1016/j.lfs.2020.118813] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/13/2020] [Accepted: 11/21/2020] [Indexed: 12/14/2022]
Abstract
AIMS Although chemotherapeutic agents have highly beneficial effects against cancer, they disturb the body's normal homeostasis. One of the critical side effects of chemotherapeutic agents is their deleterious effect on the cardiac system, which causes limitations of their clinical usage. Taurine constitutes more than 50% of the amino acids in the heart. The use of taurine might prevent chemotherapy-induced cardiotoxicity. This systematic study aims to evaluate the protective role of taurine against cardiotoxicity induced by chemotherapy. METHODS A systematic search was performed in databases up to November 2020, and the review is designed on PRISMA guidelines. The search keywords were selected based on our study target and were searched in the title and abstract. After the consecutive screening, out of a whole of 94 articles, 8 articles were included according to our inclusion and exclusion criteria. KEY FINDINGS According to the study results, chemotherapy decreases body and heart weight and increases mortality. Also, it induces some biochemical and histological changes compared to the control group. By co-administration of taurine with chemotherapy, alterations returned near to the average level. These protective effects of taurine are mediated through anti-oxidant, anti-inflammatory, and anti-apoptotic properties. SIGNIFICANCE Based on evaluated non-clinical studies, taurine ameliorates chemotherapy-induced cardiotoxicity, but its possible interaction with the efficacy of anti-cancer medicines that mostly act through induction of oxidants remains to be elucidated in the future. This needs conducting well-designed studies to assess the effectiveness and safety of this combination simultaneously.
Collapse
|
22
|
Narayanankutty A, Illam SP, Rao V, Shehabudheen S, Raghavamenon AC. Hot-processed virgin coconut oil abrogates cisplatin-induced nephrotoxicity by restoring redox balance in rats compared to fermentation-processed virgin coconut oil. Drug Chem Toxicol 2020; 45:1373-1382. [PMID: 33059468 DOI: 10.1080/01480545.2020.1831525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Virgin coconut oil (VCO) is a functional food oil prepared from fresh coconut kernel either by hot-processed (HPVCO) or fermentation-processed (FPVCO). The FPVCO has been widely explored for its pharmacological efficacy; while HPVCO, which has traditional uses, is less explored. The present study compared the phenolic content and nephroprotective effect of both these oils in male Wistar rats. In vitro antioxidant activity was estimated in terms of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ferric reducing antioxidant power and ex vivo lipid peroxidation inhibition. In in vivo models, the rats were pretreated orally with of FPVCO or HPVCO (doses 2 and 4 mL/kg) for seven days and nephrotoxicity was induced by the single intraperitoneal injection of cisplatin (10 mg/kg). The results indicated significantly higher polyphenol content in HPVCO (400.3 ± 5.8 µg/mL) than that of FPVCO (255.5 ± 5.8 µg/mL). Corroborating with the increased levels of polyphenols, the in vitro antioxidant potential was significantly higher in the HPVCO. Further, pretreatment with these VCO preparations protected the rats against the cisplatin-induced nephrotoxicity, with higher extent by HPVCO. The renal function markers like urea, creatinine and total bilirubin were significantly reduced (p < 0.05) with HPVCO pretreatment. Apart from the nephroprotective effects, HPVCO also abrogated the cisplatin-induced myelosuppression and hepatotoxicity. The restoration of hepato-renal function by the pretreatment of HPVCO was well corroborated with the improvement in functional antioxidants and subsequent reduction in renal lipid peroxidation. Supporting these observations, renal histology revealed reduced glomerular/tubular congestion and necrosis. Thus, the study concludes that HPVCO may be better functional food than FPVCO.
