1
|
Abedimanesh S, Safaralizadeh R, Jahanafrooz Z, Najafi S, Amini M, Nazarloo SS, Bahojb Mahdavi SZ, Baradaran B, Jebelli A, Mokhtarzadeh AA. Interaction of noncoding RNAs with hippo signaling pathway in cancer cells and cancer stem cells. Noncoding RNA Res 2024; 9:1292-1307. [PMID: 39045083 PMCID: PMC11263728 DOI: 10.1016/j.ncrna.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 07/25/2024] Open
Abstract
The Hippo signaling pathway has a regulatory function in the organogenesis process and cellular homeostasis, switching the cascade reactions of crucial kinases acts to turn off/on the Hippo pathway, altering the downstream gene expression and thereby regulating proliferation, apoptosis, or stemness. Disruption of this pathway can lead to the occurrence of various disorders and different types of cancer. Recent findings highlight the importance of ncRNAs, such as microRNA, circular RNA, and lncRNAs, in modulating the Hippo pathway. Defects in ncRNAs can disrupt Hippo pathway balance, increasing tumor cells, tumorigenesis, and chemotherapeutic resistance. This review summarizes ncRNAs' inhibitory or stimulatory role in - Hippo pathway regulation in cancer and stem cells. Identifying the relation between ncRNAs and the components of this pathway could pave the way for developing new biomarkers in the treatment and diagnosis of cancers.
Collapse
Affiliation(s)
- Saba Abedimanesh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Zohreh Jahanafrooz
- Department of Biology, Faculty of Sciences, University of Maragheh, Maragheh, Iran
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Soltani Nazarloo
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asiyeh Jebelli
- Department of Biological Sciences, Faculty of Basic Sciences, Higher Education Institute of Rab-Rashid, Tabriz, Iran
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
2
|
Yin Y, Tan M, Han L, Zhang L, Zhang Y, Zhang J, Pan W, Bai J, Jiang T, Li H. The hippo kinases MST1/2 in cardiovascular and metabolic diseases: A promising therapeutic target option for pharmacotherapy. Acta Pharm Sin B 2023; 13:1956-1975. [PMID: 37250161 PMCID: PMC10213817 DOI: 10.1016/j.apsb.2023.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/09/2022] [Accepted: 11/18/2022] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular diseases (CVDs) and metabolic disorders are major components of noncommunicable diseases, causing an enormous health and economic burden worldwide. There are common risk factors and developmental mechanisms among them, indicating the far-reaching significance in exploring the corresponding therapeutic targets. MST1/2 kinases are well-established proapoptotic effectors that also bidirectionally regulate autophagic activity. Recent studies have demonstrated that MST1/2 influence the outcome of cardiovascular and metabolic diseases by regulating immune inflammation. In addition, drug development against them is in full swing. In this review, we mainly describe the roles and mechanisms of MST1/2 in apoptosis and autophagy in cardiovascular and metabolic events as well as emphasis on the existing evidence for their involvement in immune inflammation. Moreover, we summarize the latest progress of pharmacotherapy targeting MST1/2 and propose a new mode of drug combination therapy, which may be beneficial to seek more effective strategies to prevent and treat CVDs and metabolic disorders.
Collapse
Affiliation(s)
- Yunfei Yin
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Mingyue Tan
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Lianhua Han
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Lei Zhang
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yue Zhang
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jun Zhang
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Wanqian Pan
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jiaxiang Bai
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Department of Orthopedics, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Tingbo Jiang
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Hongxia Li
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
3
|
Xu X, Ju Y, Zhao X, Yang P, Zhu F, Fang B. SMG7-AS1 as a prognostic biomarker and predictor of immunotherapy responses for skin cutaneous melanoma. Genomics 2023; 115:110614. [PMID: 36931476 DOI: 10.1016/j.ygeno.2023.110614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/14/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Skin cutaneous melanoma (SKCM) is the most life-threatening skin cancer and lacks early detection and effective treatment strategies. Many long noncoding RNAs are associated with the development of tumors and may serve as potential immunotherapeutic targets. In this study, microarray analysis was performed to screen for differentially expressed lncRNAs between SKCM and normal tissues, and SMG7-AS1 was identified as an upregulated lncRNA in SKCM. Subsequently, bioinformatic analysis revealed that dysregulation of SMG7-AS1 influences metastasis and immune infiltration. qRT-PCR of clinical samples demonstrated that the expression of SMG7-AS1 was higher in melanoma tissues. Flow cytometry showed that SMG7-AS1 plays a vital role in the cell cycle. Additionally, SMG7-AS1 was found to be associated with immunotherapy responses. To the best of our knowledge, this study is the first to report that SMG7-AS1 is associated with SKCM and may serve as a prognostic biomarker and predictor of immunotherapy responses in SKCM.
Collapse
Affiliation(s)
- Xuezheng Xu
- Department of Orthopaedics, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, People's Republic of China
| | - Yikun Ju
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, People's Republic of China
| | - Xueheng Zhao
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha 410078, People's Republic of China
| | - Pu Yang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, People's Republic of China
| | - Fang Zhu
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha 410078, People's Republic of China
| | - Bairong Fang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, People's Republic of China.
| |
Collapse
|
4
|
Zhang R, Zhang G, Li B, Wang J, Wang J, Che J, Wang X, Zhang Z. Analysis of LINC01314 and miR-96 Expression in Colorectal Cancer Patients via Tissue Microarray-Based Fluorescence In Situ Hybridization. DISEASE MARKERS 2022; 2022:5378963. [PMID: 36246563 PMCID: PMC9568347 DOI: 10.1155/2022/5378963] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/27/2022] [Indexed: 11/23/2022]
Abstract
Methods A tissue microarray (TMA) containing 76 individual colorectal tumor samples and 28 adjacent normal samples was constructed, and the expression levels of LINC01314 and miR-96 were detected by fluorescence in situ hybridization. Results The expression levels of both LINC01314 and miR-96 were upregulated in CRC tissues and were associated with vascular metastasis (p < 0.05). A significantly positive correlation was observed between LINC01314 and miR-96 expression in tumor tissues (p < 0.001, r = 0.870). Dominant expression of LINC01314 was a risk factor for both blood vessel invasion (p < 0.05) and poor 5-year survival (p = 0.001, hazard ratio = 4.144). The Kaplan-Meier analysis indicated that patients with LINC01314-dominant expression exhibited worse 5-year survival rates than those with miR-96-dominant expression (p < 0.05). Conclusion The expression patterns of both LINC01314 and miR-96 may be diagnostic of, and prognostic for, CRC. These findings will facilitate further exploration of the molecular mechanism of lncRNAs in CRC.
