1
|
Mohammadi R, Zareh A, Rabani E, Kheirandish Zarandi P, Khoncheh A, Heiat M. Expression of Pivotal Long Non-coding RNAs Implicated in Gastric Cancer: A Bioinformatic and Clinical Study. Biochem Genet 2024; 62:3111-3135. [PMID: 38070023 DOI: 10.1007/s10528-023-10586-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/03/2023] [Indexed: 07/31/2024]
Abstract
Gastric cancer (GC) is a prominent public health issue and ranks as the third most prevalent cause of cancer-related mortality on a global scale. The role of long non-coding RNAs (lncRNAs) in cancer is not yet fully understood, particularly in relation to GC development. The objective of this study was to examine the expression levels of lncRNAs in GC tissues using a bioinformatics-based ranking approach. A bioinformatics methodology was employed to prioritize lncRNAs that are hypothesized to play a role in GC tumorigenesis. Moreover, a selection was made for experimental validation of the highest-ranked lncRNAs, which include HCG18, OIP5-AS1, FGD5-AS1, and NORAD. Additionally, quantitative real-time polymerase chain reaction (qRT-PCR) was employed to confirm the results obtained from bioinformatics analysis in a total of 35 GC samples and their corresponding adjacent non-tumoral samples. Receiver operating characteristic (ROC) curves and the corresponding area under the ROC curve (AUC) were utilized to evaluate the diagnostic efficacy of the lncRNAs. The bioinformatics analysis revealed that the lncRNA HCG18 is the highest-ranked lncRNA associated with GC. Furthermore, the expression levels of HCG18, OIP5-AS1, FGD5-AS1, and NORAD were found to be significantly elevated in GC samples when compared to adjacent non-tumoral samples. The calculated values for the AUC of HCG18, OIP5-AS1, FGD5-AS1, and NORAD were 0.80, 0.74, 0.73, and 0.71, respectively. The results of the study indicate that the lncRNAs HCG18, OIP5-AS1, FGD5-AS1, and NORAD may play a role in the development of GC. Additionally, the present study revealed that utilizing bioinformatic techniques can prove to be a highly effective strategy in identifying potential lncRNAs pertinent to the progression of GC.
Collapse
Affiliation(s)
- Ramtin Mohammadi
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ali Zareh
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elmira Rabani
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Peyman Kheirandish Zarandi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Cancer Biology Signaling Pathway Interest Group (CBSPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Ahmad Khoncheh
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Heiat
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Liu M, Song X, Sun Y, Zhang T. LncRNA OIP5-AS1 Targets the miR-140-5p/UBR5 Cascade to Promote the Development of Gastric Cancer. Mol Biotechnol 2023:10.1007/s12033-023-00958-x. [PMID: 38112962 DOI: 10.1007/s12033-023-00958-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/23/2023] [Indexed: 12/21/2023]
Abstract
Gastric cancer (GC) is a malignant tumor with the highest incidence among all kinds of malignant tumors in China. Long noncoding RNAs (LncRNAs) have been reported to act as microRNA (miRNAs) sponges and thus play key roles in biological processes and pathogenesis. Thus, this study aimed to investigate the functional effects and the regulatory mechanism of lncRNA opa interacting protein 5-antisense 1 (OIP5-AS1) in gastric cancer cells. The expression of OIP5-AS1, miR-140-5p, Ubiquitin protein ligase E3 component n-recognin 5 (UBR5) was detected using quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation, apoptosis, migration, and invasion were assessed using Cell-Counting Kit-8 (CCK-8), Flow cytometry, and Transwell assays. UBR5 protein level was detected by Western blot. Binding between miR-140-5p and OIP5-AS1 or UBR5 was predicted by Starbasev2.0 and TargetScan, and verified using Dual-luciferase reporter assays and RNA pull-down assay. A xenograft mice model was used to evaluate the effects of OIP5-AS1 on tumor growth in vivo. OIP5-AS1 was upregulated in GC cancer and cells. OIP5-AS1 knockdown inhibited cell proliferation, migration, invasion, but induced cell apoptosis in GC. In mechanism, OIP5-AS1 might serve as a sponge for miR-140-5p to enhance UBR5 expression. Moreover, overexpression of miR-140-5p or UBR5 partly reversed the effects of OIP5-AS1 depletion on the progression of GC cells. Furthermore, OIP5-AS1 depletion also suppressed tumor growth in vivo. OIP5-AS1 silencing might suppress proliferation, migration, invasion, and induced apoptosis in GC cells by regulating the miR-140-5p/UBR5 axis.
Collapse
Affiliation(s)
- Mei Liu
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No.136 Jingzhou Street, Xiangcheng District, Xiangyang City, 441000, Hubei Province, China
| | - Xiujun Song
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No.136 Jingzhou Street, Xiangcheng District, Xiangyang City, 441000, Hubei Province, China
| | - Yinyin Sun
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No.136 Jingzhou Street, Xiangcheng District, Xiangyang City, 441000, Hubei Province, China.
| | - Tieshan Zhang
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No.136 Jingzhou Street, Xiangcheng District, Xiangyang City, 441000, Hubei Province, China.
| |
Collapse
|
3
|
Li N, Zhu Y, Liu F, Zhang X, Liu Y, Wang X, Gao Z, Guan J, Yin S. Integrative Analysis and Experimental Validation of Competing Endogenous RNAs in Obstructive Sleep Apnea. Biomolecules 2023; 13:biom13040639. [PMID: 37189386 DOI: 10.3390/biom13040639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Background: Obstructive sleep apnea (OSA) is highly prevalent yet underdiagnosed. This study aimed to develop a predictive signature, as well as investigate competing endogenous RNAs (ceRNAs) and their potential functions in OSA. Methods: The GSE135917, GSE38792, and GSE75097 datasets were collected from the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database. Weighted gene correlation network analysis (WGCNA) and differential expression analysis were used to identify OSA-specific mRNAs. Machine learning methods were applied to establish a prediction signature for OSA. Furthermore, several online tools were used to establish the lncRNA-mediated ceRNAs in OSA. The hub ceRNAs were screened using the cytoHubba and validated by real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Correlations between ceRNAs and the immune microenvironment of OSA were also investigated. Results: Two gene co-expression modules closely related to OSA and 30 OSA-specific mRNAs were obtained. They were significantly enriched in the antigen presentation and lipoprotein metabolic process categories. A signature that consisted of five mRNAs was established, which showed a good diagnostic performance in both independent datasets. A total of twelve lncRNA-mediated ceRNA regulatory pathways in OSA were proposed and validated, including three mRNAs, five miRNAs, and three lncRNAs. Of note, we found that upregulation of lncRNAs in ceRNAs could lead to activation of the nuclear factor kappa B (NF-κB) pathway. In addition, mRNAs in the ceRNAs were closely correlated to the increased infiltration level of effector memory of CD4 T cells and CD56bright natural killer cells in OSA. Conclusions: In conclusion, our research opens new possibilities for diagnosis of OSA. The newly discovered lncRNA-mediated ceRNA networks and their links to inflammation and immunity may provide potential research spots for future studies.
Collapse
Affiliation(s)
- Niannian Li
- Department of Otolaryngology Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
- Otolaryngology Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
| | - Yaxin Zhu
- Department of Otolaryngology Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
- Otolaryngology Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
| | - Feng Liu
- Department of Otolaryngology Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
- Otolaryngology Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
| | - Xiaoman Zhang
- Department of Otolaryngology Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
- Otolaryngology Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
| | - Yuenan Liu
- Department of Otolaryngology Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
- Otolaryngology Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
| | - Xiaoting Wang
- Department of Otolaryngology Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
- Otolaryngology Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
| | - Zhenfei Gao
- Department of Otolaryngology Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
- Otolaryngology Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
| | - Jian Guan
- Department of Otolaryngology Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
- Otolaryngology Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
| | - Shankai Yin
- Department of Otolaryngology Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
- Otolaryngology Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
| |
Collapse
|
4
|
Ravaei A, Zimmer-Bensch G, Govoni M, Rubini M. lncRNA-mediated synovitis in rheumatoid arthritis: A perspective for biomarker development. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 175:103-119. [PMID: 36126801 DOI: 10.1016/j.pbiomolbio.2022.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/28/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Long noncoding RNAs (lncRNAs) are a regulatory class of noncoding RNAs with a wide range of activities such as transcriptional and post-transcriptional regulations. Emerging evidence has demonstrated that various lncRNAs contribute to the initiation and progression of Rheumatoid Arthritis (RA) through distinctive mechanisms. The present study reviews the recent findings on lncRNA role in RA development. It focuses on the involvement of different lncRNAs in the main steps of RA pathogenesis including T cell activation, cytokine dysregulation, fibroblast-like synoviocyte (FLS) activation and joint destruction. Besides, it discusses the current findings on RA diagnosis and the potential of lncRNAs as diagnostic, prognostic and predictive biomarkers in Rheumatology clinic.
Collapse
Affiliation(s)
- Amin Ravaei
- Department of Neurosciences and Rehabilitation, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, Ferrara, Italy.
| | - Geraldine Zimmer-Bensch
- Division of Neuroepigenetics, Institute of Zoology (Biology II), RWTH Aachen University, Aachen, Germany.
| | - Marcello Govoni
- Department of Medical Science, Section of Rheumatology, University of Ferrara, Ferrara, Italy.
| | - Michele Rubini
- Department of Neurosciences and Rehabilitation, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
5
|
Bai J, Li H, Chen X, Chen L, Hu Y, Liu L, Zhao Y, Zuo W, Zhang B, Yin C. LncRNA-AC009948.5 promotes invasion and metastasis of lung adenocarcinoma by binding to miR-186-5p. Front Oncol 2022; 12:949951. [PMID: 36059662 PMCID: PMC9437580 DOI: 10.3389/fonc.2022.949951] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background Long non-coding RNAs (LncRNAs) has been confirmed to play a crucial role in the development and progression of various cancer types. Here we evaluated the expression profiles of LncRNAs in Lung adenocarcinoma (LUAD) tissues and identified a novel LncRNA, termed LncRNA-AC009948.5. However, the role and potential molecular mechanisms of this novel LncRNA in LUAD carcinogenesis is unknown. Methods Regarding the public databases and based on integrating bioinformatics analyses, we determined whether LncRNA-AC009948.5 exerts its oncogenic functions via sponging miR-186-5p in LUAD. Furthermore, we determined whether NCAPG2 was a downstream target of miR-186-5p. Moreover, the expression level and biological function of LncRNA-AC009948.5 in LUAD were determined by qRT-PCR, cell apoptosis, Edu, transwell, wound healing and western blot assays. Besides, xenograft mice were established for validation. We explored the expression of LncRNA-AC009948.5 and its roles in the prognosis of LUAD. Results LncRNA expression microarray data indicate that LncRNA-AC009948.5 is upregulated in LUAD samples. The present study confirmed the upregulation of LncRNA-AC009948.5 in LUAD tissues and cells. Encreased expression of LncRNA-AC009948.5 was correlated with tumor size, lymph nodes, distant metastasis and histological grade, and poor prognosis.LncRNA-AC009948.5 knockdown significantly inhibited cell proliferation, migration, and invasion in vitro, as well as tumorigenesis and metastasis in vivo. Conversely, LncRNA-AC009948.5 upregulated had opposite effects. Mechanistically, we elucidated that LncRNA-AC009948.5 could directly bind to miR-186-5p and subsequently suppress expression of the target gene of NCAPG2. Conclusions LncRNA-AC009948.5 promotes lung adenocarcinoma cells metastasis via the miR-186-5p/NCAPG2 axis and activation of the EMT process. Which may serve as potential targets for the treatment of LUAD in the future.
Collapse
Affiliation(s)
- Jun Bai
- Department of Pathology, Weifang Medical University, Weifang, China
| | - Hongli Li
- Experimental Center for Medicine Research, Weifang Medical University, Weifang, China
| | - Xinlu Chen
- Department of Pathology, Weifang Medical University, Weifang, China
| | - Lin Chen
- Department of Pathology, Weifang Medical University, Weifang, China
| | - Yaqiong Hu
- Department of Pathology, Weifang Medical University, Weifang, China
| | - Lu Liu
- Department of Pathology, Weifang Medical University, Weifang, China
| | - Yanqiao Zhao
- Department of Pathology, Weifang Medical University, Weifang, China
| | - Wei Zuo
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Baogang Zhang
- Department of Pathology, Weifang Medical University, Weifang, China
- *Correspondence: Chonggao Yin, ; Baogang Zhang,
| | - Chonggao Yin
- College of Nursing, Weifang Medical University, Weifang, China
- *Correspondence: Chonggao Yin, ; Baogang Zhang,
| |
Collapse
|
6
|
Yan Z, Li J, Guo J, He R, Xing J. LncRNA XIST sponges microRNA-448 to promote malignant behaviors of colorectal cancer cells via regulating GRHL2. Funct Integr Genomics 2022; 22:977-988. [PMID: 35725976 DOI: 10.1007/s10142-022-00873-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 11/25/2022]
Abstract
Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are essential regulators in human cancers, while the role of lncRNA X-inactive-specific transcript (XIST) in colorectal cancer (CRC) via regulating miR-448 remains largely unknown. Herein, we aimed to elucidate the effect of the XIST/miR-448/grainyhead-like 2 (GRHL2) axis on CRC development. XIST, miR-448, and GRHL2 expression in CRC tissues from patients and in human CRC cell lines was assessed. Loss- and gain-function assays were implemented to unveil the roles of XIST, miR-448, and GRHL2 in screened CRC cells. The tumor growth in vivo was observed in nude mice. Binding relations among XIST, miR-448, and GRHL2 were evaluated. XIST and GRHL2 expressed highly whereas miR-448 expressed lowly in CRC tissues and cells. XIST or GRHL2 downregulation, or miR-448 elevation suppressed the malignant behaviors of CRC cells in vitro, and downregulated XIST or upregulated miR-448 also inhibited the tumor growth in vivo. miR-448 upregulation reversed the role of XIST elevation in CRC cells. XIST particularly bound to miR-448, and miR-448 targeted GRHL2. Knockdown of XIST upregulates miR-448 to impede malignant behaviors of CRC cells via inhibiting GRHL2. This study may provide novel biomarkers for CRC diagnosis and treatment.