Collapse
Affiliation(s)
| | | | - Varsha Rao
- Department of Biochemistry, Amala Cancer Research Centre, Thrissur, India
| | - Sabah Shehabudheen
- Department of Biochemistry, Amala Cancer Research Centre, Thrissur, India
| | | |
Collapse
|
23
|
The ameliorative impacts of Moringa oleifera leaf extract against oxidative stress and methotrexate-induced hepato-renal dysfunction. Biomed Pharmacother 2020; 128:110259. [DOI: 10.1016/j.biopha.2020.110259] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/03/2020] [Accepted: 05/10/2020] [Indexed: 12/25/2022] Open
|
24
|
Shehata AM, Ahmed-Farid OA, Rizk HA, Saber SM, Lashin FM, Re L. Neurochemical, neurobehavioral and histochemical effects of therapeutic dose of l-dopa on striatal neurons in rats: Protective effect of virgin coconut oil. Biomed Pharmacother 2020; 130:110473. [PMID: 32707436 DOI: 10.1016/j.biopha.2020.110473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 01/13/2023] Open
Abstract
Despite the fact that levodopa has proven its effectiveness in treating the symptoms of Parkinson's disease (PD), increasing concerns have emerged about its possible long-term toxic effects on dopamine (DA) neurons. The study investigated the possible ameliorative effect of virgin coconut oil against l-dopa- induced neurotoxicity in adult rats. A total number of 40 rats were divided into four groups. Briefly, the first served as control, the second was orally administered virgin coconut oil (1.42 mL/kg), the third group was administered a single daily dose of l-dopa/carbidopa (100/10 mg/kg/day, p.o) and the fourth group pre-treated with virgin coconut oil then administered a single daily dose of l-dopa/carbidopa. The different treatments were extended for 30 days. l-dopa treated group exhibited aggressive behavior and behavioral abnormalities in open field test compared to control group. In addition, l-dopa treatment caused significant increase in the levels of striatal dopamine and norepinephrine and their metabolites with concomitant decrease of serotonin and its metabolite. Moreover, l-dopa treatment increased histamine and GABA levels. In addition, l-dopa treatment induced oxidative stress and energy crisis. The histological and immunohistochemical studies showed that l-dopa caused a remarkable neurodegeneration and increased glial fibrillary acidic protein (GFAP) immunoexpression in the striatal area. Virgin coconut oil co-treatment significantly minimized the harmful effects of l-dopa. In conclusion, the present study revealed that virgin coconut oil provided a notable protection against l-dopa's untoward effects.
Collapse
Affiliation(s)
- Ahmed M Shehata
- PhysiologyDepartment, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Omar A Ahmed-Farid
- PhysiologyDepartment, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Hanan A Rizk
- Histology Department, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Sara M Saber
- Pharmacology Department, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Fawzy M Lashin
- Biochemistry Department, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Lamberto Re
- Clinical Pharmacology, Medinat, Ancona, Italy.
| |
Collapse
|
25
|
Li B, Pang S, Li X, Li Y. PH and redox dual-responsive polymeric micelles with charge conversion for paclitaxel delivery. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:2078-2093. [PMID: 32643545 DOI: 10.1080/09205063.2020.1793708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Here we demonstrate a type of pH and redox dual-responsive micelles, which were self-assembled in aqueous solution by an amphiphilic polymer, methoxypoly(ethylene glycol)-cystamine-poly(L-glutamic acid)-imidazole (mPEG-SS-PGA-IM). Considering tumor cells or tissues exhibiting low pH values and high glutathione (GSH) concentration, mPEG-SS-PGA-IM micelles possessed the charge conversion at pH of tumor tissues, which can facilitate cellular uptake of tumor cells. Furthermore, mPEG-SS-PGA-IM micelles can escape from endo/lysosomes based on the proton sponge effect, following degraded by higher concentration of GSH in cytoplasm. CLSM images of HCT116 cells indicated that mPEG-SS-PGA-IM micelles can escape from endo/lysosomes and enter cytoplasm. MTT assay showed that (paclitaxel) PTX-loaded mPEG-SS-PGA-IM micelles had higher cytotoxicity against HCT116 cells compared with PTX-loaded mPEG-PBLG and mPEG-SS-PBLG micelles. These results indicated that these mPEG-SS-PGA-IM micelles, as novel and effective pH- and redox-responsive nanocarriers, have great potential to both improve drug targeting efficiency while also enhancing the antitumor efficacy of PTX.