Collapse
Affiliation(s)
- Runan Zhang
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Genhua Zhang
- Department of Pathology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Baohua Li
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Juan Wang
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jvfang Wang
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jia Che
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiaojun Wang
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhen Zhang
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Immune-related biomarkers shared by inflammatory bowel disease and liver cancer. PLoS One 2022; 17:e0267358. [PMID: 35452485 PMCID: PMC9032416 DOI: 10.1371/journal.pone.0267358] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/04/2022] [Indexed: 12/24/2022] Open
Abstract
It has been indicated that there is an association between inflammatory bowel disease (IBD) and hepatocellular carcinoma (HCC). However, the molecular mechanism underlying the risk of developing HCC among patients with IBD is not well understood. The current study aimed to identify shared genes and potential pathways and regulators between IBD and HCC using a system biology approach. By performing the different gene expression analyses, we identified 871 common differentially expressed genes (DEGs) between IBD and HCC. Of these, 112 genes overlapped with immune genes were subjected to subsequent bioinformatics analyses. The results revealed four hub genes (CXCL2, MMP9, SPP1 and SRC) and several other key regulators including six transcription factors (FOXC1, FOXL1, GATA2, YY1, ZNF354C and TP53) and five microRNAs (miR-124-3p, miR-34a-5p, miR-1-3p, miR-7-5p and miR-99b-5p) for these disease networks. Protein-drug interaction analysis discovered the interaction of the hub genes with 46 SRC-related and 11 MMP9- related drugs that may have a therapeutic effect on IBD and HCC. In conclusion, this study sheds light on the potential connecting mechanisms of HCC and IBD.
Collapse
|
6
|
Zhao S, Zhang X, Chen S, Zhang S. Long noncoding RNAs: fine-tuners hidden in the cancer signaling network. Cell Death Dis 2021; 7:283. [PMID: 34635646 PMCID: PMC8505617 DOI: 10.1038/s41420-021-00678-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/04/2021] [Accepted: 09/27/2021] [Indexed: 02/08/2023]
Abstract
With the development of sequencing technology, a large number of long non-coding RNAs (lncRNAs) have been identified in addition to coding genes. LncRNAs, originally considered as junk RNA, are dysregulated in various types of cancer. Although protein-coding signaling pathways underlie various biological activities, and abnormal signal transduction is a key trigger and indicator for tumorigenesis and cancer progression, lncRNAs are sparking keen interest due to their versatile roles in fine-tuning signaling pathways. We are just beginning to scratch the surface of lncRNAs. Therefore, despite the fact that lncRNAs drive malignant phenotypes from multiple perspectives, in this review, we focus on important signaling pathways modulated by lncRNAs in cancer to demonstrate an up-to-date understanding of this emerging field.
Collapse
Affiliation(s)
- Shanshan Zhao
- grid.412467.20000 0004 1806 3501Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Reproductive Medicine Center, Obstetrics and Gynecology Department, Shengjing Hospital Affiliated to China Medical University, 110022 Shenyang, Liaoning China
| | - Xue Zhang
- grid.412449.e0000 0000 9678 1884Department of Epigenetics, China Medical University, 110122 Shenyang, Liaoning China
| | - Shuo Chen
- grid.417009.b0000 0004 1758 4591Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, 510150 Guangzhou, Guangdong China
| | - Song Zhang
- grid.412636.4Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, 110001 Shenyang, Liaoning China ,grid.412449.e0000 0000 9678 1884Department of Environmental and Occupational Health, School of Public Health, China Medical University, 110122 Shenyang, Liaoning China
| |
Collapse
|
7
|
Tan C, Zeng X, Mo M, Ma X, Liang Q, Liang W, Huang W, Wang K, Yang L, Qiu X. RNA sequencing identifies two novel liver-specific long noncoding RNAs with potential diagnostic value in hepatocellular carcinoma. Biomark Med 2021; 15:1097-1109. [PMID: 34128691 DOI: 10.2217/bmm-2020-0825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: To explore the expression profiles of long noncoding RNAs (lncRNAs) and identify novel lncRNAs as biomarkers for early diagnosis and therapy of hepatocellular carcinoma (HCC). Materials & methods: Expression profiles of lncRNAs and mRNAs in five paired HCC and adjacent normal tissues were obtained by RNA sequencing. Eight lncRNAs, including two novel liver-specific lncRNAs (NONHSAT059247.2 and NONHSAT013897.2), were validated in another 74 pairs of HCC and adjacent normal tissues by quantitative reverse transcription PCR. Results: The results of quantitative reverse transcription PCR showed that NONHSAT252133.1, NONHSAT112116.2 and NONHSAT242657.1 were significantly upregulated in HCC tissues, whereas NONHSAT169790.1, NONHSAT059247.2 and NONHSAT013897.2 were significantly downregulated. Two liver-specific lncRNAs demonstrated excellent diagnostic performance: NONHSAT059247.2 (area under the curve = 0.941, 95% CI: 0.902-0.979, p < 0.0001), NONHSAT013897.2 (area under the curve = 0.944, 95% CI: 0.906-0.983, p < 0.0001). Conclusion: The liver-specific lncRNAs NONHSAT059247.2 and NONHSAT013897.2, may provide new biomarkers for the future study on diagnosis, therapy and mechanisms of HCC.