Collapse
Affiliation(s)
- Zhengzheng Yan
- General Surgery Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, No. 99 LongCheng Street, Taiyuan, 030001, Shanxi, China
| | - Ji Li
- General Surgery Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, No. 99 LongCheng Street, Taiyuan, 030001, Shanxi, China
| | - Ji Guo
- General Surgery Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, No. 99 LongCheng Street, Taiyuan, 030001, Shanxi, China
| | - Ruochong He
- General Surgery Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, No. 99 LongCheng Street, Taiyuan, 030001, Shanxi, China
| | - Jun Xing
- Department of Breast Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, No. 99 LongCheng Street, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
7
|
Construction of long non-coding RNA- and microRNA-mediated competing endogenous RNA networks in alcohol-related esophageal cancer. PLoS One 2022; 17:e0269742. [PMID: 35704638 PMCID: PMC9200351 DOI: 10.1371/journal.pone.0269742] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 02/16/2022] [Indexed: 12/13/2022] Open
Abstract
The current study aimed to explore the lncRNA–miRNA–mRNA networks associated with alcohol-related esophageal cancer (EC). RNA-sequencing and clinical data were downloaded from The Cancer Genome Atlas and the differentially expressed genes (DEGs), long non-coding RNAs (lncRNAs, DELs), and miRNAs (DEMs) in patients with alcohol-related and non-alcohol-related EC were identified. Prognostic RNAs were identified by performing Kaplan–Meier survival analyses. Weighted gene co-expression network analysis was employed to build the gene modules. The lncRNA–miRNA–mRNA competing endogenous RNA (ceRNA) networks were constructed based on our in silico analyses using data from miRcode, starBase, and miRTarBase databases. Functional enrichment analysis was performed for the genes in the identified ceRNA networks. A total of 906 DEGs, 40 DELs, and 52 DEMs were identified. There were eight lncRNAs and miRNAs each, including ST7-AS2 and miR-1269, which were significantly associated with the survival rate of patients with EC. Of the seven gene modules, the blue and turquoise modules were closely related to disease progression; the genes in this module were selected to construct the ceRNA networks. SNHG12–miR-1–ST6GAL1, SNHG3–miR-1–ST6GAL1, SPAG5-AS1–miR-133a–ST6GAL1, and SNHG12–hsa-miR-33a–ST6GA interactions, associated with the N-glycan biosynthesis pathway, may have key roles in alcohol-related EC. Thus, the identified biomarkers provide a novel insight into the molecular mechanism of alcohol-related EC.
Collapse
|
8
|
Xu X, Zhang Y. Regulation of Oxidative Stress by Long Non-coding RNAs in Central Nervous System Disorders. Front Mol Neurosci 2022; 15:931704. [PMID: 35782387 PMCID: PMC9241987 DOI: 10.3389/fnmol.2022.931704] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Central nervous system (CNS) disorders, such as ischemic stroke, Alzheimer’s disease, Parkinson’s disease, spinal cord injury, glioma, and epilepsy, involve oxidative stress and neuronal apoptosis, often leading to long-term disability or death. Emerging studies suggest that oxidative stress may induce epigenetic modifications that contribute to CNS disorders. Non-coding RNAs are epigenetic regulators involved in CNS disorders and have attracted extensive attention. Long non-coding RNAs (lncRNAs) are non-coding RNAs more than 200 nucleotides long and have no protein-coding function. However, these molecules exert regulatory functions at the transcriptional, post-transcriptional, and epigenetic levels. However, the major role of lncRNAs in the pathophysiology of CNS disorders, especially related to oxidative stress, remains unclear. Here, we review the molecular functions of lncRNAs in oxidative stress and highlight lncRNAs that exert positive or negative roles in oxidation/antioxidant systems. This review provides novel insights into the therapeutic potential of lncRNAs that mediate oxidative stress in CNS disorders.
Collapse
Affiliation(s)
- Xiaoman Xu
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi Zhang
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Yi Zhang,
| |
Collapse
|
9
|
Mao C, Li X. Long noncoding RNA OIP5-AS1 promotes the stemness of lung cancer cells through enhancing Oct4 mRNA stability. ENVIRONMENTAL TOXICOLOGY 2022; 37:1104-1112. [PMID: 35044041 DOI: 10.1002/tox.23468] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Long noncoding RNA (lncRNA) OIP5-AS1 was shown to facilitate drug resistance and metastasis in several tumors. As cancer stem cells (CSCs) have been elucidated as the origin of drug resistance and tumor progression, we speculate that lncRNA OIP5-AS1 holds critical roles in the CSC-like traits of lung cancer. Here, lncRNA OIP5-AS1 was found to be highly expressed in lung cancer cell spheres. Following experiments showed that OIP-AS1 knockdown reduced the CSC-like traits of lung cancer spheres, while overexpression of OIP-AS1 conferred the CSC-like traits in lung cancer cells by performing sphere-formation analysis, detecting stemness marker expression, and ALDH activity. Mechanistic studies revealed that lncRNA OIP5-AS1 could increase Oct4 expression by directly interacting with Oct4 mRNA and enhancing Oct4 mRNA stability. Finally, we found that the knockdown of Oct4 could rescue the promoting effects of OIP5-AS1 overexpression on the CSC-like traits of lung cancer. These results demonstrate that lncRNA OIP5-AS1 can confer lung cancer CSC-like traits by directly interacting with Oct4 mRNA and thus increasing Oct4 mRNA stability and expression.
Collapse
Affiliation(s)
- Chengye Mao
- Department of Respiratory Medicine, Sanming First Hospital, The Affiliated Hospital of Fujian Medical University, Sanming, China
| | - Xionghui Li
- Department of Respiratory Medicine, Sanming First Hospital, The Affiliated Hospital of Fujian Medical University, Sanming, China
| |
Collapse
|
10
|
Hu YY, Cheng XM, Wu N, Tao Y, Wang XN. Non-coding RNAs Regulate the Pathogenesis of Aortic Dissection. Front Cardiovasc Med 2022; 9:890607. [PMID: 35498004 PMCID: PMC9051029 DOI: 10.3389/fcvm.2022.890607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 03/29/2022] [Indexed: 12/14/2022] Open
Abstract
Aortic dissection (AD) is a fatal cardiovascular disease. It is caused by a rupture of the aortic intima or bleeding of the aortic wall that leads to the separation of different aortic wall layers. Patients with untreated AD have a mortality rate of 1–2% per hour after symptom onset. Therefore, effective biomarkers and therapeutic targets are needed to reduce AD-associated mortality. With the development of molecular technology, researchers have begun to explore the pathogenesis of AD at gene and protein levels, and have made some progress, but the pathogenesis of AD remains unclear. Non-coding RNAs, such as microRNAs, lncRNAs, and circRNAs, have been identified as basic regulators of gene expression and are found to play a key role in the pathogenesis of AD. Thus, providing a theoretical basis for developing these non-coding RNAs as clinical biomarkers and new therapeutic targets for AD in the future. Previous studies on the pathogenesis of AD focused on miRNAs, but recently, there have been an increasing number of studies that explore the role of lncRNAs, and circRNAs in AD. This review summarizes the existing knowledge on the roles of various non-coding RNAs in the pathogenesis of AD, discusses their potential role as clinical biomarkers and therapeutic targets, states the limitations of existing evidence, and recommends future avenues of research on the pathogenesis of AD.
Collapse
|
11
|
Qiao X, Zhao F. Long non-coding RNA Opa interacting protein 5-antisense RNA 1 binds to micorRNA-34a to upregulate oncogenic PD-L1 in non-small cell lung cancer. Bioengineered 2022; 13:9264-9273. [PMID: 35411833 PMCID: PMC9161958 DOI: 10.1080/21655979.2022.2036904] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNA (lncRNA) OPA-interacting protein 5 antisense transcript 1 (OIP5-AS1) plays an oncogenic role in several types of cancer, but whether it is involved in non-small-cell lung cancer (NSCLC) is unclear. Our preliminary sequencing analysis revealed the upregulation of OIP5-AS1 in NSCLC. In this study, gene expression levels were analyzed by RT-qPCR. RNA-RNA pull-down assay was applied to detect direct interactions between RNAs. Overexpression assays were performed to explore the relationship between miR-34a and OIP5-AS1. CCK-8 assay and colony formation assay were applied to evaluate cell proliferation. In NSCLC cells (H23), overexpression of OIP5-AS1 increased the expression levels of programmed death-ligand 1 (PD-L1). In addition, inhibition of OIP5-AS1 and overexpression of miR-34a decreased the expression levels of PD-L1, and miR-34a significantly blocked the role of overexpression of OIP5-AS1. Overexpression of OIP5-AS1 and PD-L1 promoted H23 and H22 cells proliferation, while silencing of miR-34a and OIP5-AS1 played opposite roles and eliminated the effects of overexpression of OIP5-AS1 on cell proliferation. Therefore, OIP5-AS1 was upregulated to enhance the expression of oncogenic PD-L1 by sponging miR-34a in NSCLC, leading to promoted NSCLC cell proliferation. Our study also demonstrated that OIP5-AS1 was upregulated while miR-34a was downregulated in NSCLC.
Collapse
Affiliation(s)
- Xinwei Qiao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| | - Feng Zhao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| |
Collapse
|
12
|
Jin X, Yu W, Ye P. MiR-125b enhances doxorubicin-induced cardiotoxicity by suppressing the nucleus-cytoplasmic translocation of YAP via targeting STARD13. ENVIRONMENTAL TOXICOLOGY 2022; 37:730-740. [PMID: 34921586 DOI: 10.1002/tox.23438] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/09/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
The clinical application of doxorubicin (Dox) is limited due to its cardiotoxicity, while the pathogenesis remains to be fully understood. Recent studies have suggested that microRNA (miRNA) plays an important role in Dox-induced cardiotoxicity. This work aims to investigate the effects of miR-125b in Dox-induced cardiotoxicity. Here, mice model combined with cell line analysis were used, and cell viability assay, detection of reactive oxygen species (ROS), malondialdehyde (MDA) activity, lactate dehydrogenase (LDH) activity, glutathione (GSH) level, glutathione peroxidase (GSH-Px) level, superoxide dismutase (SOD) activity, and histopathological changes were performed to characterize miR-125b effects; real-time quantitative polymerase chain reaction (PCR), luciferase reporter assay, RNA immunoprecipitation, and western blot analysis were subjected to reveal the underlying mechanisms. It was found that miR-125b level was upregulated in myocardial cell line H9C2 treated with Dox and miR-125b overexpression enhanced Dox-induced cytotoxicology of H9C2 cells, while miR-125b inhibition exhibited a protective effect by measuring ROS level and cell viability. In consistent, in vivo experiments with miR-125b agomir or antagomir obtained a consistent result through examining the activity of MDA, LDH, GSH, GSH-Px, SOD, and histopathological changes. Furthermore, we found that miR-125b could target STARD13 and thus suppressed the nucleus-cytoplasmic translocation of yes-associated protein (YAP). Additionally, this STARD13/YAP axis is necessary for miR-125b-mediated regulation on Dox-induced cytotoxicology of H9C2 cells. In conclusion, our study demonstrated that miR-125b could enhance Dox-induced cardiotoxicity through targeting the STARD13/YAP axis.
Collapse
Affiliation(s)
- Xiaoping Jin
- Department of Cardiology, Nanjing First Hospital, Nanjing, China
| | - Wande Yu
- Department of Cardiology, Nanjing First Hospital, Nanjing, China
| | - Peng Ye
- Department of Cardiology, Nanjing First Hospital, Nanjing, China
| |
Collapse
|
13
|
Zheng C, Chu M, Chen Q, Chen C, Wang ZW, Chen X. The role of lncRNA OIP5-AS1 in cancer development and progression. Apoptosis 2022; 27:311-321. [PMID: 35316453 DOI: 10.1007/s10495-022-01722-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2022] [Indexed: 12/23/2022]
Abstract
OIP5-AS1, a conserved lncRNA, has been reported to be involved in several biological and pathological processes, including oncogenesis. OIP5-AS1 exerts its oncogenic or antitumor functions via regulation of different miRNAs in various cancer types. In this review, we describe the dysregulation of OIP5-AS1 expression in a variety of human cancers. Moreover, we discuss the multiple functions of OIP5-AS1 in cancer, including in proliferation, apoptosis, autophagy, ferroptosis, cell cycle, migration, metastasis, invasion, epithelial to mesenchymal transition, angiogenesis, cancer stem cells and drug resistance. Furthermore, we provide a future perspective for OIP5-AS1 research. We conclude that targeting OIP5-AS1 might be a promising cancer therapy approach.