Collapse
Affiliation(s)
- Bo Li
- Binzhou People's Hospital, Binzhou, China
| | | | - Xinxin Li
- Binzhou People's Hospital, Binzhou, China
| | - Yanhai Li
- Binzhou People's Hospital, Binzhou, China
| |
Collapse
|
26
|
Protective Impacts of Moringa oleifera Leaf Extract against Methotrexate-Induced Oxidative Stress and Apoptosis on Mouse Spleen. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6738474. [PMID: 32565869 PMCID: PMC7275960 DOI: 10.1155/2020/6738474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/14/2020] [Accepted: 05/06/2020] [Indexed: 02/07/2023]
Abstract
Objective The current study was aimed to examine the possible ameliorative impacts of MO leaf extract (MOLE) against MTX-induced alterations on oxidative stress of mouse spleen and explore the possible molecular mechanism that controls such impacts. Methods Adult male mice were allocated into 4 groups: control, Moringa oleifera leaf extract (MOLE), MTX, and MOLE plus MTX. Mice received MOLE orally for a week before MTX injection and continued for 12 days. Serum and spleen were sampled for biochemical and quantitative gene expressions. Results As compared with the MTX-injected group, MOLE effectively reduced the changes in total proteins, spleen MDA, SOD and catalase activities, and changes in serum antioxidants levels. Moreover, there is downregulation of antioxidant genes (SOD and catalase) and antiapoptotic genes (XIAP and Bcl-xl) along with upregulation in Bax and caspase-3 mRNA (apoptotic genes) in the MTX-injected group. MTX induced changes in IL-1β, IL-6, TNF-α, and IL-10 expression. MOLE restored and ameliorated the changes induced in biochemical, antioxidants, apoptosis, and apoptosis associated genes that were induced by MTX intoxication. Conclusion Current findings indicated that pretreatment with MOLE to MTX-intoxicated mice showed the potential usage of MO for oxidative stress and apoptosis treatment.
Collapse
|
27
|
Alkhatib MH, Alyamani SA, Abdu F. Incorporation of methotrexate into coconut oil nanoemulsion potentiates its antiproliferation activity and attenuates its oxidative stress. Drug Deliv 2020; 27:422-430. [PMID: 32133872 PMCID: PMC7067161 DOI: 10.1080/10717544.2020.1736209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Methotrexate (MTX), a chemotherapeutic agent, has limited clinical applications due to its pulmonary and neurotoxicity. The antineoplastic activity of MTX-NE COCO, which is MTX formulated in coconut oil nanoemulsion (NE), was evaluated in A549 non-small cell lung cancer cells while its adverse side effects on the oxidative stress of the lung and brain were assessed in mice. The z-average diameter for the dispersed nanodroplet of MTX-NE COCO (79.74 ± 3.49 nm) was considerably greater than the free-NE COCO (64.80 ± 3.34 nm). In contrast, the magnitude of the negative z-potential of MTX-NE COCO (3.00 ± 0.69 mV) was markedly less than that of free-NE COCO (8.20 ± 0.76 mV). The minimum inhibitory concentration (IC50) of MTX-NE COCO (18 ± 1.8 µM) was less than the IC50 of free MTX (32 ± 1.2 µM) by around twofold. The in vivo evaluation of the MTX-NE COCO treatment revealed that the antioxidant enzymes activities of the brain and lung tissues, catalase, superoxide dismutase, and glutathione reductase, were relatively raised while the malondialdehyde amount was diminished when compared to the free MTX treatment. In conclusion, combining MTX with coconut oil in a NE had improved its efficacy while ameliorating its oxidative stress effect on the brain and lungs.