Collapse
Affiliation(s)
- Chao Tan
- Department of Epidemiology & Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, PR China.,Department of Epidemiology & Health Statistics, School of Public Health, Guilin Medical University, Guilin, Guangxi, 541100, PR China
| | - Xi Zeng
- Department of Occupational & Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, PR China.,Department of Occupational & Environmental Health, School of Public Health, Guilin Medical University, Guilin, Guangxi, 541100, PR China
| | - Meile Mo
- Department of Epidemiology & Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Xiaoyun Ma
- Department of Epidemiology & Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Qiuli Liang
- Department of Epidemiology & Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Wenjie Liang
- Department of Social Medicine, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Wenxiu Huang
- Department of Occupational & Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Ke Wang
- Department of Occupational & Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Li Yang
- Department of Occupational & Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Xiaoqiang Qiu
- Department of Epidemiology & Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| |
Collapse
|
8
|
Wang M, Xu T, Feng W, Liu J, Wang Z. Advances in Understanding the LncRNA-Mediated Regulation of the Hippo Pathway in Cancer. Onco Targets Ther 2021; 14:2397-2415. [PMID: 33854336 PMCID: PMC8039192 DOI: 10.2147/ott.s283157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/08/2021] [Indexed: 12/24/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are a class of RNA molecules that are longer than 200 nucleotides and cannot encode proteins. Over the past decade, lncRNAs have been defined as regulatory elements of multiple biological processes, and their aberrant expression contributes to the development and progression of various malignancies. Recent studies have shown that lncRNAs are involved in key cancer-related signaling pathways, including the Hippo signaling pathway, which plays a prominent role in controlling organ size and tissue homeostasis by regulating cell proliferation, apoptosis, and differentiation. However, dysregulation of this pathway is associated with pathological conditions, especially cancer. Accumulating evidence has revealed that lncRNAs can modulate the Hippo signaling pathway in cancer. In this review, we elaborate on the role of the Hippo signaling pathway and the advances in the understanding of its lncRNA-mediated regulation in cancer. This review provides additional insight into carcinogenesis and will be of great clinical value for developing novel early detection and treatment strategies for this deadly disease.
Collapse
Affiliation(s)
- Mengwei Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Tianwei Xu
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Wenyan Feng
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Junxia Liu
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Zhaoxia Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
9
|
Liu G, Liu B, Liu X, Xie L, He J, Zhang J, Dong R, Ma D, Dong K, Ye M. ARID1B/SUB1-activated lncRNA HOXA-AS2 drives the malignant behaviour of hepatoblastoma through regulation of HOXA3. J Cell Mol Med 2021; 25:3524-3536. [PMID: 33683826 PMCID: PMC8034473 DOI: 10.1111/jcmm.16435] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/16/2021] [Accepted: 02/20/2021] [Indexed: 12/17/2022] Open
Abstract
It has been becoming increasingly evident that long non‐coding RNAs (lncRNAs) play important roles in various human cancers. However, the biological processes and clinical significance of most lncRNAs in hepatoblastoma (HB) remain unclear. In our previous study, genome‐wide analysis with a lncRNA microarray found that lncRNA HOXA‐AS2 was up‐regulated in HB. Stable transfected cell lines with HOXA‐AS2 knockdown or overexpression were constructed in HepG2 and Huh6 cells, respectively. Our data revealed knockdown of HOXA‐AS2 increased cell apoptosis and inhibited cell proliferation, migration and invasion in HB. Up‐regulation of HOXA‐AS2 promoted HB malignant biological behaviours. Mechanistic investigations indicated that HOXA‐AS2 was modulated by chromatin remodelling factor ARID1B and transcription co‐activator SUB1, thereby protecting HOXA3 from degradation. Therefore, HOXA‐AS2 positively regulates HOXA3, which might partly demonstrate the involvement of HOXA3 in HOXA‐AS2‐mediated HB carcinogenesis. In conclusion, HOXA‐AS2 is significantly overexpressed in HB and the ARID1B/HOXA‐AS2/HOXA3 axis plays a critical role in HB tumorigenesis and development. These results might provide a potential new target for HB diagnosis and therapy.
Collapse
Affiliation(s)
- Gongbao Liu
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Baihui Liu
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Xiangqi Liu
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Lulu Xie
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Jiajun He
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Jingjing Zhang
- Department of Medical Imaging, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Rui Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, China
| | - Kuiran Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Mujie Ye
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| |
Collapse
|
10
|
Shen B, Li K, Zhang Y. Identification of modules and novel prognostic biomarkers in liver cancer through integrated bioinformatics analysis. FEBS Open Bio 2020; 10:2388-2403. [PMID: 32961635 PMCID: PMC7609804 DOI: 10.1002/2211-5463.12983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 07/01/2020] [Accepted: 09/15/2020] [Indexed: 12/30/2022] Open
Abstract
Liver cancer is a common malignant tumor with poor prognosis. Due to the lack of specific clinical manifestations at early stages, most patients are already at advanced stages of the disease by the time of diagnosis. Identification of novel biomarkers for liver cancer may thus enable earlier detection, improving outcome. MicroRNAs (miRNAs) are small endogenous noncoding RNAs of 18–22 nucleotides in length, which have a regulatory role in the expression of target proteins. Increased evidence suggests that miRNAs are abnormally expressed in a variety of cancer malignancies. Here, we combined RNA sequencing data and clinical information from The Cancer Genome Atlas Liver Hepatocellular Carcinoma database for weighted gene coexpression network analysis to identify potential miRNA prognostic biomarkers. We constructed nine coexpression modules, allowing us to identify that miR‐105‐5p, miR‐767‐5p, miR‐1266‐5p, miR‐4746‐5p, miR‐500a‐3p, miR‐1180‐3p and miR‐139‐5p are significantly associated with liver cancer prognosis. We found that these miRNAs exhibit significant association with prognosis of patients with liver cancer and confirmed the expression of these miRNAs in liver cancer tissues. Multivariate Cox regression analysis showed that miR‐105‐5p and miR‐139‐5p may be considered as independent factors. In summary, here we report that seven miRNAs have potential value as prognostic biomarkers of liver cancer.
Collapse
Affiliation(s)
- Bo Shen
- Department of Hepatobiliary SurgeryPeople's Hospital of Yichun CityChina
| | - Kun Li
- Department of Hepatobiliary SurgeryPeople's Hospital of Yichun CityChina
| | - Yuting Zhang
- Department of Liver DiseasesPeople's Hospital of Yichun CityChina
| |
Collapse
|
11
|
Liu C, Wu Y, Ma J. Interaction of non-coding RNAs and Hippo signaling: Implications for tumorigenesis. Cancer Lett 2020; 493:207-216. [PMID: 32822816 DOI: 10.1016/j.canlet.2020.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023]
Abstract
Hippo signaling is an evolutionarily conserved pathway that controls organ size by regulating cell proliferation, apoptosis, and stem cell self-renewal by "turning off" or "turning on" the kinase cascade chain reaction to manipulate the expression of downstream genes. Dysregulation of the Hippo pathway contributes to cancer development and metastasis. Emerging evidence has revealed new insights into tumorigenesis through the interplay between the Hippo pathway and non-coding RNAs (ncRNAs), especially microRNA, long non-coding RNA and circular RNA. Here, we reviewed the interactions between the Hippo pathway and ncRNAs and their implication for a variety of tumor-promoting or tumor-repressing effects. These interactions have the potential to serve as cancer biomarkers and therapeutic targets in clinical applications.