Collapse
Affiliation(s)
- Cheng Zheng
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Man Chu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Qiuli Chen
- Department of Research and Development, Zhengjiang Zhongwei Medical Research Center, Hangzhou, 310018, Zhejiang, China
- The School of Public Health, The University of Queensland, Brisbane, Australia
| | - Cheng Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Zhi-Wei Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Xiao Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
14
|
Shi C, Zhang H, Wang M, Tian R, Li X, Feng Y, Peng F, Qin R. OPA Interacting Protein 5 Antisense RNA 1 Expedites Cell Migration and Invasion Through FOXM1/ Wnt/β-Catenin Pathway in Pancreatic Cancer. Dig Dis Sci 2022; 67:915-924. [PMID: 33782807 DOI: 10.1007/s10620-021-06919-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 02/22/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Pancreatic cancer (PC) is a digestive tract malignancy with poor prognosis. Long noncoding RNA (lncRNA) OPA interacting protein 5 antisense RNA 1 (OIP5-AS1) was regarded to be correlated with human malignancy, working as tumor suppressor or promoter on the basis of tumor types. However, the function of OIP5-AS1 in PC remained unclear. AIMS The study focused on the function and regulatory mechanism of OIP5-AS1 in PC. METHODS OIP5-AS1 expression was assessed by the quantitative reverse transcription PCR (RT-qPCR) in tumor tissues and PC cell lines. 5-ethynyl-2'-deoxyuridine (EdU) incorporation and cell counting kit-8 (CCK-8) assays were applied to detect cell proliferation ability. Through wound healing and transwell assays, cell migration and invasion capacities were estimated. Flow cytometry analysis was performed to examine apoptosis capability of PC cells. RESULTS OIP5-AS1 downregulating inhibited cell proliferation, migration, and invasion capacities, while promoting cell apoptosis rates. As a competing endogenous RNA (ceRNA), OIP5-AS1 competed with Forkhead Box M1 (FOXM1) for the binding sites on microRNA-320b (miR-320b). OIP5-AS1 was able to upregulate FOXM1 expression via silencing miR-320b. Furthermore, FOXM1 served as an activator of Wnt/β-catenin pathway and mediated the effect of OIP5-AS1 on Wnt/β-catenin pathway. CONCLUSION OIP5-AS1 expedites the proliferative, migrated, and invasive capability of PC cells, while repressing cell apoptosis through regulating miRNA-320b/FOXM1 axis and FOXM1/Wnt/β-catenin pathway in PC. OIP5-AS1 regulation on FOXM1/Wnt/β-catenin pathway may offer novel efficient markers for PC treatments.
Collapse
Affiliation(s)
- Chengjian Shi
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Hang Zhang
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Min Wang
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Rui Tian
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Xu Li
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Yechen Feng
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Feng Peng
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Renyi Qin
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No 1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
15
|
Wooten S, Smith KN. Long non-coding RNA OIP5-AS1 (Cyrano): A context-specific regulator of normal and disease processes. Clin Transl Med 2022; 12:e706. [PMID: 35040588 PMCID: PMC8764876 DOI: 10.1002/ctm2.706] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 12/17/2022] Open
Abstract
Long non-coding (lnc) RNAs have been implicated in a plethora of normal biological functions, and have also emerged as key molecules in various disease processes. OIP5-AS1, also commonly known by the alias Cyrano, is a lncRNA that displays broad expression across multiple tissues, with significant enrichment in particular contexts including within the nervous system and skeletal muscle. Thus far, this multifaceted lncRNA has been found to have regulatory functions in normal cellular processes including cell proliferation and survival, as well as in the development and progression of a myriad disease states. These widespread effects on normal and disease states have been found to be mediated through context-specific intermolecular interactions with dozens of miRNAs and proteins identified to date. This review explores recent studies to highlight OIP5-AS1's contextual yet pleiotropic roles in normal homeostatic functions as well as disease oetiology and progression, which may influence its utility in the generation of future theranostics.
Collapse
Affiliation(s)
- Serena Wooten
- Department of GeneticsUniversity of North Carolina at Chapel HillNorth CarolinaUSA
| | - Keriayn N. Smith
- Department of GeneticsUniversity of North Carolina at Chapel HillNorth CarolinaUSA
| |
Collapse
|
16
|
Hao W, Lin F, Shi H, Guan Z, Jiang Y. Long non-coding RNA OIP5-AS1 regulates smoke-related chronic obstructive pulmonary disease via targeting micro RNA -410-3p/IL-13. Bioengineered 2021; 12:11664-11676. [PMID: 34872453 PMCID: PMC8810017 DOI: 10.1080/21655979.2021.2000199] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This investigation aimed to assess the levels of serum OIP5-AS1 and micro RNA-410-3p (miR-410-3p) in patients with chronic obstructive pulmonary disease (COPD) and their potential molecular mechanism. The levels of OIP5-AS1 and miR-410-3p as well as mRNA levels of IL-13 were measured. Pearson variable linear test was applied to analyze the correlations between forced expiratory volume in 1 second (FEV1) and OIP5-AS1. The receiver operating characteristic curve was used to predict the predictive possibility of OIP5-AS1. The viable cells were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry was used to detect the cell apoptosis. An enzyme-linked immunosorbent assay was performed to indicate the inflammatory situation of 16HBE cells. Luciferase activity assay was conducted to examine the relationships between OIP5-AS1 and miR-410-3p together with miR-410-3p and IL-13. Augmented levels of OIP5-AS1, declined levels of miR-410-3p, and enhanced expression of IL-13 were unveiled. The expression of OIP5-AS1 and miR-410-3p was related to the ratio of FEV1 respectively. OIP5-AS1 might serve as a diagnostic biomarker. Interference of OIP5-AS1 restored the abnormal cell viability, apoptosis, and inflammation in cigarette smoke extract (CSE)-stimulated 16HBE cells by regulating miR-410-3p and IL-13. OIP5-AS1 appeared to be a biomarker for distinguishing COPD patients from smokers. OIP5-AS1/miR-410-3p/IL-13 exerted function on the cell viability, apoptosis, and inflammation in CSE-steered cell models.
Collapse
Affiliation(s)
- Wenbo Hao
- Cardiothoracic Surgery, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Fei Lin
- Endocrinology Department, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Hanbing Shi
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Zhanjiang Guan
- Department of Critical Care Medicine, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Yunfei Jiang
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China
| |
Collapse
|
17
|
Zhi L, Zhao J, Zhao H, Qing Z, Liu H, Ma J. Downregulation of LncRNA OIP5-AS1 Induced by IL-1β Aggravates Osteoarthritis via Regulating miR-29b-3p/PGRN. Cartilage 2021; 13:1345S-1355S. [PMID: 32037864 PMCID: PMC8804817 DOI: 10.1177/1947603519900801] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Long noncoding RNA (lncRNA) OIP5 antisense RNA 1 (OIP5-AS1) is an oncogenic lncRNA; however, its role in osteoarthritis (OA) pathology still remains unknown. MATERIALS AND METHODS qRT-PCR was performed to measure the expressions of OIP5-AS1, miR-29b-3p and progranulin (PGRN) mRNA in OA cartilage tissues and normal cartilage tissues. Chondrocyte cell lines, CHON-001 and ATDC5, were treated with different doses of interleukin-1β (IL-1β) to induce the inflammatory response. Overexpression plasmids, microRNA mimics, microRNA inhibitors and small interfering RNAs were constructed and transfected into CHON-001 and ATDC5 cells. CCK-8 assay was used for determining the cell viability and Transwell assay was used for monitoring cell migration. Western blot was applied to measure the expressions of apoptosis-related proteins. Enzyme-linked immunosorbent assay (ELISA) was adopted to measure the contents of inflammatory factors. StarBase and TargetScan were used to predict the binding sites between OIP5-AS1 and miR-29b-3p, miR-29b-3p and 3'-UTR of PGRN respectively, which were verified by dual luciferase reporter assay. RESULTS OIP5-AS1 and PGRN mRNA were downregulated while miR-29b-3p was upregulated in OA tissues and models. The up-regulated OIP5-AS1 facilitated the proliferation and migration of CHON-001 and ATDC5 cells, while ameliorated the apoptosis and inflammatory response. However, miR-29b-3p had opposite effects. PGRN was identified as a target gene of miR-29b-3p, which could be indirectly suppressed by OIP5-AS1 knockdown. CONCLUSION Downregulation of OIP5-AS1 induced by IL-1β could inhibit the proliferation and migration abilities of CHON-001 and ATDC5 cells and facilitate the apoptosis and inflammation response via regulating miR-29b-3p/PGRN axis.
Collapse
Affiliation(s)
- Liqiang Zhi
- Department of Joint Surgery, Honghui
Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jianwu Zhao
- Department of Microsurgery, Yulin First
Hospital, Second Affiliated Hospital of Yan-an University, Yulin, Shaanxi,
China
| | - Hongmou Zhao
- Department of Foot and Ankle Surgery,
Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Zhong Qing
- Department of Joint Surgery, Honghui
Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Hongliang Liu
- Department of Trauma Surgery, Honghui
Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jianbing Ma
- Department of Joint Surgery, Honghui
Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China,Jianbing Ma, Department of Joint Surgery,
Honghui Hospital, Xi’an Jiaotong University, Youyi East Road No. 555, Xi’an,
Shaanxi 710054, China.
| |
Collapse
|
18
|
Ji Y, Yan T, Zhu S, Wu R, Zhu M, Zhang Y, Guo C, Yao K. The Integrative Analysis of Competitive Endogenous RNA Regulatory Networks in Coronary Artery Disease. Front Cardiovasc Med 2021; 8:647953. [PMID: 34631806 PMCID: PMC8492936 DOI: 10.3389/fcvm.2021.647953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 08/25/2021] [Indexed: 12/25/2022] Open
Abstract
Background: Coronary artery disease (CAD) is the leading cause of cardiovascular death. The competitive endogenous RNAs (ceRNAs) hypothesis is a new theory that explains the relationship between lncRNAs and miRNAs. The mechanism of ceRNAs in the pathological process of CAD has not been fully elucidated. The objective of this study was to explore the ceRNA mechanism in CAD using the integrative bioinformatics analysis and provide new research ideas for the occurrence and development of CAD. Methods: The GSE113079 dataset was downloaded, and differentially expressed lncRNAs (DElncRNAs) and genes (DEGs) were identified using the limma package in the R language. Weighted gene correlation network analysis (WGCNA) was performed on DElncRNAs and DEGs to explore lncRNAs and genes associated with CAD. Functional enrichment analysis was performed on hub genes in the significant module identified via WGCNA. Four online databases, including TargetScan, miRDB, miRTarBase, and Starbase, combined with an online tool, miRWalk, were used to construct ceRNA regulatory networks. Results: DEGs were clustered into ten co-expression modules with different colors using WGCNA. The brown module was identified as the key module with the highest correlation coefficient. 188 hub genes were identified in the brown module for functional enrichment analysis. DElncRNAs were clustered into sixteen modules, including seven modules related to CAD with the correlation coefficient more than 0.5. Three ceRNA networks were identified, including OIP5-AS1-miR-204-5p/miR-211-5p-SMOC1, OIP5-AS1-miR-92b-3p-DKK3, and OIP5-AS1-miR-25-3p-TMEM184B. Conclusion: Three ceRNA regulatory networks identified in this study may play crucial roles in the occurrence and development of CAD, which provide novel insights into the ceRNA mechanism in CAD.
Collapse
Affiliation(s)
- Yuyao Ji
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
| | - Tao Yan
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shijie Zhu
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Runda Wu
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
| | - Miao Zhu
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yangyang Zhang
- Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Changfa Guo
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kang Yao
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Su F, Duan J, Zhu J, Fu H, Zheng X, Ge C. Long non‑coding RNA nuclear paraspeckle assembly transcript 1 regulates ionizing radiation‑induced pyroptosis via microRNA‑448/gasdermin E in colorectal cancer cells. Int J Oncol 2021; 59:79. [PMID: 34476497 PMCID: PMC8448542 DOI: 10.3892/ijo.2021.5259] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/16/2021] [Indexed: 12/11/2022] Open
Abstract
Pyroptosis is mediated by gasdermins and serves a critical role in ionizing radiation (IR)-induced damage in normal tissues, but its role in cancer radiotherapy and underlying mechanisms remains unclear. Long non-coding (lnc) RNAs serve important roles in regulating the radiosensitivity of cancer cells. The present study aimed to investigate the mechanistic involvement of lncRNAs in IR-induced pyroptosis in human colorectal cancer HCT116 cells. LncRNA, microRNA (miR)-448 and gasdermin E (GSDME) levels were evaluated using reverse transcription-quantitative polymerase chain reaction. Protein expression and activation of gasdermins were measured using western blotting. The binding association between miR-448 and GSDME was assessed using the dual-luciferase reporter assay. Pyroptosis was examined using phase-contrast microscopy, flow cytometry, Cell Counting Kit-8 assay and lactate dehydrogenase release assay. IR dose-dependently induced GSDME-mediated pyroptosis in HCT116 cells. GSDME was identified as a downstream target of miR-448. LncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) was upregulated in response to IR and enhanced GSDME expression by negatively regulating miR-448 expression. Notably, NEAT1 knockdown suppressed IR-induced pyroptosis, full-length GSDME expression and GSDME cleavage compared with that in irradiated cells. In addition, NEAT1 knockdown rescued the IR-induced decrease in cell viability in HCT116 cells. The findings of the present study indicated that lncRNA NEAT1 modulates IR-induced pyroptosis and viability in HCT116 cells via miR-448 by regulating the expression, but not activation of GSDME. The present study provides crucial mechanistic insight into the potential role of lncRNA NEAT1 in IR-induced pyroptosis.