Collapse
Affiliation(s)
- Mayson H Alkhatib
- Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shaza A Alyamani
- Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Faiza Abdu
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
28
|
Zhao MJ, Cai HY, Liu MY, Deng LL, Li Y, Zhang H, Feng FQ. Effects of dietary glycerol monolaurate on productive performance, egg quality, serum biochemical indices, and intestinal morphology of laying hens. J Zhejiang Univ Sci B 2020; 20:877-890. [PMID: 31595724 DOI: 10.1631/jzus.b1800530] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Glycerol monolaurate (GML) has been widely used as an effective antibacterial emulsifier in the food industry. A total of 360 44-week-old Hy-Line brown laying hens were randomly distributed into four groups each with six replicates of 15 birds, and fed with corn-soybean-meal-based diets supplemented with 0, 0.15, 0.30, and 0.45 g/kg GML, respectively. Our results showed that 0.15, 0.30, and 0.45 g/kg GML treatments significantly decreased feed conversion ratios (FCRs) by 2.65%, 7.08%, and 3.54%, respectively, and significantly increased the laying rates and average egg weights. For egg quality, GML drastically increased albumen height and Haugh units, and enhanced yolk color. Notably, GML increased the concentrations of polyunsaturated and monounsaturated fatty acids and reduced the concentration of total saturated fatty acids in the yolk. The albumen composition was also significantly modified, with an increase of 1.02% in total protein content, and increased contents of His (4.55%) and Glu (2.02%) under the 0.30 g/kg GML treatment. Additionally, GML treatments had positive effects on the lipid metabolism of laying hens, including lowering the serum triglyceride and total cholesterol levels and reducing fat deposition in abdominal adipose tissue. Intestinal morphology was also improved by GML treatment, with increased villus length and villus height to crypt depth ratio. Our data demonstrated that GML supplementation of laying hens could have beneficial effects on both their productivity and physiological properties, which indicates the potential application of GML as a functional feed additive and gives us a new insight into this traditional food additive.
Collapse
Affiliation(s)
- Min-Jie Zhao
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Hai-Ying Cai
- Zhejiang Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Meng-Yun Liu
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Ling-Li Deng
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Yang Li
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Hui Zhang
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Feng-Qin Feng
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
29
|
Alterations of the fatty acid composition and lipid metabolome of breast muscle in chickens exposed to dietary mixed edible oils. Animal 2020; 14:1322-1332. [PMID: 31915098 DOI: 10.1017/s1751731119003045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The fatty acid composition of chicken's meat is largely influenced by dietary lipids, which are often used as supplements to increase dietary caloric density. The underlying key metabolites and pathways influenced by dietary oils remain poorly known in chickens. The objective of this study was to explore the underlying metabolic mechanisms of how diets supplemented with mixed or a single oil with distinct fatty acid composition influence the fatty acid profile in breast muscle of Qingyuan chickens. Birds were fed a corn-soybean meal diet supplemented with either soybean oil (control, CON) or equal amounts of mixed edible oils (MEO; soybean oil : lard : fish oil : coconut oil = 1 : 1 : 0.5 : 0.5) from 1 to 120 days of age. Growth performance and fatty acid composition of muscle lipids were analysed. LC-MS was applied to investigate the effects of CON v. MEO diets on lipid-related metabolites in the muscle of chickens at day 120. Compared with the CON diet, chickens fed the MEO diet had a lower feed conversion ratio (P < 0.05), higher proportions of lauric acid (C12:0), myristic acid (C14:0), palmitoleic acid (C16:1n-7), oleic acid (C18:1n-9), EPA (C20:5n-3) and DHA (C22:6n-3), and a lower linoleic acid (C18:2n-6) content in breast muscle (P < 0.05). Muscle metabolome profiling showed that the most differentially abundant metabolites are phospholipids, including phosphatidylcholines (PC) and phosphatidylethanolamines (PE), which enriched the glycerophospholipid metabolism (P < 0.05). These key differentially abundant metabolites - PC (14:0/20:4), PC (18:1/14:1), PC (18:0/14:1), PC (18:0/18:4), PC (20:0/18:4), PE (22:0/P-16:0), PE (24:0/20:5), PE (22:2/P-18:1), PE (24:0/18:4) - were closely associated with the contents of C12:0, C14:0, DHA and C18:2n-6 in muscle lipids (P < 0.05). The content of glutathione metabolite was higher with MEO than CON diet (P < 0.05). Based on these results, it can be concluded that the diet supplemented with MEO reduced the feed conversion ratio, enriched the content of n-3 fatty acids and modified the related metabolites (including PC, PE and glutathione) in breast muscle of chickens.