Collapse
Affiliation(s)
- Can Liu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Cancer Research Institute, School of Basic Medical Science, NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yangge Wu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Cancer Research Institute, School of Basic Medical Science, NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jian Ma
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Cancer Research Institute, School of Basic Medical Science, NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
12
|
Tu C, Yang K, Wan L, He J, Qi L, Wang W, Lu Q, Li Z. The crosstalk between lncRNAs and the Hippo signalling pathway in cancer progression. Cell Prolif 2020; 53:e12887. [PMID: 32779318 PMCID: PMC7507458 DOI: 10.1111/cpr.12887] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/23/2020] [Accepted: 07/18/2020] [Indexed: 12/11/2022] Open
Abstract
LncRNAs play a pivotal role in the regulation of epigenetic modification, cell cycle, differentiation, proliferation, migration and other physiological activities. In particular, considerable studies have shown that the aberrant expression and dysregulation of lncRNAs are widely implicated in cancer initiation and progression by acting as tumour promoters or suppressors. Hippo signalling pathway has attracted researchers’ attention as one of the critical cancer‐related pathways in recent years. Increasing evidences have demonstrated that lncRNAs could interact with Hippo cascade and thereby contribute to acquisition of multiple malignant hallmarks, including proliferation, metastasis, relapse and resistance to anti‐cancer treatment. Specifically, Hippo signalling pathway is reported to modulate or be regulated by widespread lncRNAs. Intriguingly, certain lncRNAs could form a reciprocal feedback loop with Hippo signalling. More speculatively, lncRNAs related to Hippo pathway have been poised to become important putative biomarkers and therapeutic targets in human cancers. Herein, this review focuses on the crosstalk between lncRNAs and Hippo pathway in carcinogenesis, summarizes the comprehensive role of Hippo‐related lncRNAs in tumour progression and depicts their clinical diagnostic, prognostic or therapeutic potentials in tumours.
Collapse
Affiliation(s)
- Chao Tu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Kexin Yang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Lu Wan
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jieyu He
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lin Qi
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wanchun Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiong Lu
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Guo F, Wang W, Song Y, Wu L, Wang J, Zhao Y, Ma X, Ji H, Liu Y, Li Z, Qin G. LncRNA SNHG17 knockdown promotes Parkin-dependent mitophagy and reduces apoptosis of podocytes through Mst1. Cell Cycle 2020; 19:1997-2006. [PMID: 32627655 PMCID: PMC7469517 DOI: 10.1080/15384101.2020.1783481] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 10/23/2022] Open
Abstract
LncRNAs play important roles in the regulation of podocyte apoptosis in diabetic nephropathy (DN). However, the role of lncRNA SNHG17 in controlling mitophagy-induced apoptosis of podocytes in DN is unknown. This study aims to elucidate the underlying mechanism of lncRNA SNHG17 in the regulation of mitophagy-induced apoptosis of podocytes in DN. LncRNA SNHG17 and Mammalian Sterile 20-like kinase 1 (Mst1) expression were upregulated in glomeruli and podocytes of DM mice and high glucose-treated podocytes, whereas Parkin expression was downregulated. LncRNA SNHG17 overexpression suppressed mitophagy and induced apoptosis of podocytes while silencing lncRNA SNHG17 promoted mitophagy and reduced the apoptosis of podocytes. In addition, lncRNA SNHG17 interacted with Mst1 and regulated the degradation of Mst1. We further found lncRNA SNHG17 regulated Parkin expression through Mst1. Mechanistically, lncRNA SNHG17 regulated Parkin-dependent mitophagy and apoptosis of podocytes through regulating Mst1. Finally, silencing lncRNA SNHG17 promoted mitophagy and relieved DNin vivo. In conclusion, lncRNA SNHG17 knockdown promotes Parkin-dependent mitophagy and reduces apoptosis of podocytes through regulating the degradation of Mst1.
Collapse
Affiliation(s)
- Feng Guo
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weimin Wang
- Division of Hematology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Song
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lina Wu
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiao Wang
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanyan Zhao
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaojun Ma
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongfei Ji
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanling Liu
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhizhen Li
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guijun Qin
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Xie F, Zhang L, Yao Q, Shan L, Liu J, Dong N, Liang J. TUG1 Promoted Tumor Progression by Sponging miR-335-5p and Regulating CXCR4-Mediated Infiltration of Pro-Tumor Immunocytes in CTNNB1-Mutated Hepatoblastoma. Onco Targets Ther 2020; 13:3105-3115. [PMID: 32341656 PMCID: PMC7166065 DOI: 10.2147/ott.s234819] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/06/2020] [Indexed: 12/21/2022] Open
Abstract
Introduction HB presents with the highest frequency of CTNNB1 mutations, resulting in activation of Wnt signaling pathway. A number of studies have demonstrated CTNNB1 mutation contributed to the development of HB. However, limited research explored the function of lncRNAs in HB with CTNNB1 mutation. Methods We screened lncRNA expression profiles in CTNNB1-mutated HB samples and identified lncRNAs associated with malignant phenotype in HB. The association between lncRNA and immune microenvironment was investigated. The biological function of lncRNA was further explored using in vitro experiments. Results TUG1 was identified as onco-lncRNA in CTNNB1-mutated HB. TUG1 was shown to be associated with the infiltration of pro-tumor immunocytes via regulating the expression of CXCR4, a chemokine receptor playing a critical role in regulation of immune microenvironment. Inhibiting TUG1 could increase endogenous levels of miR-335-5p and consequently downregulating CXCR4, a direct target of miR-335-5p. Conclusion Our findings provide evidence for TUG1 mediating infiltration of pro-tumor immunocytes in HB patients carrying CTNNB1 mutation. TUG1-miR-335-5p-CXCR4 axis might be a promising immunological target for the treatment of HB patients.