Collapse
Affiliation(s)
- Fei Su
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Junzhao Duan
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Jie Zhu
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Hanjiang Fu
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Xiaofei Zheng
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Changhui Ge
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| |
Collapse
|
20
|
Liang M, Wang H, Liu C, Lei T, Min J. OIP5-AS1 contributes to the development in endometrial carcinoma cells by targeting miR-152-3p to up-regulate SLC7A5. Cancer Cell Int 2021; 21:440. [PMID: 34419049 PMCID: PMC8379738 DOI: 10.1186/s12935-021-02061-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 06/28/2021] [Indexed: 12/18/2022] Open
Abstract
Background Endometrial carcinoma (EC) is one common gynecological tumor, threatening physical and psychological health of females. Huge amount of essays indicated that long non-coding RNAs (lncRNAs) were widely reported to serve as a crucial regulator in the biological movements among multiple carcinomas, including EC. Methods RT-qPCR was implemented to detect the expression of target genes. Loss/gain-of-function experiments certified the impacts of OIP5-AS1 and miR-152-3p on EC cell progression. Results Data of this research suggested that powerful expression of OIP5-AS1 was discovered in EC cell lines. Loss/gain-of-function assays inferred that OIP5-AS1 promoted proliferative, migratory and invasive abilities, and Epithelial-Mesenchymal Transition (EMT). In addition, we identified miR-152-3p expression was negatively modulated by OIP5-AS1. OIP5-AS1 accelerated the development of EC cells via downregulating miR-152-3p expression. SLC7A5 was selected out as a downstream target of miR-152-3p. The competing relationship between OIP5-AS1 and SLC7A5 was corroborated by luciferase reporter assay. Eventually, the results of rescue assays indicated that SLC7A5 overexpression could restore the impacts of OIP5-AS1 ablation on the progression of EC cells. Conclusion Our research confirmed that OIP5-AS1 propeled the development of EC cells through targeting miR-152-3p/SLC7A5. OIP5-AS1 could be utilized as a target for EC treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02061-0.
Collapse
Affiliation(s)
- Minglin Liang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong Univercity of Science and Technology, No. 2177 Liberation Avenue, Wuhan, 430022, China
| | - Hongbo Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong Univercity of Science and Technology, No. 2177 Liberation Avenue, Wuhan, 430022, China
| | - Cong Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong Univercity of Science and Technology, No. 2177 Liberation Avenue, Wuhan, 430022, China
| | - Tao Lei
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong Univercity of Science and Technology, No. 2177 Liberation Avenue, Wuhan, 430022, China
| | - Jie Min
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong Univercity of Science and Technology, No. 2177 Liberation Avenue, Wuhan, 430022, China.
| |
Collapse
|
21
|
Bella F, Campo S. Long non-coding RNAs and their involvement in bipolar disorders. Gene 2021; 796-797:145803. [PMID: 34175394 DOI: 10.1016/j.gene.2021.145803] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/22/2021] [Indexed: 01/22/2023]
Abstract
Non-coding RNAs (nc-RNAs) can be defined as RNA molecules that are not translated into proteins. Although the functional meaning of many nc-RNAs remains still to be verified, several of these molecules have a clear biological importance, which goes from translation of mRNAs to DNA replication. Indeed, regulatory nc-RNAs can be classified into two groups: short non-coding RNAs (sncRNAs) and long-non coding RNAs (lncRNAs). In the last years, lncRNAs have gained increasing importance in the study of gene regulation, helping authors understand the molecular mechanisms underlying cellular physiology and pathology. LncRNAs are greater than 200 bp and accumulate in nucleus, cytoplasm and exosomes with high tissue specificity, acting in cis or in trans in order to exert enhancer or silencer modulation on gene expression. Such regulatory features, which are widespread in human cells and tissues, can be disrupted in several morbid states. Recent evidences may suggest a disruption of lncRNAs in bipolar disorders, a cluster of severe, chronic and disabling psychiatric diseases, which are characterized by major depressive states cyclically alternating with manic episodes. Here, the authors reviewed genes, classification, biogenesis, structures, functions and databases regarding lncRNAs, and also focused on bipolar disorders, in which some lncRNAs, especially those involved in inflammation and neuronal development, has reported to be dysregulated.
Collapse
Affiliation(s)
- Fabrizio Bella
- Department of Biomedical and Dental Sciences and Morphofunctional Images, University of Messina, via Consolare Valeria, 1, Messina 98125 Italy
| | - Salvatore Campo
- Department of Biomedical and Dental Sciences and Morphofunctional Images, University of Messina, via Consolare Valeria, 1, Messina 98125 Italy.
| |
Collapse
|
22
|
METTL14 promotes tumorigenesis by regulating lncRNA OIP5-AS1/miR-98/ADAMTS8 signaling in papillary thyroid cancer. Cell Death Dis 2021; 12:617. [PMID: 34131102 PMCID: PMC8206147 DOI: 10.1038/s41419-021-03891-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/21/2022]
Abstract
Background Papillary thyroid cancer (PTC) is the most common type of cancer of the endocrine system. Long noncoding RNAs (lncRNAs) are emerging as a novel class of gene expression regulators associated with tumorigenesis. Through preexisting databases available for differentially expressed lncRNAs in PTC, we uncovered that lncRNA OIP5-AS1 was significantly upregulated in PTC tissues. However, the function and the underlying mechanism of OIP5-AS1 in PTC are poorly understood. Methods Expression of lncRNA OIP5-AS1 and miR-98 in PTC tissue and cells were measured by quantitative real-time PCR (qRT-PCR). And expression of METTL14 and ADAMTS8 in PTC tissue and cells were measured by qRT-PCR and western blot. The biological functions of METTL14, OIP5-AS1, and ADAMTS8 were examined using MTT, colony formation, transwell, and wound healing assays in PTC cells. The relationship between METTL14 and OIP5-AS1 were evaluated using RNA immunoprecipitation (RIP) and RNA pull down assay. And the relationship between miR-98 and ADAMTS8 were examined by luciferase reporter assay. For in vivo experiments, a xenograft model was used to investigate the effects of OIP5-AS1 and ADAMTS8 in PTC. Results Functional validation revealed that OIP5-AS1 overexpression promotes PTC cell proliferation, migration/invasion in vitro and in vivo, while OIP5-AS1 knockdown shows an opposite effect. Mechanistically, OIP5-AS1 acts as a target of miR-98, which activates ADAMTS8. OIP5-AS1 promotes PTC cell progression through miR-98/ADAMTS8 and EGFR, MEK/ERK pathways. Furthermore, RIP and RNA pull down assays identified OIP5-AS1 as the downstream target of METTL14. Overexpression of METTL14 suppresses PTC cell proliferation and migration/invasion through inhibiting OIP5-AS1 expression and regulating EGFR, MEK/ERK pathways. Conclusions Collectively, our findings demonstrate that OIP5-AS1 is a METTL14-regulated lncRNA that plays an important role in PTC progression and offers new insights into the regulatory mechanisms underlying PTC development.
Collapse
|
23
|
Li A, Feng L, Niu X, Zeng Q, Li B, You Z. Downregulation of OIP5-AS1 affects proNGF-induced pancreatic cancer metastasis by inhibiting p75NTR levels. Aging (Albany NY) 2021; 13:10688-10702. [PMID: 33820868 PMCID: PMC8064169 DOI: 10.18632/aging.202847] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
We aimed to explore the mechanism by which long non-coding RNA (lncRNA) OIP5-AS1 affects proNGF (precursor nerve growth factor)-induced pancreatic cancer metastasis by targeting the miR-186-5p/NGFR axis. Bioinformatics was used to analyse whether OIP5-AS1 targets miR-186-5p/NGFR and their expression characteristics in pancreatic cancer. OIP5-AS1 and NGFR were overexpressed in pancreatic cancer, and their levels showed a significant positive correlation. Clinical trials also demonstrated that high expression of OIP5-AS1 and NGFR and low expression of miR-186-5p played a pro-cancer role in pancreatic cancer. MiR-186-5p inhibited the migration and invasion of colon cancer cells by targeting NGFR-regulated p75NTR. OIP5-AS1 regulated the action of miR-186-5p on NGFR mRNA and p75NTR by targeting miR-186-5p. Downregulation of NGFR inhibited the expression of p75NTR protein and blocked the role of proNGF in promoting the migration and invasion of pancreatic cancer cells. Animal experiments also showed that the knockdown of miR-186-5p promoted cancer via the expression of NGFR mRNA and p75NTR protein, while the downregulation of proNGF blocked the effects. OIP5-AS1, as a ceRNA, promotes the progression of pancreatic cancer by targeting miR-186-5p/NGFR and affecting the prognosis of patients, which may be related to the action of proNGF.
Collapse
Affiliation(s)
- Ang Li
- Department of Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Lei Feng
- Department of Biliary Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xiaoya Niu
- Department of Biliary Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Qihui Zeng
- Department of Biliary Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Bei Li
- Department of Biliary Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Zhen You
- Department of Biliary Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
24
|
Herrera‐Solorio AM, Peralta‐Arrieta I, Armas López L, Hernández‐Cigala N, Mendoza Milla C, Ortiz Quintero B, Catalán Cárdenas R, Pineda Villegas P, Rodríguez Villanueva E, Trejo Iriarte CG, Zúñiga J, Arrieta O, Ávila‐Moreno F. LncRNA SOX2-OT regulates AKT/ERK and SOX2/GLI-1 expression, hinders therapy, and worsens clinical prognosis in malignant lung diseases. Mol Oncol 2021; 15:1110-1129. [PMID: 33433063 PMCID: PMC8024737 DOI: 10.1002/1878-0261.12875] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/31/2020] [Accepted: 12/04/2020] [Indexed: 12/17/2022] Open
Abstract
The involvement of LncRNA SOX2-overlapping transcript (SOX2-OT), SOX2, and GLI-1 transcription factors in cancer has been well documented. Nonetheless, it is still unknown whether co-expressed SOX2-OT/SOX2 or SOX2-OT/SOX2/GLI-1 axes are epigenetically/transcriptionally involved in terms of resistance to oncology therapy and in poorer clinical outcomes for patients with lung cancer. We evaluated the role of SOX2-OT/SOX2 and SOX2-OT/SOX2/GLI-1 axes using RT-qPCR, western blot, immunofluorescence analyses, gene silencing, cellular cytotoxic, and ChIP-qPCR assays on human cell lines, solid lung malignant tumors, and normal lung tissue. We detected that the SOX2-OT/SOX2/GLI-1 axis promotes resistance to tyrosine kinase inhibitor (TKI)-erlotinib and cisplatin-based therapy. Evidence from this study show that SOX2-OT modulates the expression/activation of EGFR-pathway members AKT/ERK. Further, both SOX2-OT and GLI-1 genes are epigenetically regulated at their promoter sequences, in an LncRNA SOX2-OT-dependent manner, mainly through modifying the enrichment of the activation histone mark H3K4me3/H3K27Ac, versus the repressive histone mark H3K9me3/H3K27me3. In addition, we identified that inhibition of SOX2-OT and reduced expression of SOX2/GLI-1 sensitizes lung cancer cells to EGFR/TKI-erlotinib or cisplatin-based treatment. Finally, we show that high co-expression of SOX2-OT/SOX2 transcripts and SOX2/GLI-1 proteins appears to correlate with a poor clinical prognosis and lung malignant phenotype. Collectively, these results present evidence that LncRNA SOX2-OT modulates an orchestrated resistance mechanism, promoting poor prognosis and human lung malignancy through genetic, epigenetic, and post-translational mechanisms.
Collapse
Affiliation(s)
- Abril Marcela Herrera‐Solorio
- Biomedicine Research Unit (UBIMED)Lung Diseases and Cancer Epigenomics LaboratoryFacultad de Estudios Superiores (FES) IztacalaNational Autonomous University of Mexico (UNAM)Tlalnepantla de BazMexico
| | - Irlanda Peralta‐Arrieta
- Biomedicine Research Unit (UBIMED)Lung Diseases and Cancer Epigenomics LaboratoryFacultad de Estudios Superiores (FES) IztacalaNational Autonomous University of Mexico (UNAM)Tlalnepantla de BazMexico
| | - Leonel Armas López
- Biomedicine Research Unit (UBIMED)Lung Diseases and Cancer Epigenomics LaboratoryFacultad de Estudios Superiores (FES) IztacalaNational Autonomous University of Mexico (UNAM)Tlalnepantla de BazMexico
| | - Nallely Hernández‐Cigala
- Biomedicine Research Unit (UBIMED)Lung Diseases and Cancer Epigenomics LaboratoryFacultad de Estudios Superiores (FES) IztacalaNational Autonomous University of Mexico (UNAM)Tlalnepantla de BazMexico
| | - Criselda Mendoza Milla
- National Institute of Respiratory Diseases (INER), Ismael Cosío VillegasMexico CityMexico
| | - Blanca Ortiz Quintero
- National Institute of Respiratory Diseases (INER), Ismael Cosío VillegasMexico CityMexico
| | - Rodrigo Catalán Cárdenas
- Thoracic Oncology UnitLaboratory of Personalized MedicineInstituto Nacional de Cancerología (INCAN)Mexico CityMexico
| | - Priscila Pineda Villegas
- Biomedicine Research Unit (UBIMED)Lung Diseases and Cancer Epigenomics LaboratoryFacultad de Estudios Superiores (FES) IztacalaNational Autonomous University of Mexico (UNAM)Tlalnepantla de BazMexico
| | - Evelyn Rodríguez Villanueva
- Grupo de Investigación en Células Troncales e Ingeniería de Tejidos (GICTIT)Laboratorio de Investigación en Odontología AlmarazFES‐IztacalaNational Autonomous University of México (UNAM)Tlalnepantla de BazMexico
| | - Cynthia G. Trejo Iriarte
- Grupo de Investigación en Células Troncales e Ingeniería de Tejidos (GICTIT)Laboratorio de Investigación en Odontología AlmarazFES‐IztacalaNational Autonomous University of México (UNAM)Tlalnepantla de BazMexico
| | - Joaquín Zúñiga
- National Institute of Respiratory Diseases (INER), Ismael Cosío VillegasMexico CityMexico
| | - Oscar Arrieta
- Thoracic Oncology UnitLaboratory of Personalized MedicineInstituto Nacional de Cancerología (INCAN)Mexico CityMexico
| | - Federico Ávila‐Moreno
- Biomedicine Research Unit (UBIMED)Lung Diseases and Cancer Epigenomics LaboratoryFacultad de Estudios Superiores (FES) IztacalaNational Autonomous University of Mexico (UNAM)Tlalnepantla de BazMexico
- National Institute of Respiratory Diseases (INER), Ismael Cosío VillegasMexico CityMexico
| |
Collapse
|
25
|
LINC00511 exacerbated T-cell acute lymphoblastic leukemia via miR-195-5p/LRRK1 axis. Biosci Rep 2021; 40:222566. [PMID: 32242897 PMCID: PMC7953487 DOI: 10.1042/bsr20193631] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 01/08/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a malignant disease arising from the abnormal proliferation of T lymphocyte in marrow. Long non-coding RNAs (lncRNAs) are one kind of non-coding RNAs (ncRNAs), which were reported to modulate the initiation or progression of diverse cancers. However, the role of LINC00511 in T-ALL was unknown. To figure out the function and mechanism of LINC00511 in T-ALL, a series of experiments were carried out. Based on the experimental results, we discovered that LINC00511 boosted cell proliferation and invasion, but hindered cell apoptosis in T-ALL cells. Besides, based on bio-informatics tool, miR-195-5p was selected for further exploration. Then, miR-195-5p was validated to bind with LINC00511. Hereafter, LRRK1 was testified to serve as a target gene of miR-195-5p. At last, rescue assays suggested that LRRK1 overexpression restored sh-LINC00511#1-mediated effects on cell proliferation and apoptosis. All in all, LINC00511 exacerbated T-ALL progression via miR-195-5p/LRRK1 axis, implying a potential therapeutic clue for the patients with T-ALL.