Collapse
|
30
|
Eleazu C, Ekeleme CE, Famurewa A, Mohamed M, Akunna G, David E, Nwofe B, Chukwu F, Precious A, Ayogu C, Onuoha W, Olamide N, Achi N, Emelike U. Modulation of the Lipid Profile, Hepatic and Renal Antioxidant Activities, and Markers of Hepatic and Renal Dysfunctions in Alloxan-Induced Diabetic Rats by Virgin Coconut Oil. Endocr Metab Immune Disord Drug Targets 2019; 19:1032-1040. [PMID: 30659555 DOI: 10.2174/1871530319666190119101058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/23/2018] [Accepted: 01/02/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Research studies that holistically investigated the effect of administration of Virgin Coconut Oil (VCO) on diabetic humans or animals are limited in literature. OBJECTIVE To investigate the effect of administration of VCO on lipid profile, markers of hepatic and renal dysfunction, and hepatic and renal antioxidant activities of alloxan induced diabetic rats. METHODS Twenty-four male albino rats were used, and they were divided into four groups of six rats each. Group 1 (Normal Control, NC) received distilled water (1 mL/kg); Group 2 (VCO Control) received VCO (5 mL/kg); Group 3 (Diabetic Control, DC) received distilled water (1 mL/kg); Group 4 (Test Group, TG) received 5 ml/kg of VCO. RESULTS There were no significant differences in blood glucose, body weights, relative liver weights, relative kidney weights, hepatic and renal Superoxide Dismutase (SOD) activities, Malondialdehyde (MDA), albumin, aspartate Amino Transaminase (AST), alanine Amino Transaminase (ALT), Alkaline Phosphatase (ALP), urea, creatinine, uric acid, total cholesterol, triacylglycerol, Very Low Density Lipoprotein cholesterol (VLDL) and Low Density Lipoprotein cholesterol (LDL) concentrations; significant increases in renal Glutathione (GSH), hepatic catalase, Glutathione Peroxidase (GPx) and GSH but significant reduction in renal GPx and catalase activities of VCO control group compared with NC group. There were significant increases in blood glucose, relative liver and kidney weights, hepatic GPx, hepatic and renal MDA concentration, ALP, AST, ALT, urea, creatinine, uric acid, triacylglycerol, total cholesterol, LDL and VLDL concentrations; and significant decreases in body weight, hepatic SOD and GSH activities and albumin concentration but no significant difference in hepatic catalase activity of DC group compared with NC group. Administration of VCO to diabetic rats positively modulated these parameters compared with the diabetic control. CONCLUSION The study showed the potentials of VCO in the management of hyperlipidemia, renal and hepatic dysfunctions imposed by hyperglycemia and by oxidative stress in diabetic rats.
Collapse
Affiliation(s)
- Chinedum Eleazu
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
- Department of Chemistry/Biochemistry and Molecular Biology, Faculty of Science, Alex-Ekwueme Federal University, Ndufu-Alike Ikwo, Ebonyi State, Nigeria
| | - Chima E Ekeleme
- Department of Chemistry/Biochemistry and Molecular Biology, Faculty of Science, Alex-Ekwueme Federal University, Ndufu-Alike Ikwo, Ebonyi State, Nigeria
| | - Ademola Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Alex-Ekwueme Federal University, Ndufu-Alike Ikwo, Ebonyi State, Nigeria
| | - Mahaneem Mohamed
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
- Unit of Integrative Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Gabriel Akunna
- Department of Anatomy, Faculty of Basic Medical Sciences, Alex-Ekwueme Federal University, Ndufu-Alike Ikwo, Ebonyi State, Nigeria