Collapse
Affiliation(s)
- Fujing Xie
- Department of Pediatrics, Liaocheng People's Hospital, Liaocheng 252000, Shandong Province, People's Republic of China
| | - Lianhai Zhang
- Department of Pediatric Surgery, Liaocheng People's Hospital, Liaocheng 252000, Shandong Province, People's Republic of China
| | - Qing Yao
- Medical College of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, People's Republic of China
| | - Liyu Shan
- Medical College of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, People's Republic of China
| | - Jike Liu
- Department of Pediatric Surgery, Liaocheng People's Hospital, Liaocheng 252000, Shandong Province, People's Republic of China
| | - Nanhai Dong
- Department of Clinical Laboratory, Liaocheng People's Hospital, Liaocheng 252000, Shandong Province, People's Republic of China
| | - Jun Liang
- Department of Pediatrics, Liaocheng People's Hospital, Liaocheng 252000, Shandong Province, People's Republic of China
| |
Collapse
|
15
|
Miao R, Ge C, Zhang X, He Y, Ma X, Xiang X, Gu J, Fu Y, Qu K, Liu C, Wu Q, Lin T. Combined eight-long noncoding RNA signature: a new risk score predicting prognosis in elderly non-small cell lung cancer patients. Aging (Albany NY) 2020; 11:467-479. [PMID: 30659574 PMCID: PMC6366982 DOI: 10.18632/aging.101752] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/27/2018] [Indexed: 02/06/2023]
Abstract
The elderly are the majority of patients with non-small cell lung cancer (NSCLC). Compared to the overall population's predictive guidance, an effective predictive guidance for elderly patients can better guide patients' postoperative treatment and improve overall survival (OS) and disease-free survival (DFS). Recently, the long non-coding RNAs (lncRNAs) have been found to play an important role in predicting tumor prognosis. To identify potential lncRNAs to predict survival in elderly patients with NSCLC, in the present study, we chose 456 elderly patients with NSCLC and analyzed differentially expressed lncRNAs from four Gene Expression Omnibus (GEO) datasets (GSE30219, GSE31546, GSE37745 and GSE50081). We then constructed an eight-lncRNA formula to predict elderly patients’ prognosis in NSCLC. Furthermore, we validated the prognostic values of the new risk model in two independent datasets, TCGA (n=670) and GSE31210 (n=130). Our data suggested a significant association between risk model and patients’ prognosis. Finally, stratification analysis further revealed the eight-lncRNA signature was an independent factor to predict OS and DFS in stage I elderly patients from both the discovery and validation groups. Functional prediction revealed that 8 lncRNAs have potential effects on tumor immune processes such as lymphocyte activation and TNF production in NSCLC. In summary, our data provides evidence that the eight-lncRNA signature could serve as an independent biomarker to predict prognosis in elderly patients with NSCLC especially in elderly stage I patients.
Collapse
Affiliation(s)
- Runchen Miao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Cuiyun Ge
- Department of Respiratory Medicine, Liaocheng People's Hospital, Taishan Medical College, Liaocheng 252000, Shandong Province, China
| | - Xing Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yang He
- Department of General Surgery, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital, Medical College, Xi'an Jiao Tong University, Xi'an 710068, China
| | - Xiaohua Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xiaohong Xiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jingxian Gu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yunong Fu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Kai Qu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Chang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qifei Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Ting Lin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
16
|
Cui X, Wang Z, Liu L, Liu X, Zhang D, Li J, Zhu J, Pan J, Zhang D, Cui G. The Long Non-coding RNA ZFAS1 Sponges miR-193a-3p to Modulate Hepatoblastoma Growth by Targeting RALY via HGF/c-Met Pathway. Front Cell Dev Biol 2019; 7:271. [PMID: 31781561 PMCID: PMC6856658 DOI: 10.3389/fcell.2019.00271] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/22/2019] [Indexed: 12/17/2022] Open
Abstract
Hepatoblastoma (HB) is the most common and aggressive malignant hepatic neoplasm in childhood and the therapeutic outcomes remain undesirable due to its recurrence and metastasis. Recently, long non-coding RNA (lncRNA) zinc finger antisense 1 (ZFAS1) has been reported to be an oncogenic gene in multiple cancers. However, the expression status and specific role of ZFAS1 involved in cancer progression of human HB remain unknown. This study aimed to identify the role of ZFAS1/miR-193a-3p/RALY axis in the development of HB. Here we showed that the expression of ZFAS1 was significantly upregulated in both HB tissues and cell lines. High ZFAS1 expression was significantly associated with aggressive tumor phenotypes and poorer overall survival in HB. In vitro and in vivo function assays indicated that silencing of ZFAS1 significantly suppressed HB cell proliferation and invasion. Furthermore, miR-193a-3p was identified to be the target of ZFAS1. Subsequently, RALY was confirmed to be regulated by miR-193a-3p/ZFAS1 axis. Mechanistically, our results indicated that the ZFAS1 participated to the progression of HB via regulating the HGF/c-Met signaling. Collectively, these data demonstrated that ZFAS1 acted as an oncogene to promote initiation and progression of HB by regulating miR-193a-3p/RALY (RALY Heterogeneous Nuclear Ribonucleoprotein) axis via HGF/c-Met Pathway, which provides an efficient marker and new therapeutic target for HB.