Collapse
|
26
|
Ghafouri-Fard S, Dashti S, Farsi M, Hussen BM, Taheri M. A review on the role of oncogenic lncRNA OIP5-AS1 in human malignancies. Biomed Pharmacother 2021; 137:111366. [PMID: 33601149 DOI: 10.1016/j.biopha.2021.111366] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
OIP5-AS1 is a long non-coding transcript with high expression in nervous system, but crucial functions in the neoplastic transformation. This lncRNA partake in the regulation of cell cycle transition at different points. Moreover, it acts a competing endogenous RNA for tens of microRNAs among them are miR-338-3p, miR-204-5p, miR-641, miR-422a, miR-367-3p, miR-153-3p, miR-186, miR-369-3p, miR-137, miR-342-3p, miR‑429, miR-3163, miR-363-3p, miR-186a-5p, hsa-miR-26a-3p, miR‑300, miR-217, miR-378a-3p and miR-448. OIP5-AS1 influence the carcinogenesis via different routes among them is modulation of epithelial-mesenchymal transition. Expression of OIP5-AS1 has been elevated in nearly all kinds of neoplastic tissues except for multiple myeloma. Moreover, in bladder, gastric cancer and lung cancers, assessment of its expression in clinical samples has led to conflicting results. In the current paper, we have provided a comprehensive collection of research papers that evaluated function of OIP5-AS1 in diverse cancer types.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Dashti
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Molood Farsi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Pharmacognosy Department, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
The role of EMT-related lncRNA in the process of triple-negative breast cancer metastasis. Biosci Rep 2021; 41:227597. [PMID: 33443534 PMCID: PMC7859322 DOI: 10.1042/bsr20203121] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/06/2021] [Accepted: 01/13/2021] [Indexed: 12/21/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most malignant and fatal subtype of breast cancer, which has characterized by negativity expression of ER, PR, and HER2. Metastasis is the main factor affecting the prognosis of TNBC, and the process of metastasis is related to abnormal activation of epithelial–mesenchymal transition (EMT). Recent studies have shown that long non-coding RNA (LncRNA) plays an important role in regulating the metastasis and invasion of TNBC. Therefore, based on the metastasis-related EMT signaling pathway, great efforts have confirmed that LncRNA is involved in the molecular mechanism of TNBC metastasis, which will provide new strategies to improve the treatment and prognosis of TNBC. In this review, we summarized many signal pathways related to EMT involved in the transfer process. The advances from the most recent studies of lncRNAs in the EMT-related signal pathways of TNBC metastasis. We also discussed the clinical research, application, and challenges of LncRNA in TNBC.
Collapse
|
28
|
Ning MY, Cheng ZL, Zhao J. MicroRNA-448 targets SATB1 to reverse the cisplatin resistance in lung cancer via mediating Wnt/β-catenin signalling pathway. J Biochem 2021; 168:41-51. [PMID: 32525527 DOI: 10.1093/jb/mvaa024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
This study aims to examine whether miR-448 reverses the cisplatin (DDP) resistance in lung cancer by modulating SATB1. QRT-PCR and immunohistochemistry were used to examine the miR-448 and SATB1 expressions in DDP-sensitive and -resistant lung cancer patients. A microarray was used to investigate the cytoplasmic/nucleic ratio (C/N ratios) of genes in A549 cells targeted by miR-448, followed by Dual-luciferase reporter gene assay. A549/DDP cells were transfected with miR-448 mimics/inhibitors with or without SATB1 siRNA followed by MTT assay, Edu staining, flow cytometry, qRT-PCR and western blotting. MiR-448 was lower but SATB1 was increased in DDP-resistant patients and A549/DDP cells. And the patients showed low miR-448 expression or SATB1 positive expression had poor prognosis. SATB1, as a target gene with higher C/N ratios (>1), was found negatively regulated by miR-448. Besides, miR-448 inhibitors increased resistance index of A549/DDP cells, promoted cell proliferation, increased cell distribution in S phrase, declined cell apoptosis and activated Wnt/β-catenin pathway. However, SATB1 siRNA could reverse the above effect caused by miR-448 inhibitors. MiR-448 targeting SATB1 to counteract the DDP resistance of lung cancer cells via Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Mei-Ying Ning
- Department of Pharmacy, Cangzhou Central Hospital, No.16 Xinhua West Road, Yunhe District, Cangzhou 061001, China
| | - Zhao-Lin Cheng
- Department of Pharmacy, Cangzhou People's Hospital, No.7 Qingchi Road, Xinhua District, Cangzhou 061000, China
| | - Jing Zhao
- Department of Pharmacy, Cangzhou Central Hospital, No.16 Xinhua West Road, Yunhe District, Cangzhou 061001, China
| |
Collapse
|
29
|
Chen Y, Liu W, Chen M, Sun Q, Chen H, Li Y. Up-regulating lncRNA OIP5-AS1 protects neuron injury against cerebral hypoxia-ischemia induced inflammation and oxidative stress in microglia/macrophage through activating CTRP3 via sponging miR-186-5p. Int Immunopharmacol 2021; 92:107339. [PMID: 33516048 DOI: 10.1016/j.intimp.2020.107339] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 12/11/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Inflammation and oxidative stress is closely associated with the development of ischemic brain stroke. Opa-interacting protein 5 antisense RNA 1 (OIP5-AS1), a novel identified long non-coding RNA (lncRNA), has been suggested to play an important role in the development of many types of human cancers. However, the functional involvement of OIP5-AS1 in ischemic stroke is still unknown. METHODS Quantitative real-time polymerase chain reaction and /or western blot were conducted to determine the expression profiles of OIP5-AS1, C1q/TNF-related protein 3 (CTRP3) and miR-186-5p in the serum of stroke patients, as well as in the ischemic penumbra of rats with middle cerebral artery occlusion/reperfusion (MCAO/R) injury and microglial cells treated with oxygen glucose deprivation/re-oxygenation (OGD/R). Upon selective regulation of OIP5-AS1 and miR-186-5p, the inflammation and oxidative stress responses in microglia/macrophage as well as neurologic functions in MCAO/R rats were detected. Furthermore, the interactions between OIP5-AS1 and miR-186-5p, miR-186-5p and CTRP3 were investigated by RNA immunoprecipitation (RIP) assay, luciferase report assay and bioinformation anaylsis. RESULTS We observed markedly increased infarct volume, neuronal apoptosis, inflammation and oxidative stress responses in the infarcted lesions of MCAO/R rats, in line with down-regulated levels of OIP5-AS1 and CTRP3 while up-regulated miR-186-5p. Functional studies demonstrated that up-regulation of OIP5-AS1 attenuated infarct volume, neuronal apoptosis, microglia/macrophage inflammation and oxidative stress responses induced by MCAO/R or OGD/R. In terms of mechanism, we revealed that OIP5-AS1-miR-186-5p-CTRP3 axis played a vital role in modulating microglia/macrophage activation and neuronal apoptosis. CONCLUSION Up-regulating lncRNA OIP5-AS1 protects neuron injury against MCAO/R induced inflammation and oxidative stress in microglia/macrophage through activating CTRP3 via sponging miR-186-5p.
Collapse
Affiliation(s)
- Yuqin Chen
- Department of Rehabilitation, Central Hospital of Linyi, Linyi 276400, Shandong, China
| | - Weihua Liu
- Department of Pharmacy, The Third People's Hospital of Linyi, Linyi 276000, Shandong, China
| | - Mingyu Chen
- Department of Neurology, Central Hospital of Linyi, Linyi 276400, Shandong, China
| | - Qingyun Sun
- Stroke Center, The People's Hospital of Linyi, Linyi 276000, Shandong, China
| | - Hongyu Chen
- Stroke Center, The People's Hospital of Linyi, Linyi 276000, Shandong, China
| | - Yufen Li
- Department of Otolaryngology, The People's Hospital of Linyi, Linyi 276000, Shandong, China.
| |
Collapse
|
30
|
Wu X, Wu G, Zhang H, Peng X, Huang B, Huang M, Ding J, Mao C, Peng C. MiR-196b Promotes the Invasion and Migration of Lung Adenocarcinoma Cells by Targeting AQP4. Technol Cancer Res Treat 2021; 20:1533033820985868. [PMID: 33455522 PMCID: PMC8097310 DOI: 10.1177/1533033820985868] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Objective: We aimed to investigate the mechanism of the regulatory axis of miR-196b/AQP4
underlying the invasion and migration of lung adenocarcinoma (LUAD)
cells. Methods: LUAD miRNA and mRNA expression profiles were downloaded from TCGA database
and then differential analysis was used to identify the target miRNA. Target
gene for the miRNA was obtained via prediction using 3 bioinformatics
databases and intersection with the differentially expressed mRNAs searched
from TCGA-LUAD. Then, qRT-PCR and western blot were used to validate the
expression of miR-196b and AQP4. Dual-luciferase reporter assay was
performed to confirm the targeting relationship between miR-196b and AQP4.
Transwell assay was used to investigate the migration and invasion of LUAD
cells. Results: MiR-196b was screened out by differential and survival analyses, and the
downstream target gene AQP4 was identified. In LUAD, miR-196b was highly
expressed while AQP4 was poorly expressed. Besides, overexpression of
miR-196b promoted cell invasion and migration, while overexpression of AQP4
had negative effects. Moreover, the results of the dual-luciferase reporter
assay suggested that AQP4 was a direct target of miR-196b. In addition, we
also found that overexpressing AQP4 could suppress the promotive effect of
miR-196b on cancer cell invasion and migration. Conclusion: MiR-196b promotes the invasion and migration of LUAD cells by down-regulating
AQP4, which helps us find new molecular targeted therapies for LUAD.
Collapse
Affiliation(s)
- Xuhui Wu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Gongzhi Wu
- Department of Cardiothoracic Surgery, Lishui City People's Hospital, the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Huaizhong Zhang
- Department of Cardiothoracic Surgery, Lishui City People's Hospital, the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Xuyang Peng
- Department of Cardiothoracic Surgery, Lishui City People's Hospital, the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Bin Huang
- Department of Cardiothoracic Surgery, Lishui City People's Hospital, the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Mingjiang Huang
- Department of Cardiothoracic Surgery, Lishui City People's Hospital, the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Jianyang Ding
- Department of Cardiothoracic Surgery, Lishui City People's Hospital, the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Chaofan Mao
- Department of Cardiothoracic Surgery, Lishui City People's Hospital, the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Congxiong Peng
- Department of Cardiothoracic Surgery, Lishui City People's Hospital, the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| |
Collapse
|
31
|
Wu Z, Liu Y, Wei L, Han M. LncRNA OIP5-AS1 Promotes Breast Cancer Progression by Regulating miR-216a-5p/GLO1. J Surg Res 2021; 257:501-510. [PMID: 32916503 DOI: 10.1016/j.jss.2020.07.067] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Breast cancer is a familiar malignant tumor, which is a great threat to women's life. Long noncoding RNA Opa interacting protein 5-antisense RNA 1 (OIP5-AS1) has been reported to be associated with numerous cancers. This study aimed to explore the role of OIP5-AS1 and the mechanism of its action in the progression of breast cancer. METHODS The expression of OIP5-AS1 and miR-216a-5p was detected by quantitative real-time polymerase chain reaction. Cell proliferation, apoptosis, migration, or invasion was assessed by 4-5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, flow cytometry, or transwell assay, respectively. The binding sites were predicted by bioinformatics tool starBase2.0 (http://starbase.sysu.edu.cn/starbase2/index.php). The interaction between miR-216a-5p and OIP5-AS1 or glyoxalase 1 (GLO1) was confirmed by dual-luciferase reporter assay. The expression of GLO1 was quantified by Western blot. Nude mouse tumorigenicity assays were conducted to verify the role of OIP5-AS1 in vivo. RESULTS OIP5-AS1 and GLO1 were highly expressed in both clinical tumor tissues and cell lines, whereas miR-216a-5p was downregulated. Knockdown of OIP5-AS1 suppressed proliferation, migration, and invasion but promoted apoptosis of breast cancer cells. MiR-216a-5p was a target of OIP5-AS1 and interacted with GLO1. MiR-216a-5p inhibition or GLO1 overexpression reversed the effects of OIP5-AS1 knockdown on the development of breast cancer cells. OIP5-AS1 knockdown depleted tumor growth in vivo. CONCLUSIONS OIP5-AS1 knockdown suppressed the progression of breast cancer by inducing GLO1 expression via competitively binding to miR-216a-5p, suggesting that OIP5-AS1 was a hopeful biomarker for the therapy of breast cancer.