| | - Ebuka David
- Department of Chemistry/Biochemistry and Molecular Biology, Faculty of Science, Alex-Ekwueme Federal University, Ndufu-Alike Ikwo, Ebonyi State, Nigeria
| | - Boniface Nwofe
- Department of Chemistry/Biochemistry and Molecular Biology, Faculty of Science, Alex-Ekwueme Federal University, Ndufu-Alike Ikwo, Ebonyi State, Nigeria
| | - Favour Chukwu
- Department of Chemistry/Biochemistry and Molecular Biology, Faculty of Science, Alex-Ekwueme Federal University, Ndufu-Alike Ikwo, Ebonyi State, Nigeria
| | - Amakor Precious
- Department of Chemistry/Biochemistry and Molecular Biology, Faculty of Science, Alex-Ekwueme Federal University, Ndufu-Alike Ikwo, Ebonyi State, Nigeria
| | - Charles Ayogu
- Department of Chemistry/Biochemistry and Molecular Biology, Faculty of Science, Alex-Ekwueme Federal University, Ndufu-Alike Ikwo, Ebonyi State, Nigeria
| | - Wisdom Onuoha
- Department of Chemistry/Biochemistry and Molecular Biology, Faculty of Science, Alex-Ekwueme Federal University, Ndufu-Alike Ikwo, Ebonyi State, Nigeria
| | - Nwaeze Olamide
- Department of Chemistry/Biochemistry and Molecular Biology, Faculty of Science, Alex-Ekwueme Federal University, Ndufu-Alike Ikwo, Ebonyi State, Nigeria
| | - Ngozi Achi
- Department of Biochemistry, College of Natural Sciences, Michael Okpara University of Agriculture, Umudike, Abia State, Nigeria
| | - Uche Emelike
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine Alex-Ekwueme Federal University, Ndufu-Alike Ikwo, Ebonyi State, Nigeria
| |
Collapse
|
31
|
Famurewa AC, Aja PM, Nwankwo OE, Awoke JN, Maduagwuna EK, Aloke C. Moringa oleifera seed oil or virgin coconut oil supplementation abrogates cerebral neurotoxicity induced by antineoplastic agent methotrexate by suppression of oxidative stress and neuro-inflammation in rats. J Food Biochem 2018; 43:e12748. [PMID: 31353570 DOI: 10.1111/jfbc.12748] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 12/21/2022]
Abstract
Methotrexate (MTX) is an effective antineoplastic drug associated with wide organ toxicity. Accumulating evidence implicates oxidative stress to be a leading underlying mechanism of MTX-induced neurotoxicity. The study explores antioxidant potential of virgin coconut oil (VCO) or Moringa oleifera seed oil (MOO) in MTX-induced oxidative stress-mediated cerebral neurotoxicity and inflammation in rats. Rats treated with VCO or MOO (5 ml/kg bw) for 17 days were administered MTX (20 mg/kg, intraperitoneally) on day 14 only. Cerebral activities of acetylcholinesterase, antioxidant enzymes, lipid peroxidation, reduced glutathione and nitric oxide levels as well as cytokines were evaluated. MTX-induced neurotoxic alterations were significantly abrogated by MOO and VCO supplementation via inhibition of cholinesterase, oxidative stress, and anti-inflammatory mechanisms. VCO and MOO showed comparable antioxidant potentials with the standards in DPPH and FRAP assays. VCO and MOO are promising natural oils for modulating MTX neurotoxicity in cancer patients. PRACTICAL APPLICATIONS: Methotrexate chemotherapy induces neurotoxicity in cancer patients, and this is a source of worry for clinicians. This study reports, for the first time, the beneficial health effects of functional food oils, Moringa oleifera seed oil, and virgin coconut oil against anticancer drug methotrexate-induced cerebral neurotoxicity. Supplementation of these natural oils may be beneficial in the prevention of cerebral neurotoxic side effect in cancer patients undergoing methotrexate chemotherapy.