Collapse
Affiliation(s)
- Xichun Cui
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhifang Wang
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liwen Liu
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Liu
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dandan Zhang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianhao Li
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianming Zhu
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Juntao Pan
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Da Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangying Cui
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
A seven-long noncoding RNA signature predicts overall survival for patients with early stage non-small cell lung cancer. Aging (Albany NY) 2019; 10:2356-2366. [PMID: 30205363 PMCID: PMC6188476 DOI: 10.18632/aging.101550] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the most common cancer and cause of cancer-related mortality globally. Increasing evidence suggested that the long non-coding RNAs (lncRNAs) were involved in cancer-related death. To explore the possible prognostic lncRNA biomarkers for NSCLC patients, in the present study, we conducted a comprehensive lncRNA profiling analysis based on 1902 patients from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) datasets. In the discovery phase, we employed 682 patients from the combination of four GEO datasets (GSE30219, GSE31546, GSE33745 and GSE50081) and conducted a seven-lncRNA formula to predict overall survival (OS). Next, we validated our risk-score formula in two independent datasets, TCGA (n=994) and GSE31210 (n=226). Stratified analysis revealed that the seven-lncRNA signature was significantly associated with OS in stage I patients from both discovery and validation groups (all P<0.001). Additionally, the prognostic value of the seven-lncRNA signature was also found to be favorable in patients carrying wild-type KRAS or EGFR. Bioinformatical analysis suggested that the seven-lncRNA signature affected patients’ prognosis by influencing cell cycle-related pathways. In summary, our findings revealed a seven-lncRNA signature that predicted OS of NSCLC patients, especially in those with early tumor stage and carrying wild-type KRAS or EGFR.
Collapse
|
18
|
Smith CM, Catchpoole D, Hutvagner G. Non-Coding RNAs in Pediatric Solid Tumors. Front Genet 2019; 10:798. [PMID: 31616462 PMCID: PMC6764412 DOI: 10.3389/fgene.2019.00798] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/30/2019] [Indexed: 12/15/2022] Open
Abstract
Pediatric solid tumors are a diverse group of extracranial solid tumors representing approximately 40% of childhood cancers. Pediatric solid tumors are believed to arise as a result of disruptions in the developmental process of precursor cells which lead them to accumulate cancerous phenotypes. In contrast to many adult tumors, pediatric tumors typically feature a low number of genetic mutations in protein-coding genes which could explain the emergence of these phenotypes. It is likely that oncogenesis occurs after a failure at many different levels of regulation. Non-coding RNAs (ncRNAs) comprise a group of functional RNA molecules that lack protein coding potential but are essential in the regulation and maintenance of many epigenetic and post-translational mechanisms. Indeed, research has accumulated a large body of evidence implicating many ncRNAs in the regulation of well-established oncogenic networks. In this review we cover a range of extracranial solid tumors which represent some of the rarer and enigmatic childhood cancers known. We focus on two major classes of ncRNAs, microRNAs and long non-coding RNAs, which are likely to play a key role in the development of these cancers and emphasize their functional contributions and molecular interactions during tumor formation.
Collapse
Affiliation(s)
- Christopher M Smith
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | - Daniel Catchpoole
- School of Software, University of Technology Sydney, Sydney, Australia.,The Tumour Bank-CCRU, Kids Research, The Children's Hospital at Westmead, Sydney, Australia
| | - Gyorgy Hutvagner
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| |
Collapse
|
19
|
Luo Z, Cao P. Long noncoding RNA PVT1 promotes hepatoblastoma cell proliferation through activating STAT3. Cancer Manag Res 2019; 11:8517-8527. [PMID: 31572006 PMCID: PMC6759231 DOI: 10.2147/cmar.s213707] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 07/15/2019] [Indexed: 12/29/2022] Open
Abstract
Background Hepatoblastoma is the most common liver malignancy in children. The long noncoding RNA (IncRNA) PVT1 plays oncogenic roles in human cancers; however, its regulation and function in hepatoblastoma remain poorly understood. Purpose This study was designed to investigate the regulation and function of PVT1 in hepatoblastoma. Methods PVT1 expression was compared between human hepatoblastoma tissues and adjacent non-tumor tissues, and then analyzed using Kaplan-Meier method. The proliferation of hepatoblastoma cells was determined by BrdU incorporation assay. The tumor xenograft model was used to assess tumor proliferation in vivo. The gene expression level was measured by qRT-pCR, Western blot and immunohistochemistry analyses. Results Compared with normal counterparts, PVT1 is upregulated in human hepatoblastoma tissues as well as in hepatoblastoma cell lines. Additionally, PVT1 promotes the proliferation of hepatoblastoma cells in vitro and accelerates tumor growth in xenograft model in vivo. Mechanistically, PVT1 promotes the activation of the signal transducer and activator of transcription 3 (STAT3), which leads to the transcriptional activation of downstream targets involved in cell cycle progression, and moreover,STAT3 inhibition with the selective inhibitor stattic abolishes PVT1 pro-proliferative role in hepatoblastoma cells. Conclusion PVT1 promotes hepatoblastoma cell proliferation through activating STAT3-induced cell cycle progression, which may implicate PVT1 as a potential therapeutic target for hepatoblastoma treatment.
Collapse
Affiliation(s)
- Zhenqin Luo
- Oncology Department, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Peiguo Cao
- Oncology Department, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, People's Republic of China
| |
Collapse
|
20
|
Melia T, Waxman DJ. Sex-Biased lncRNAs Inversely Correlate With Sex-Opposite Gene Coexpression Networks in Diversity Outbred Mouse Liver. Endocrinology 2019; 160:989-1007. [PMID: 30840070 PMCID: PMC6449536 DOI: 10.1210/en.2018-00949] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/27/2019] [Indexed: 01/05/2023]
Abstract
Sex differences in liver gene expression are determined by pituitary growth hormone secretion patterns, which regulate sex-dependent liver transcription factors and establish sex-specific chromatin states. Hypophysectomy (hypox) identifies two major classes of liver sex-biased genes, defined by their sex-dependent positive or negative responses to pituitary hormone ablation. However, the mechanisms that underlie each hypox-response class are unknown. We sought to discover candidate, regulatory, long noncoding RNAs (lncRNAs) controlling responsiveness to hypox. We characterized gene structures and expression patterns for 15,558 mouse liver-expressed lncRNAs, including many sex-specific lncRNAs regulated during postnatal development or subject to circadian regulation. Using the high natural allelic variance of Diversity Outbred (DO) mice, we discovered tightly coexpressed clusters of sex-specific protein-coding genes (gene modules) in male and female DO liver. Remarkably, many gene modules were strongly enriched for sex-specific genes within a single hypox-response class, indicating that the genetic heterogeneity of DO mice encompasses responsiveness to hypox. Moreover, several distant gene modules were enriched for gene subsets of the same hypox-response class, highlighting the complex regulation of hypox-responsiveness. Finally, we identified eight sex-specific lncRNAs with strong negative regulatory potential, as indicated by their strong negative correlation of expression across DO mouse livers with that of protein-coding gene modules enriched for genes of the opposite sex bias and inverse hypox-response class. These findings reveal an important role for genetic factors in regulating responsiveness to hypox, and present testable hypotheses for the roles of sex-biased liver lncRNAs in controlling the sex-bias of liver gene expression.