Collapse
Affiliation(s)
- Zizheng Wu
- Department of Breast Surgery, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Yinfeng Liu
- Department of Breast Surgery, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Liguang Wei
- Department of Breast Surgery, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Meng Han
- Department of Breast Surgery, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China.
| |
Collapse
|
32
|
Aftabi Y, Ansarin K, Shanehbandi D, Khalili M, Seyedrezazadeh E, Rahbarnia L, Asadi M, Amiri-Sadeghan A, Zafari V, Eyvazi S, Bakhtiyari N, Zarredar H. Long non-coding RNAs as potential biomarkers in the prognosis and diagnosis of lung cancer: A review and target analysis. IUBMB Life 2020; 73:307-327. [PMID: 33369006 DOI: 10.1002/iub.2430] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/26/2020] [Accepted: 12/04/2020] [Indexed: 12/17/2022]
Abstract
Long non-coding RNAs (lncRNA) have been emerged as a novel class of molecular regulators in cancer. They are dysregulated in many types of cancer; however, there is not enough knowledge available on their expression and functional profiles. Lung cancer is the leading cause of the cancer deaths worldwide. Generally, lncRNAs may be associated with lung tumor pathogenesis and they may act as biomarkers for the cancer prognosis and diagnosis. Compared to other invasive prognostic and diagnostic methods, detection of lncRNAs might be a user-friendly and noninvasive method. In this review article, we selected 27 tumor-associated lncRNAs by literature reviewing to further discussing in detail for using as diagnostic and prognostic biomarkers in lung cancer. Also, in an in silico target analysis, the "Experimentally supported functional regulation" approach of the LncTarD web tool was used to identifying the target genes and regulatory mechanisms of the selected lncRNAs. The reports on diagnostic and prognostic potential of all selected lncRNAs were discussed. However, the target genes and regulatory mechanisms of the 22 lncRNAs were identified by in silico analysis and we found the pathways that are controlled by each target group of lncRNAs. They use epigenetic mechanisms, ceRNA mechanisms, protein interaction and sponge mechanism. Also, 10, 23, 5, and 28 target genes for each of these mechanisms were identified, respectively. Finally, each group of target genes controls 50, 12, 7, and 2 molecular pathways, respectively. In conclusion, LncRNAs could be used as biomarkers in lung cancer due to their roles in control of several signaling pathways related to lung tumors. Also, it seems that lncRNAs, which use epigenetic mechanisms for modulating a large number of pathways, could be considered as important subjects for lung cancer-related diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Younes Aftabi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Khalil Ansarin
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Khalili
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Science, Tabriz, Iran.,Rahat Breathe and Sleep Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Ensiyeh Seyedrezazadeh
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Leila Rahbarnia
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Asadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Amiri-Sadeghan
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Venus Zafari
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Shirin Eyvazi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Nasim Bakhtiyari
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Habib Zarredar
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
33
|
Meng F, Zhou Y, Dong B, Dong A, Zhang J. Long non-coding RNA LINC01194 promotes the proliferation, migration and invasion of lung adenocarcinoma cells by targeting miR-641/SETD7 axis. Cancer Cell Int 2020; 20:588. [PMID: 33372601 PMCID: PMC7722326 DOI: 10.1186/s12935-020-01680-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 11/26/2020] [Indexed: 12/24/2022] Open
Abstract
Background It is increasingly evidenced that long non-coding RNAs (lncRNAs) play an important role in various diseases. LncRNA LINC01194 acts as an oncogene in several cancer types. Nevertheless, the role of LINC01194 in lung adenocarcinoma (LUAD) has not yet been revealed. Methods qRT-PCR was used to detect the expression of LINC01194, miR-641 and SETD7 mRNA, while western blot was exploited to examine SETD7 protein level. Cell proliferation was detected by colony formation and EdU assays. Transwell assays detected cell migration and invasion. TUNEL assay and flow cytometry analysis were used to detect cell apoptosis. RIP, RNA pull down and luciferase reporter assays detected the binding among LINC01194, miR-641 and SETD7. Results LINC01194 was significantly upregulated in LUAD tissues and cell lines. Knockdown of LINC01194 resulted in decreased cell proliferation, migration and invasion, and increased apoptosis. Mechanistic experiments unveiled that LINC01194 augmented SETD7 expression in LUAD cells by competitively interacting with miR-641. Rescue experiments showed that miR-641 inhibition and SETD7 overexpression rescued the repressing impacts on LUAD cell proliferation, migration and invasion caused by LINC01194 knockdown. Conclusion LINC01194 promotes the progression of LUAD by enhancing miR-641-targeted SETD7. The LINC01194/miR-641/SETD7 axis might provide new molecular targets for treating LUAD.
Collapse
Affiliation(s)
- Fanmei Meng
- Outpatient Department, Dongying District People's Hospital, 333 Jinan Road, Dongying, 257085, Shandong, China
| | - Yijing Zhou
- Department of Respiratory Medicine, Dongying District People's Hospital, 333 Jinan Road, Dongying, Shandong, China
| | - Baohua Dong
- Internal Medicine-Neurology, Dongying District People's Hospital, 333 Jinan Road, Dongying, Shandong, China
| | - Aiqin Dong
- Department of Respiratory Medicine, Dongying District People's Hospital, 333 Jinan Road, Dongying, Shandong, China
| | - Jingtao Zhang
- Department of Respiratory Medicine, Dongying District People's Hospital, 333 Jinan Road, Dongying, Shandong, China.
| |
Collapse
|
34
|
Jiang X, Ye Z, Jiang Y, Yu W, Fang Q. LncRNA OIP5-AS1 upregulates snail expression by sponging miR-34a to promote ovarian carcinoma cell invasion and migration. Biol Res 2020; 53:49. [PMID: 33092644 PMCID: PMC7579860 DOI: 10.1186/s40659-020-00315-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 10/07/2020] [Indexed: 12/24/2022] Open
Abstract
Background Although OIP5-AS1 has been characterized as an oncogenic lncRNA in many types of cancer, its role and underlying mechanism in ovarian carcinoma (OC) remains unknown. This study aimed to investigate the role of OIP5-AS1 in OC. Methods OC tissues and non-tumor tissues (ovary tissues within 3 cm around tumors) were collected from 58 OC patients (age range 36 to 67 years old, mean age 51.4 ± 5.9 years old). The expression of OIP5-AS1 and snail in paired tissues were determined by RT-qPCR. The interaction between OIP5-AS1 and miR-34a was predicted by IntaRNA2.0 and confirmed by dual luciferase reporter assay. The effects of overexpression of OIP5-AS1 and miR-34a on the expression of snail were analyzed by RT-qPCR and Western blotting. Cell invasion and migration were analyzed by Transwell assay. Results We observed that the expression of OIP5-AS1 and snail was upregulated and positively correlated with each other in OC. RNA–RNA interaction analysis showed that OIP5-AS1 might sponge miR-34a. In OC cells, overexpression of OIP5-AS1 resulted in the upregulated expression of snail, while overexpression of miR-34a downregulated the expression of snail. In addition, overexpression of miR-34a reduced the effects of overexpression of OIP5-AS1 on the expression of snail. In cell invasion and migration assay, overexpression of OIP5-AS1 and snail resulted in increased OC cell invasion and migration, while overexpression of miR-34a decreased OC cell invasion and migration. Moreover, overexpression of miR-34a attenuated the effects of OIP5-AS1 overexpression on OC cell invasion and migration. Conclusions Therefore, OIP5-AS1 may upregulate snail expression in OC by sponging miR-34a to promote OC cell invasion and migration.
Collapse
Affiliation(s)
- Xingzhi Jiang
- Department of Gynaecology, Hwa Mei Hospital, University of Chinese Academy of Sciences, No. 41 Northeast Street, Haishu District, Ningbo, 315000, Zhejiang, People's Republic of China. .,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315000, Zhejiang, People's Republic of China.
| | - Zhongxue Ye
- Department of Gynaecology, Hwa Mei Hospital, University of Chinese Academy of Sciences, No. 41 Northeast Street, Haishu District, Ningbo, 315000, Zhejiang, People's Republic of China
| | - Yafen Jiang
- Department of Gynaecology, Hwa Mei Hospital, University of Chinese Academy of Sciences, No. 41 Northeast Street, Haishu District, Ningbo, 315000, Zhejiang, People's Republic of China
| | - Wen Yu
- Department of Gynaecology, Hwa Mei Hospital, University of Chinese Academy of Sciences, No. 41 Northeast Street, Haishu District, Ningbo, 315000, Zhejiang, People's Republic of China
| | - Qian Fang
- Department of Gynaecology, Hwa Mei Hospital, University of Chinese Academy of Sciences, No. 41 Northeast Street, Haishu District, Ningbo, 315000, Zhejiang, People's Republic of China
| |
Collapse
|
35
|
Ren X, He J, Qi L, Li S, Zhang C, Duan Z, Wang W, Tu C, Li Z. Prognostic and clinicopathologic significance of long non-coding RNA opa-interacting protein 5-antisense RNA 1 in multiple human cancers. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:353-361. [PMID: 31899963 DOI: 10.1080/21691401.2019.1709854] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background: OIP5-AS1 has been reported to be aberrantly expressed in multiple cancers and associated with clinical outcomes. We conducted this study to assess the generalized prognostic value of OIP5-AS1 in cancers.Methods: PubMed, Web of science, and Cochrane Library were searched for eligible studies. Hazards ratios (HRs) or odd ratios (ORs) with 95% confidence intervals (CIs) were pooled to estimate the prognostic value of OIP5-AS1 in cancers, including overall survival (OS), age, gender, tumor size, clinical stage, and lymph node metastasis (LNM). Publication bias was measured by Begg's test and funnel plot. Sensitivity analysis were used to detect the stability of pooled results.Results: Overall, eleven studies containing 713 patients were eventually enrolled. The pooled results showed that high OIP5-AS1 expression was correlated with shorter OS (HR = 0.48, 95%CI: 0.35-0.64), regardless of the sample size, tumor type and follow-up time. Furthermore, elevated expression of OIP5-AS1 indicated advanced clinical stage (OR = 2.12, 95% CI: 1.06-4.23), but not associated with age, gender, tumor size and LNM. No publication bias was detected.Conclusion: High expression of lncRNA OIP5-AS1 may predict a poor OS and advanced clinical stage, implicating that OIP5-AS1 may be a possible prognostic factor in cancers.
Collapse
Affiliation(s)
- Xiaolei Ren
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Jieyu He
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Lin Qi
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Shuangqing Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Chenghao Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Zhixi Duan
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Wanchun Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Chao Tu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
36
|
Qing P, Liu Y. Inhibitory role of long non-coding RNA OIP5-AS1 in rheumatoid arthritis progression through the microRNA-448-paraoxonase 1-toll-like receptor 3-nuclear factor κB axis. Exp Physiol 2020; 105:1708-1719. [PMID: 32770578 DOI: 10.1113/ep088608] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/28/2020] [Indexed: 02/05/2023]
Abstract
NEW FINDINGS What is the central question of this study? What are the functions of long non-coding (lnc) RNA OIP5-AS1 in development of rheumatoid arthritis inflammation and what is the molecular mechanism? What is the main finding and its importance? LncRNA OIP5-AS1 mitigates rheumatoid arthritis progression through the competitive endogenous RNA network involving the miR-448-paraoxonase 1 axis and through the inactivation of the toll-like receptor 3-nuclear factor κB signalling pathway. This study may offer new ideas for molecularly based control of rheumatoid arthritis. ABSTRACT Rheumatoid arthritis (RA) is an autoimmune disorder with dysregulation of long non-coding RNAs (lncRNAs) possibly involved. This study aimed to inquire into the roles of lncRNA OIP5-AS1 in RA progression. A rat model of RA was induced. Overexpression of OIP5-AS1 was introduced in the model rats, and the changes in paw swelling, RA severity and the inflammatory factors interleukin (IL)-1β, IL-10, IL-6 and tumour necrosis factor α were measured. Fibroblast-like synoviocytes (FLSs) from RA patients were collected for in vitro experiments. A gain- and loss-of function study of OIP5-AS1, miR-448 and paraoxonase 1 (PON1) was performed to explore their roles in RA-FLS growth, apoptosis and inflammation. A toll-like receptor 3 (TLR3)-specific agonist, polyinosine-polycytidylic acid, or a nuclear factor κB (NF-κB)-specific antagonist, QNZ, was administrated in RA-FLSs. Consequently, overexpression of OIP5-AS1 reduced the symptom severity and the levels of inflammatory factors in RA rats. OIP5-AS1 could bind to miR-448 to up-regulate PON1 expression. Further overexpression of miR-448 reversed the effects of OIP5-AS1, while overexpression of PON1 inhibited RA-FLS growth and inflammation. In addition, TLR3 activation promoted RA progression. To conclude, this study evidenced that lncRNA OIP5-AS1 may mitigate RA progression through the miR-448-PON1 axis and through the inactivation of the TLR3-NF-κB signalling pathway.