Collapse
Affiliation(s)
- Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Alex-Ekwueme Federal University, Ndufu-Alike, Ikwo, Nigeria
| | - Patrick M Aja
- Department of Biochemistry, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Onyebuchi E Nwankwo
- Department of Biological Sciences, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Joshua N Awoke
- Department of Biochemistry, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | | | - Chinyere Aloke
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Alex-Ekwueme Federal University, Ndufu-Alike, Ikwo, Nigeria
| |
Collapse
|
32
|
Health impacts of different edible oils prepared from coconut (Cocos nucifera): A comprehensive review. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.07.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Komonrit P, Banjerdpongchai R. Effect ofPseuderanthemum palatiferum(Nees) Radlk fresh leaf ethanolic extract on human breast cancer MDA-MB-231 regulated cell death. Tumour Biol 2018; 40:1010428318800182. [DOI: 10.1177/1010428318800182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
| | - Ratana Banjerdpongchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
34
|
Bu T, Wang C, Meng Q, Huo X, Sun H, Sun P, Zheng S, Ma X, Liu Z, Liu K. Hepatoprotective effect of rhein against methotrexate-induced liver toxicity. Eur J Pharmacol 2018; 834:266-273. [PMID: 30031796 DOI: 10.1016/j.ejphar.2018.07.031] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/15/2018] [Accepted: 07/18/2018] [Indexed: 11/19/2022]
Abstract
The purpose of this study was to investigate the protective effect of rhein, a major metabolite of diacerein, on methotrexate (MTX)-induced hepatotoxicity and clarify the pharmacological mechanism. Rhein significantly reduced the elevation of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) caused by MTX in rat serum and improved liver morphological damage induced by MTX. Moreover, rhein increased the cell survival rate and reduced the number of apoptosis cells in MTX-treated normal human hepatocyte (L02 cells). Rhein treatment in rats up-regulated nuclear factor erythroid 2-related factor 2 (Nrf2), B-cell lymphoma-2 (Bcl-2), heme oxygenase 1 (HO-1) and glutamate-cysteine ligase catalytic subunit (GCLC), and down-regulated Bcl-2 associated x (Bax) in mRNA and protein levels. Furthermore, rhein treatment further decreased protein expression of nuclear factor-kappa B (NF-κB), tumor necrosis factor alpha (TNF-α) and cysteine aspartic acid specific protease 3 (Caspase-3), increased protein expression of B-cell lymphoma-extra large (Bcl-xl), and reduced mRNA expression of Bcl-2 homologous antagonist/killer (Bak) in MTX-treated rat liver in vivo. However, the protein expression changes of Nrf2, HO-1, GCLC, Bcl-2, Bcl-xl and Bax could be abrogated by Nrf2 antagonist brusatol. In addition, protective effect of rhein against MTX-mediated liver damage could also be suppressed by Nrf2 siRNA in L02 cells. Taken together, these findings suggested that rhein ameliorated liver damage mediated by MTX through acting on Nrf2-HO-1 pathway. NF-κB, TNF-α, Caspase-3 and Bcl-2 family were also participated in the protection. As effectively hepatoprotective ability of rhein, it would raise an important issue for patients orally receiving MTX treatment together with diacerein/rhein.
Collapse
Affiliation(s)
- Tianci Bu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian 116044, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian 116044, China
| | - Xiaokui Huo
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian 116044, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian 116044, China
| | - Pengyuan Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Siqi Zheng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Xiaodong Ma
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Zhihao Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian 116044, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China.
| | - Kexin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
35
|
Famurewa AC, Folawiyo AM, Epete MA, Igwe EC, Okike PI, Maduagwuna EK. Abrogation of Hepatic Damage Induced by Anticancer Drug Methotrexate by Zobo (Hibiscus sabdariffaextract) Supplementation via Targeting Oxidative Hepatotoxicity in Rats. J Diet Suppl 2018; 16:318-330. [PMID: 29672189 DOI: 10.1080/19390211.2018.1456502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Ademola C. Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Federal University, Ndufu-Alike, Ikwo, Ebonyi State, Nigeria
| | - Abiola M. Folawiyo
- Department of Physiology, Faculty of Medicine, Ebonyi State University, Abakaliki, Nigeria
| | - Michael A. Epete
- Department of Anatomy, Faculty of Medicine, Ebonyi State University, Abakaliki, Nigeria
| | - Emeka C. Igwe
- Department of Anatomy, Faculty of Medicine, Ebonyi State University, Abakaliki, Nigeria
| | - Paul I. Okike
- Department of Physiology, Faculty of Medicine, Ebonyi State University, Abakaliki, Nigeria
| | - Ekenechukwu K. Maduagwuna
- Department of Biochemistry, Faculty of Biological Sciences, Ebonyi State University, Abakaliki, Nigeria
| |
Collapse
|