Collapse
Affiliation(s)
- Tisha Melia
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts
- Correspondence: David J. Waxman, PhD, Department of Biology, Boston University, 5 Cummington Mall, Boston, Massachusetts 02215. E-mail:
| |
Collapse
|
21
|
Tang L, Wen JB, Wen P, Li X, Gong M, Li Q. Long non-coding RNA LINC01314 represses cell migration, invasion, and angiogenesis in gastric cancer via the Wnt/β-catenin signaling pathway by down-regulating KLK4. Cancer Cell Int 2019; 19:94. [PMID: 31007611 PMCID: PMC6458728 DOI: 10.1186/s12935-019-0799-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 03/23/2019] [Indexed: 02/07/2023] Open
Abstract
Background In recent years, gastric cancer (GC) has become a major cause of mortality among various malignancies worldwide with high incidence rates. Long non-coding RNA (lncRNAs) may serve as oncogenes and tumor suppressors in cancers. Therefore, we investigated the effect of LINC01314 on the development of GC cells in relation to the Wnt/β-catenin signaling pathway. Methods Microarray data analysis was conducted to screen GC-related differentially expressed lncRNAs, followed by determination of the binding interaction between LINC01314 and kallikrein 4 (KLK4). Human GC cell line SGC-7901 was treated with over-expressed or silenced LINC01314 or KLK4 to investigate the mechanism LINC01314 affecting GC cellular activities. The levels of KLK4, Wnt-1, β-catenin, cyclin D1, N-cadherin and E-cadherin were measured, and cell invasion and migration were evaluated. Next, the tumor weight, micro-vessel density (MVD) and the expression of VEGF-C and VEGFR-3 in transplanted tumors were measured. Results LINC01314 was poorly expressed in GC cells and KLK4 was revealed to be a direct target gene of LINC01314. Overexpressed LINC01314 or silencing of KLK4 led to inhibited GC cell migration and invasion, corresponding to decreased Wnt-1, β-catenin, cyclin D1 and N-cadherin while increased E-cadherin. Also, in response to over-expression of LINC01314 or silencing of KLK4, tumor weight and the MVD of transplanted tumors were reduced and angiogenesis was suppressed, which was indicated by down-regulated positive expression of VEGF-C and VEGFR-3. Conclusion The findings indicated that over-expression of LINC01314 down-regulated KLK4 to inhibit the activation of the Wnt/β-catenin signaling pathway, thus suppressing migration, invasion, and angiogenesis in GC cells, which provides new insight for the treatment of GC.
Collapse
Affiliation(s)
- Lin Tang
- Department of Gastroenterology, Jiangxi Pingxiang People's Hospital, No. 8, Wugongshan Middle Road, Pingxiang, 337000 Jiangxi People's Republic of China
| | - Jian-Bo Wen
- Department of Gastroenterology, Jiangxi Pingxiang People's Hospital, No. 8, Wugongshan Middle Road, Pingxiang, 337000 Jiangxi People's Republic of China
| | - Ping Wen
- Department of Gastroenterology, Jiangxi Pingxiang People's Hospital, No. 8, Wugongshan Middle Road, Pingxiang, 337000 Jiangxi People's Republic of China
| | - Xing Li
- Department of Gastroenterology, Jiangxi Pingxiang People's Hospital, No. 8, Wugongshan Middle Road, Pingxiang, 337000 Jiangxi People's Republic of China
| | - Min Gong
- Department of Gastroenterology, Jiangxi Pingxiang People's Hospital, No. 8, Wugongshan Middle Road, Pingxiang, 337000 Jiangxi People's Republic of China
| | - Qiang Li
- Department of Gastroenterology, Jiangxi Pingxiang People's Hospital, No. 8, Wugongshan Middle Road, Pingxiang, 337000 Jiangxi People's Republic of China
| |
Collapse
|
22
|
Chen X, Pan C, Xu C, Sun Y, Geng Y, Kong L, Xiao X, Zhao Z, Zhou W, Huang L, Song Y, Zhang L. Identification of survival‑associated key genes and long non‑coding RNAs in glioblastoma multiforme by weighted gene co‑expression network analysis. Int J Mol Med 2019; 43:1709-1722. [PMID: 30816427 PMCID: PMC6414176 DOI: 10.3892/ijmm.2019.4101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/14/2019] [Indexed: 11/06/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary malignant brain tumour. However, the causes of GBM are not clear, and the prognosis remains poor. The aim of the present study was to elucidate the key coding genes and long non‑coding RNAs (lncRNAs) associated with the survival time of GBM patients by obtaining the RNA expression profiles from the Chinese Glioma Genome Atlas database and conducting weighted gene co‑expression network analysis. Modules associated with overall survival (OS) were identified, and Gene Ontology and pathway enrichment analyses were performed. The hub genes of these modules were validated via survival analysis, while the biological functions of crucial lncRNAs were also analysed in the publicly available data. The results identified a survival‑associated module with 195 key genes. Among them, 33 key genes were demonstrated to be associated with OS, and the majority of these were involved in extracellular matrix‑associated and tyrosine kinase receptor signalling pathways. Furthermore, LOC541471 was identified as an OS‑associated lncRNA, and was reported to be involved in the oxidative phosphorylation of GBM with pleckstrin‑2. These findings may significantly enhance our understanding on the aetiology and underlying molecular events of GBM, while the identified candidate genes may serve as novel prognostic markers and potential therapeutic targets for GBM.