Collapse
Affiliation(s)
- Pingying Qing
- Department of Rheumatology and Immunology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| |
Collapse
|
37
|
Wang T, Zhai R, Lv X, Wang K, Xu J. LINC02418 promotes malignant behaviors in lung adenocarcinoma cells by sponging miR-4677-3p to upregulate KNL1 expression. BMC Pulm Med 2020; 20:217. [PMID: 32795273 PMCID: PMC7427971 DOI: 10.1186/s12890-020-01229-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/08/2020] [Indexed: 12/12/2022] Open
Abstract
Background Lung adenocarcinoma (LAD) is a prevalent type of bronchogenic malignant tumor and one of the most critical factors related to human death. Long noncoding RNAs (lncRNAs) are involved in many complex biological processes and have been emerged as extremely important regulators of various cancers. LINC02418, a novel lncRNA, hasn’t been mentioned in previous studies on cancer development. Therefore, it’s important to define the potential function of LINC02418 in LAD. Methods Gene expression was examined by RT-qPCR or western blot. CCK-8, colony formation, TUNEL, and transwell assays were utilized to study the role of LINC02418 in LAD. The interaction of miR-4677-3p with LINC02418 (or KNL1) was verified through luciferase reporter, RIP and RNA pull-down assays. Results High expression of LINC02418 was observed in LAD specimens and cells. Downregulation of LINC02418 obstructed the proliferation and motility of LAD cells. Moreover, LINC02418 negatively modulated miR-4677-3p expression and miR-4677-3p overexpression could repress cell proliferation and migration. Moreover, kinetochore scaffold 1 (KNL1) expression was negatively modulated by miR-4677-3p but positively regulated by LINC02418. Furthermore, miR-4677-3p could bind with LINC02418 (or KNL1). Finally, KNL1 overexpression reversed the inhibitory function of LINC02418 deficiency in the malignant behaviors of LAD cells. Conclusions LINC02418 contributes to the malignancy in LAD via miR-4677-3p/KNL1 signaling, providing a probable therapeutic direction for LAD.
Collapse
Affiliation(s)
- Tao Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, Shaanxi, China
| | - Ruiren Zhai
- Department of Tumor Center, Sunshine Union Hospital, Weifang, 261000, Shandong, China
| | - Xiuhua Lv
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Ke Wang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Junqing Xu
- Department of Radiology, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, No.1098 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
38
|
Meng L, Yue X, Zhou D, Li H. Long non coding RNA OIP5‑AS1 promotes metastasis of breast cancer via miR‑340‑5p/ZEB2 axis. Oncol Rep 2020; 44:1662-1670. [PMID: 32945479 PMCID: PMC7448425 DOI: 10.3892/or.2020.7724] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/20/2020] [Indexed: 12/25/2022] Open
Abstract
Breast cancer is the most common invasive cancer in women with the highest number of related deaths which is caused by distal metastasis. Recently, integrated analysis of gene expression profile suggested widespread gene dysregulation in various types of cancer. Research in the past decade has focused on long non-coding RNAs (lncRNAs), particularly in cell proliferation, tumor progression and metastasis. OPA-interacting protein 5 antisense transcript 1 (OIP5-AS1) is an evolutionarily conserved long non-coding RNA that has been linked to oncogenesis in multiple cancers. In breast cancer, dysregulation of OIP5-AS1 was reported but the precise role in cancer development and progression remains unclear. In the present study, using small interfering RNA (siRNA) targeting OIP5-AS1, it was shown that knockdown of OIP5-AS1 was associated with alteration of EMT markers and suppressed migration and invasion of breast cancer cells. Among the EMT-related transcription factors, ZEB1 and ZEB2 were significantly downregulated with OIP5-AS1 knockdown. Computational analysis and a dual-luciferase reporter system identified miR-340-5p was the target gene for OIP5-AS1. Further experiments verified the function of OIP5-AS1 in cell invasion was dependent on miR-340a-5p through regulating target gene ZEB2. In vivo study demonstrated that overexpressing OIP5-AS1 in breast cancer cells promoted lung metastasis in nude mice. The findings of the present study revealed the mechanism of OIP5-AS1 in breast cancer metastasis. Overall, our study may provide a potential therapeutic target for breast cancer metastasis.
Collapse
Affiliation(s)
- Lingjun Meng
- Department of Hematology and Oncology, China‑Japan Union Hospital Affiliated to Jilin University, Changchun, Jilin 130033, P.R. China
| | - Xiaojing Yue
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Changchun 130021, P.R. China
| | - Di Zhou
- Department of Hematology and Oncology, China‑Japan Union Hospital Affiliated to Jilin University, Changchun, Jilin 130033, P.R. China
| | - Hongjun Li
- Health Management Medical Center, China‑Japan Union Hospital Affiliated to Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
39
|
Luo L, Wang M, Li X, Luo C, Tan S, Yin S, Liu L, Zhu X. A novel mechanism by which ACTA2-AS1 promotes cervical cancer progression: acting as a ceRNA of miR-143-3p to regulate SMAD3 expression. Cancer Cell Int 2020; 20:372. [PMID: 32774166 PMCID: PMC7409411 DOI: 10.1186/s12935-020-01471-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (LncRNAs) have been increasingly confirmed to be abnormally expressed in human cancer and closely related to tumorigenesis. LncRNA ACTA2-AS1 is abnormally expressed in multiple tumors and participates in their development. However, whether ACTA2-AS1 plays a role in the development of cervical cancer (CC) and the exact mechanism of its role has not been elucidated. METHODS Quantitative real-time PCR (qRT-PCR) was conducted to detect the expression level of messenger RNA of ACTA2-AS1, miR-143-3p and SMAD3 in tumor tissues and cells. Additionally, SMAD3 protein expression by western blots in cells. Small interference RNA against ACTA2-AS1 or SMAD3 and miR-143-3p mimic/inhibitor was designed and transfected into CC cell lines to investigate their correlations and potential impacts on cell function. Cell Counting Kit-8 (CCK-8) assay, colony formation, cell cycle assay, transwell assay and flow cytometry analysis were performed to detect the specific effects on cell line proliferation, metastasis and apoptosis. RESULTS ACTA2-AS1 was significantly increased in CC tissues and cells and miR-143-3p was down-regulated. Clinically, the higher expression of ACTA2-AS1 was significantly correlated with higher FIGO stage. Loss-of-function assay revealed that silencing of ACTA2-AS1 inhibited cell proliferation, colony formation, migration and promoted apoptosis in CC. Additionally, Pearson correlation analysis showed that the expression of ACTA2-AS1 and miR-143-3p were negatively correlated. Dual-luciferase reporter assay and further mechanistic experiments confirmed that ACTA2-AS1 could sponge and regulate the expression of miR-143-3p. Furthermore, SMAD3 was the target gene of miR-143-3p and ACTA2-AS1 could upregulate SMAD3 through acting as a competitive endogenous RNA (ceRNA) of miR-143-3p. Finally, rescue assay demonstrated that the ACTA2-AS1/miR-143-3p/SMAD3 axis played an important role in the proliferation, migration and apoptosis of CC cells. CONCLUSIONS In summary, our study revealed that ACTA2-AS1 upregulates SMAD3 by competitively binding miR-143-3p, thereby accelerating CC progression. The ACTA2-AS1/miR-143-3p/SMAD3 axis can play a crucial role in cervical carcinogenesis, providing new clues for the early diagnosis and treatment of CC.
Collapse
Affiliation(s)
- Lingli Luo
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Min Wang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Xianping Li
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Can Luo
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Shan Tan
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Sheng Yin
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Lei Liu
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Xiaolin Zhu
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| |
Collapse
|
40
|
Mei J, Liu G, Wang W, Xiao P, Yang D, Bai H, Li R. OIP5-AS1 modulates epigenetic regulator HDAC7 to enhance non-small cell lung cancer metastasis via miR-140-5p. Oncol Lett 2020; 20:7. [PMID: 32774481 PMCID: PMC7405544 DOI: 10.3892/ol.2020.11868] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/02/2020] [Indexed: 12/25/2022] Open
Abstract
Long non-coding RNAs have been reported to be involved in non-small cell lung cancer (NSCLC) progression. However, whether Opa-interacting protein 5 antisense RNA 1 (OIP5-AS1) serves a role in NSCLC remains unclear. Bioinformatics analysis of The Cancer Genome Atlas datasets showed clinical significance and relevance of OIP5-AS1 in NSCLC. Western blotting and reverse transcription-quantitative PCR revealed protein and RNA expression levels of the genes [including OIP5-AS1, microRNA (miR)-140-5p, histone deacetylase 7 (HDAC7) and vascular endothelial growth factor A (VEGFA)]. Direct associations between the genes (miR-140-5p and OIP5-AS1, or miR-140-5p and HDAC7) were confirmed using a dual-luciferase reporter assay. Lymphatic vessel formation and invasion ability were detected using a lymphatic vessel formation assay and Transwell invasion assay. OIP5-AS1 knockdown attenuated lymphatic vessel length and invasion. The role of OIP5-AS1 was reverted by miR-140-5p. HDAC7 and VEGFA are downstream effectors of miR-140-5p-mediated NSCLC metastasis. OIP5-AS1, miR-140-5p, HDAC7 and VEGFA were all dysregulated in human clinical NSCLC tumor tissues. In conclusion, the present results demonstrated a novel mechanism for OIP5-AS1-induced metastatic phenotypes of NSCLC via the miR-140-5p/HDAC7/VEGFA axis.
Collapse
Affiliation(s)
- Jiazhuan Mei
- Department of Oncology, People's Hospital of Zhengzhou, Zhengzhou, Henan 450000, P.R. China
| | - Guiju Liu
- Department of Oncology, People's Hospital of Zhengzhou, Zhengzhou, Henan 450000, P.R. China
| | - Wenhui Wang
- Department of Oncology, People's Hospital of Zhengzhou, Zhengzhou, Henan 450000, P.R. China
| | - Peng Xiao
- Department of Oncology, People's Hospital of Zhengzhou, Zhengzhou, Henan 450000, P.R. China
| | - Dan Yang
- Department of Oncology, People's Hospital of Zhengzhou, Zhengzhou, Henan 450000, P.R. China
| | - Hua Bai
- Department of Oncology, People's Hospital of Zhengzhou, Zhengzhou, Henan 450000, P.R. China
| | - Ruijun Li
- Department of Oncology, People's Hospital of Zhengzhou, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
41
|
Tao Y, Wan X, Fan Q, Wang Y, Sun H, Ma L, Sun C, Wu Y. Long non-coding RNA OIP5-AS1 promotes the growth of gastric cancer through the miR-367-3p/HMGA2 axis. Dig Liver Dis 2020; 52:773-779. [PMID: 31959478 DOI: 10.1016/j.dld.2019.11.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022]
Abstract
Increasing evidence shows that aberrant lncRNAs expression contributes to the progression of gastric cancer (GC). The role of the novel lncRNA OIP5-AS1 and its underlying mechanisms in the growth of GC is largely unknown. Here we demonstrate for the first time that OIP5-AS1 expression was up-regulated in GC tissues and cell lines, which significantly correlated with unfavorable clinical characteristics and shorter survival. The results of in vitro and in vivo gain- and loss-of-function experiments indicate that OIP5-AS1 promoted cell proliferation and colony formation while inhibiting apoptosis of GC cells. OIP5-AS1 functioned as an endogenous sponge for miR-367-3p in GC cells. Restoration of miR-367-3p expression abolished the biological effects of OIP5-AS1 on GC cells. Moreover, we show that HMGA2 was a downstream target of miR-367-3p and mediated the effects of OIP5-AS1 on GC cells. OIP5-AS1 regulated the activities of the PI3K/AKT and Wnt/β-catenin pathways through HMGA2. In conclusion, OIP5-AS1 functions as an oncogenic lncRNA that promotes the progression of GC and may serve as a therapeutic target for managing GC.
Collapse
Affiliation(s)
- Youmao Tao
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiaoyu Wan
- Department of Thyroid & Breast Surgery, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Qihao Fan
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yannan Wang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Haojie Sun
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Lushun Ma
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Caixia Sun
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Yuanyu Wu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
42
|
Soghli N, Qujeq D, Yousefi T, Soghli N. The regulatory functions of circular RNAs in osteosarcoma. Genomics 2020; 112:2845-2856. [DOI: 10.1016/j.ygeno.2020.03.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023]
|
43
|
Liu L, Wang Q, Qiu Z, Kang Y, Liu J, Ning S, Yin Y, Pang D, Xu S. Noncoding RNAs: the shot callers in tumor immune escape. Signal Transduct Target Ther 2020; 5:102. [PMID: 32561709 PMCID: PMC7305134 DOI: 10.1038/s41392-020-0194-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 01/17/2023] Open
Abstract
Immunotherapy, designed to exploit the functions of the host immune system against tumors, has shown considerable potential against several malignancies. However, the utility of immunotherapy is heavily limited due to the low response rate and various side effects in the clinical setting. Immune escape of tumor cells may be a critical reason for such low response rates. Noncoding RNAs (ncRNAs) have been identified as key regulatory factors in tumors and the immune system. Consequently, ncRNAs show promise as targets to improve the efficacy of immunotherapy in tumors. However, the relationship between ncRNAs and tumor immune escape (TIE) has not yet been comprehensively summarized. In this review, we provide a detailed account of the current knowledge on ncRNAs associated with TIE and their potential roles in tumor growth and survival mechanisms. This review bridges the gap between ncRNAs and TIE and broadens our understanding of their relationship, providing new insights and strategies to improve immunotherapy response rates by specifically targeting the ncRNAs involved in TIE.
Collapse
Affiliation(s)
- Lei Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Qin Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Zhilin Qiu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yujuan Kang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Jiena Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Shipeng Ning
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yanling Yin
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China. .,Heilongjiang Academy of Medical Sciences, Harbin, 150086, China.