Collapse
Affiliation(s)
- Xin Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Changcun Pan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Cheng Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Yu Sun
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Yibo Geng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Lu Kong
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Xiong Xiao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Zitong Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Wei Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Lijie Huang
- State Key Laboratory of Molecular Oncology, National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
23
|
Levey DF, Polimanti R, Cheng Z, Zhou H, Nuñez YZ, Jain S, He F, Sun X, Ursano RJ, Kessler RC, Smoller JW, Stein MB, Kranzler HR, Gelernter J. Genetic associations with suicide attempt severity and genetic overlap with major depression. Transl Psychiatry 2019; 9:22. [PMID: 30655502 PMCID: PMC6336846 DOI: 10.1038/s41398-018-0340-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 11/13/2018] [Indexed: 11/09/2022] Open
Abstract
In 2015, ~800,000 people died by suicide worldwide. For every death by suicide there are as many as 25 suicide attempts, which can result in serious injury even when not fatal. Despite this large impact on morbidity and mortality, the genetic influences on suicide attempt are poorly understood. We performed a genome-wide association study (GWAS) of severity of suicide attempts to investigate genetic influences. A discovery GWAS was performed in Yale-Penn sample cohorts of European Americans (EAs, n = 2,439) and African Americans (AAs, n = 3,881). We found one genome-wide significant (GWS) signal in EAs near the gene LDHB (rs1677091, p = 1.07 × 10-8) and three GWS associations in AAs: ARNTL2 on chromosome 12 (rs683813, p = 2.07 × 10-8), FAH on chromosome 15 (rs72740082, p = 2.36 × 10-8), and on chromosome 18 (rs11876255, p = 4.61 × 10-8) in the Yale-Penn discovery sample. We conducted a limited replication analysis in the completely independent Army-STARRS cohorts. rs1677091 replicated in Latinos (LAT, p = 6.52 × 10-3). A variant in LD with FAH rs72740082 (rs72740088; r2 = 0.68) was replicated in AAs (STARRS AA p = 5.23 × 10-3; AA meta, 1.51 × 10-9). When combined for a trans-population meta-analysis, the final sample size included n = 20,153 individuals. Finally, we found significant genetic overlap with major depressive disorder (MDD) using polygenic risk scores from a large GWAS (r2 = 0.007, p = 6.42 × 10-5). To our knowledge, this is the first GWAS of suicide attempt severity. We identified GWS associations near genes involved in anaerobic energy production (LDHB), circadian clock regulation (ARNTL2), and catabolism of tyrosine (FAH). These findings provide evidence of genetic risk factors for suicide attempt severity, providing new information regarding the molecular mechanisms involved.
Collapse
Affiliation(s)
- Daniel F. Levey
- 0000000419368710grid.47100.32Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA ,Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT USA
| | - Renato Polimanti
- 0000000419368710grid.47100.32Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA ,Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT USA
| | - Zhongshan Cheng
- 0000000419368710grid.47100.32Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA ,Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT USA
| | - Hang Zhou
- 0000000419368710grid.47100.32Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA ,Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT USA
| | - Yaira Z. Nuñez
- 0000000419368710grid.47100.32Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA ,Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT USA
| | - Sonia Jain
- 0000 0001 2107 4242grid.266100.3Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA USA
| | - Feng He
- 0000 0001 2107 4242grid.266100.3Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA USA
| | - Xiaoying Sun
- 0000 0001 2107 4242grid.266100.3Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA USA
| | - Robert J. Ursano
- 0000 0001 0421 5525grid.265436.0Uniformed Services University of the Health Sciences, Bethesda, MD USA
| | - Ronald C. Kessler
- 000000041936754Xgrid.38142.3cDepartment of Health Care Policy, Harvard Medical School, Boston, MA USA
| | - Jordan W. Smoller
- 000000041936754Xgrid.38142.3cDepartment of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA ,0000 0004 0386 9924grid.32224.35Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA USA ,grid.66859.34Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Murray B. Stein
- 0000 0001 2107 4242grid.266100.3Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA USA ,0000 0001 2107 4242grid.266100.3Department of Psychiatry, University of California San Diego, La Jolla, CA USA ,0000 0004 0419 2708grid.410371.0VA San Diego Healthcare System, San Diego, CA USA
| | - Henry R. Kranzler
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA ,0000 0004 0420 350Xgrid.410355.6Veterans Integrated Service Network 4 Mental Illness Research, Education and Clinical Center, Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
| | - Joel Gelernter
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA. .,Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA. .,Department of Genetics, Yale University School of Medicine, New Haven, CT, USA. .,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
24
|
Wang G, Shi B, Fu Y, Zhao S, Qu K, Guo Q, Li K, She J. Hypomethylated gene NRP1 is co-expressed with PDGFRB and associated with poor overall survival in gastric cancer patients. Biomed Pharmacother 2019; 111:1334-1341. [PMID: 30841447 DOI: 10.1016/j.biopha.2019.01.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/03/2019] [Accepted: 01/06/2019] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) has been an increasingly serious problem in public health. However, there is still a lack of efficient approach to diagnosis and treatment in time, especially in the field of targeted therapy. Increasing evidences demonstrated that DNA methylation plays an essential role in tumorigenesis and progression of GC. Thus the present study aims to identify DNA methylation-based prognostic biomarkers in GC. Two methylation array datasets (GSE25869 and GSE30601) and RNA-seq based gene profiling dataset (TCGA-STAD) were employed for exploring candidate DNA methylation-based biomarkers. Univariate Cox regression analysis was used to select the most efficient prognostic genes in GC patients. Weighted gene correlation network analysis (WGCNA) was performed to screen the cluster of co-expressed genes. As a result, our data proved that NRP1 was a hypomethylated / upregulated gene in GC tissues, and PDGFRB was strongly co-expressed with it. Both of them were significantly associated with the overall survival of patients. More importantly, high expression levels of NRP1 and PDGFRB were associated with malignant phenotypes in GC patients, including Laurén histological diffuse type and higher histological grade. Patients carrying high expression level of NRP1 and PDGFRB had a nearly two-fold increased death risk than others. In summary, the hypomethylated gene, NRP1, and its co-expressed gene, PDGFRB, were significantly correlated with tumor malignant phenotypes, which might serve as potential prognostic biomarkers for GC patients.
Collapse
Affiliation(s)
- Guanghui Wang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Bin Shi
- Department of Gastroenterology Surgery, Liaocheng People's Hospital, Taishan Medical College, Liaocheng, 252000, Shandong, China
| | - Yunong Fu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Shasha Zhao
- Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Kai Qu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Qingbo Guo
- Department of Clinical Laboratory, Yidu Central Hospital of Weifang, Weifang, 262500, Shandong, China
| | - Ke Li
- Department of Central Laboratory, Liaocheng People's Hospital, Taishan Medical College, Liaocheng, 252000, Shandong, China.
| | - Junjun She
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|