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
44
|
Xie R, Liu L, Lu X, Hu Y. LncRNA OIP5-AS1 facilitates gastric cancer cell growth by targeting the miR-422a/ANO1 axis. Acta Biochim Biophys Sin (Shanghai) 2020; 52:430-438. [PMID: 32147682 DOI: 10.1093/abbs/gmaa012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/29/2019] [Indexed: 02/07/2023] Open
Abstract
OPA-interacting protein 5 antisense transcript 1 (OIP5-AS1) plays an important regulatory role in various types of cancers. However, the functional role and regulatory mechanisms of OIP5-AS1 in gastric cancer (GC) remain largely unknown. In this study, we found that the expression of OIP5-AS1 was increased in GC tissues compared with that in adjacent non-cancerous tissues, which was significantly associated with shorter overall survival time of patients. In addition, OIP5-AS1 expression was also increased in GC cell lines including NCI-N87, MKN-45, BGC-823 and SGC-7901, when compared with that in normal gastric epithelial cell line GES-1. Knockdown of OIP5-AS1 markedly suppressed the proliferation and colony formation activities of GC cells, induced G0/G1 arrest and apoptosis of GC cells in vitro, and restrained tumor growth in vivo. Mechanistically, OIP5-AS1 functions as an oncogenic competing endogenous RNA by binding to and sequestering miR-422a to elevate the expression of anoctamin-1. Our study first demonstrated that OIP5-AS1 is a critical and powerful regulator of GC pathogenesis and may represent a novel candidate target for GC therapy.
Collapse
Affiliation(s)
- Rongjun Xie
- Department of General Surgery, Nanhua Hospital Affiliated to Nanhua University, Hengyang 421002, China
| | - Longfei Liu
- Department of General Surgery, Nanhua Hospital Affiliated to Nanhua University, Hengyang 421002, China
| | - Xianzhou Lu
- Department of General Surgery, Nanhua Hospital Affiliated to Nanhua University, Hengyang 421002, China
| | - Yang Hu
- Department of General Surgery, Nanhua Hospital Affiliated to Nanhua University, Hengyang 421002, China
| |
Collapse
|
45
|
Ren P, Hong X, Chang L, Xing L, Zhang H. USF1-induced overexpression of long noncoding RNA WDFY3-AS2 promotes lung adenocarcinoma progression via targeting miR-491-5p/ZNF703 axis. Mol Carcinog 2020; 59:875-885. [PMID: 32275336 DOI: 10.1002/mc.23181] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/20/2020] [Accepted: 03/02/2020] [Indexed: 12/13/2022]
Abstract
Lung adenocarcinoma (LUAD) is one of the most common diagnosed pathological categories of lung cancer. Long noncoding RNAs (lncRNAs) have been manifested to be key regulators in modulating multiple cancers. Nevertheless, the pathologic role of lncRNA WDFY3-AS2 in LUAD remains elusive. The relative messenger RNA and protein levels were assessed by quantitative reverse transcription-polymerase chain reaction and Western blot analyses, respectively. Colony formation, carboxyfluorescein succinimidyl ester, terminal deoxynucleotidyl transferase dUTP nick-end labeling, wound-healing, and transwell invasion assays were performed to study the underlying role of WDFY3-AS2 in LUAD. Luciferase reporter assay, chromatin immunoprecipitation, RNA pull down, and RNA immunoprecipitation assays were conducted to probe into the interactions between relevant genes. WDFY3-AS2 expression was elevated in LUAD and WDFY3-AS2 transcription was activated by transcription factor USF1. Silencing WDFY3-AS2 could suppress cell proliferation, migration, and invasion, whereas accelerate cell apoptosis in LUAD. Molecular mechanism assays revealed that WDFY3-AS2 could bind to miR-491-5p and miR-491-5p inhibition could reverse the inhibitory effect of WDFY3-AS2 silence on LUAD progression. Besides, zinc finger protein 703 (ZNF703) was identified as a downstream target of miR-491-5p and its expression could be upregulated by WDFY3-AS2. Further, rescue assays uncovered that ZNF703 overexpression could restore the suppressive influence of silenced WDFY3-AS2 on LUAD development. USF1-acitvated WDFY3-AS2 promotes LUAD progression via targeting miR-491-5p/ZNF703 axis, suggesting the potential value of WDFY3-AS2 as a novel target for LUAD treatment.
Collapse
Affiliation(s)
- Ping Ren
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaodong Hong
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Liang Chang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Lei Xing
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Hong Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
46
|
Han J, Shen X. Long noncoding RNAs in osteosarcoma via various signaling pathways. J Clin Lab Anal 2020; 34:e23317. [PMID: 32249459 PMCID: PMC7307344 DOI: 10.1002/jcla.23317] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma is one of the most commonly seen bone malignancies with high incidence rate in both children and adults. Although the regulatory network of osteosarcoma has been greatly concerned for years, the mechanisms regarding its oncogenesis and development are still not clear. Recent discoveries have revealed that long noncoding RNAs (lncRNAs) play a crucial role in the development, progression, and invasion of osteosarcoma. Deregulated expression of lncRNAs has been found to participate in the regulation of various signaling transduction pathways in osteosarcoma. This review summarized roles of lncRNAs in the pathogenesis, development, and potential therapeutic of osteosarcoma via different signaling pathways. For examples, MALAT1, CCAT2, FER1L4, LOXL1‐AS1, OIP5‐AS1, PVT1, DBH‐AS1, and AWPPH regulate PI3K/Akt signaling; AWPPH and BE503655 regulate Wnt/β‐catenin signaling; NKILA and XIST regulate NF‐κB signaling; MEG3 and SNHG12 regulate Notch signaling; FOXD2‐AS1 and LINK‐A regulate HIF‐1α signaling; GClnc1 and HOTAIR regulate P53 signaling; ZFAS1, H19, and MALAT1 regulate MAPK, Hedgehog and Rac1/JNK signaling, respectively.
Collapse
Affiliation(s)
| | - Xiaohan Shen
- Ningbo Diagnostic Pathology Center (Shanghai Cancer Center Ningbo Pathology Center), Ningbo, China.,Ningbo Medical Center Lihuili Hospital, Ningbo, China
| |
Collapse
|
47
|
Linc-OIP5 in the breast cancer cells regulates angiogenesis of human umbilical vein endothelial cells through YAP1/Notch/NRP1 signaling circuit at a tumor microenvironment. Biol Res 2020; 53:5. [PMID: 32046779 PMCID: PMC7014737 DOI: 10.1186/s40659-020-0273-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/29/2020] [Indexed: 12/12/2022] Open
Abstract
Background LincRNAs have been revealed to be tightly associated with various tumorigeneses and cancer development, but the roles of specific lincRNA on tumor-related angiogenesis was hardly studied. Here, we aimed to investigate whether linc-OIP5 in breast cancer cells affects the angiogenesis of HUVECs and whether the linc-OIP5 regulations are involved in angiogenesis-related Notch and Hippo signaling pathways. Methods A trans-well system co-cultured HUVECs with linc-OIP5 knockdown breast cancer cell MDA-MB-231 was utilized to study the proliferation, migration and tube formation abilities of HUVECs and alterations of related signaling indicators in breast cancer cells and their conditioned medium through a series of cell and molecular experiments. Results Overexpressed linc-OIP5, YAP1, and JAG1 were found in breast cancer cell lines MCF7 and MDA-MB-231 and the expression levels of YAP1 and JAG1 were proportional to the breast cancer tissue grades. MDA-MB-231 cells with linc-OIP5 knockdown led to weakened proliferation, migration, and tube formation capacity of co-cultured HUVECs. Besides, linc-OIP5 knockdown in co-cultured MDA-MB-231 cells showed downregulated YAP1 and JAG1 expression, combined with a reduced JAG1 level in conditioned medium. Furthermore, a disrupted DLL4/Notch/NRP1 signaling in co-cultured HUVECs were also discovered under this condition. Conclusion Hence, linc-OIP5 in MDA-MB-231 breast cancer cells may act on the upstream of the YAP1/Notch/NRP1 signaling circuit to affect proliferation, migration, and tube formation of co-cultured HUVECs in a non-cellular direct contact way through JAG1 in conditioned medium. These findings at least partially provide a new angiogenic signaling circuit in breast cancers and suggest linc-OIP5 could be considered as a therapeutic target in angiogenesis of breast cancers.
Collapse
|
48
|
Esfandi F, Salehnezhad T, Taheri M, Afsharpad M, Hafez AA, Oskooei VK, Ghafouri-Fard S. Expression assessment of a panel of long non-coding RNAs in gastric malignancy. Exp Mol Pathol 2020; 113:104383. [PMID: 31982396 DOI: 10.1016/j.yexmp.2020.104383] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/24/2019] [Accepted: 01/23/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) have several important functions in the regulation of cell homeostasis and cell fate. Consequently, abnormal transcription of lncRNAs has been correlated with malignant transformation of cells. These human transcripts have been shown to participate in the progression of gastric cancer. METHODS In the current project, we evaluated expression of a panel of lncRNAs including HULC, MALAT1, FAS-AS1, GAS5, PVT1, OIP5-AS1 and THRIL in 30 gastric cancer tissues and paired adjacent non-cancerous tissues (ANCTs) using quantitative real-time PCR. RESULTS HULC, OIP5-AS1 and THRIL transcription quantities were significantly lower in gastric tumors compared to ANCTs (P values = .02, 0.02 and 0.007, respectively). Relative transcription quantities of HULC, MALAT1, OIP5-AS1, PVT1, FAS-AS1 and THRIL were associated with the site of the primary tumor (P values = .002, 0.003, 0.002, 0.002, 0.002, and 0.001, respectively). Moreover, relative expression levels of PVT1 were associated with history of smoking (P value = .04). Correlations were identified between transcript quantities of these lncRNAs in both tumor samples and ANCTs. Receiver operating characteristic curve assessment demonstrated that THRIL had the highest diagnostic power among the mentioned lncRNAs (area under curve (AUC) = 0.72, P value = .001). HULC and OIP5-AS1 ranked afterwards (AUC values of 0.69 and 0.68; P values = .005 and 0.007, respectively). CONCLUSION The current investigation underscores the dysregulation of these transcripts in gastric cancer specimens and suggests a number of these transcripts for further assessments of their suitability as cancer biomarkers.
Collapse
Affiliation(s)
- Farbod Esfandi
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayebeh Salehnezhad
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mandana Afsharpad
- Cancer Control Research Center, Cancer Control Foundation, Iran University of Medical Sciences, Tehran, Iran
| | - Asghar Ashrafi Hafez
- Cancer Research Center, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Kholghi Oskooei
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
49
|
Wang M, Liao Q, Zou P. PRKCZ-AS1 promotes the tumorigenesis of lung adenocarcinoma via sponging miR-766-5p to modulate MAPK1. Cancer Biol Ther 2020; 21:364-371. [PMID: 31939714 DOI: 10.1080/15384047.2019.1702402] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the most prevalent histological subclass of non-small cell lung cancer. Long non-coding RNAs (lncRNAs) have been recognized as the crucial regulatory factors in tumor development and progression. Nevertheless, limited research has been carried on the function of PRKCZ-AS1 in LUAD. In this study, the expression of PRKCZ-AS1 in LUAD tissues and cell lines was notably upregulated. Moreover, knockdown of PRKCZ-AS1 inhibited the proliferation and migration, but promoted apoptosis in LUAD cells. Furthermore, miR-766-5p could bind with PRKCZ-AS1. Besides, the expression miR-766-5p was negatively regulated by PRKCZ-AS1 expression in LUAD cells. Furtherly, PRKCZ-AS1 expression positively regulated the expression of MAPK1. Similarly, the expression of MAPK1 was negatively regulated by miR-766-5p expression. Moreover, the binding ability between miR-766-5p and MAPK1 was confirmed. Furthermore, knockdown of MAPK1 partly rescued the miR-766-5p inhibition-mediated promoting effect on proliferation and migration in LUAD cells transfected with PRKCZ-AS1#1. Overall, above results suggested that PRKCZ-AS1 promotes the occurrence of LUAD by sponging miR-766-5p to upregulate MAPK1 expression, which may provide new insights into LUAD treatment.
Collapse
Affiliation(s)
- Ming Wang
- Department of Thoracic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, Zhejiang Province, China
| | - Qin Liao
- Department of Oncology, Shulan (Hangzhou) Hospital, Hangzhou, Zhejiang Province, China
| | - Pengfei Zou
- Department of Infectious Diseases, Shulan (Hangzhou) Hospital, Hangzhou, Zhejiang Province, China
| |
Collapse
|
50
|
Rahmani Z, Mojarrad M, Moghbeli M. Long non-coding RNAs as the critical factors during tumor progressions among Iranian population: an overview. Cell Biosci 2020; 10:6. [PMID: 31956395 PMCID: PMC6961246 DOI: 10.1186/s13578-020-0373-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cancer is associated with various genetic and environmental risk factors. Beside the mutations or aberrant expression of protein-coding genes, the genetic deregulation of non-coding RNAs has also an important role during tumor progression and metastasis. Long non-coding RNAs (lncRNAs) are a class of ncRNAs larger than 200 nucleotides that may function as tumor-suppressor or oncogene. MAIN BODY There is a raising trend of cancer incidence among Iranian population during the last decades. Therefore, it is required to prepare a general population specific panel of genetic markers for the early detection of cancer in this population. The tissue-specific expression characteristics and high stability in body fluids highlight the lncRNAs as efficient diagnostic and prognostic noninvasive biomarkers in cancer. In present review we summarized all of the lncRNAs which have been reported until now in different tumors among Iranian patients. CONCLUSIONS This review paves the way of introducing a population based noninvasive diagnostic panel of lncRNAs for the early detection of tumor cells among Iranian population.
Collapse
Affiliation(s)
- Zahra Rahmani
- Department of Medical Genetics, Golestan University of Medical Sciences, Gorgan, Iran
| | - Majid Mojarrad
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|