1
|
Li W, Liu N, Chen M, Liu D, Liu S. Metformin as an immunomodulatory agent in enhancing head and neck squamous cell carcinoma therapies. Biochim Biophys Acta Rev Cancer 2025; 1880:189262. [PMID: 39827973 DOI: 10.1016/j.bbcan.2025.189262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Head and neck squamous cell carcinoma (HNSCC) remains a significant clinical challenge due to its aggressive behavior and poor prognosis, making the development of novel therapeutics with enhanced efficacy and minimal side effects critical. Metformin, a widely used antidiabetic agent, has recently emerged as a potential adjunctive therapy for HNSCC, exhibiting both direct anti-tumor and immunomodulatory effects. This review comprehensively explores the multifaceted role of metformin in shaping the tumor immune microenvironment within HNSCC. We emphasize its pivotal role in modulating immune cell populations and its potential for synergistic action with immunotherapeutic strategies. Furthermore, we address the current challenges associated with optimizing dosing regimens, identifying predictive biomarkers, and integrating metformin with immunotherapy. By dissecting these aspects, this review aims to pave the way for the development of personalized HNSCC treatment strategies that fully exploit the therapeutic potential of metformin.
Collapse
Affiliation(s)
- Wenting Li
- Department of Dental Materials, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, No. 117 Nanjing North Street, Heping District, Shenyang 110002, Liaoning, China
| | - Nanshu Liu
- Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, No. 117 Nanjing North Street, Heping District, Shenyang 110002, Liaoning, China
| | - Mingwei Chen
- Department of Dental Materials, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, No. 117 Nanjing North Street, Heping District, Shenyang 110002, Liaoning, China
| | - Dongjuan Liu
- Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, No. 117 Nanjing North Street, Heping District, Shenyang 110002, Liaoning, China.
| | - Sai Liu
- Department of Dental Materials, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, No. 117 Nanjing North Street, Heping District, Shenyang 110002, Liaoning, China.
| |
Collapse
|
2
|
Wu N, Cai J, Jiang J, Lin Y, Wang X, Zhang W, Kang M, Zhang P. Biomarkers of lymph node metastasis in esophageal cancer. Front Immunol 2024; 15:1457612. [PMID: 39399490 PMCID: PMC11466839 DOI: 10.3389/fimmu.2024.1457612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024] Open
Abstract
Esophageal cancer (EC) is among the most aggressive malignancies, ranking as the seventh most prevalent malignant tumor worldwide. Lymph node metastasis (LNM) indicates localized spread of cancer and often correlates with a poorer prognosis, emphasizing the necessity for neoadjuvant systemic therapy before surgery. However, accurate identification of LNM in EC presents challenges due to the lack of satisfactory diagnostic techniques. Imaging techniques, including ultrasound and computerized tomography scans, have low sensitivity and accuracy in assessing LNM. Additionally, the existing serological detection lacks precise biomarkers. The intricate and not fully understood molecular processes involved in LNM of EC contribute to current detective limitations. Recent research has shown potential in using various molecules, circulating tumor cells (CTCs), and changes in the microbiota to identify LNM in individuals with EC. Through summarizing potential biomarkers associated with LNM in EC and organizing the underlying mechanisms involved, this review aims to provide insights that facilitate biomarker development, enhance our understanding of the underlying mechanisms, and ultimately address the diagnostic challenges of LNM in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital,
Fuzhou, China
| | - Peipei Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital,
Fuzhou, China
| |
Collapse
|
3
|
Qiao B, Chen Z, Huang J, Lam AKY, Mei Z, Li Y, Qiao J. Lipopolysaccharide-binding protein as a biomarker in oral and maxillofacial tumors. Oral Dis 2023; 29:892-901. [PMID: 34653303 DOI: 10.1111/odi.14042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 12/01/2022]
Abstract
Oral and maxillofacial tumors (OMTs), such as oral squamous cell carcinoma (SCC), pleomorphic adenoma, and ameloblastoma, are common head and neck tumors. Lipopolysaccharide-binding protein (LBP) is a type I acute reactive protein, which participates in body inflammatory response modulation through lipopolysaccharide (LPS)-induced signaling pathway by targeting macrophages (expressing cluster of differentiation 204 [CD204]). Although it is well established that LBP is associated with the development of multiple types of cancer, little is known about the role of LBP in OMTs. This study aims to explore the expression of LBP in OMTs. Here, immunohistochemical (IHC) double staining of LBP and CD204 and enzyme-linked immunosorbent assay (ELISA) were conducted to explore the LBP expression in OMTs. The findings demonstrated that the LBP expression in OMTs was significantly elevated (p < 0.001). In addition, the LBP expression was associated with the clinical stage (p < 0.001), T classification (p < 0.001), and lymph node metastasis (p < 0.001, except ELISA) but independent of histological grade of SCC, gender, and age in patients with SCC. The optional cutoff of the LBP serum level is 0.721 μg/ml. To conclude, LBP contributes to the development of OMTs and could be a biomarker in the screening and predicting metastasis in patients with OMTs.
Collapse
Affiliation(s)
- Bin Qiao
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhuo Chen
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junwen Huang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology and Griffith Medical School, Griffith University, Gold Coast, Queensland, Australia
| | - Zi Mei
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Li
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Qiao
- School of Life Science and Technology, Wuhan Polytechnic University, Hubei, China
| |
Collapse
|
4
|
Porphyromonas gingivalis-Derived Lipopolysaccharide Promotes Glioma Cell Proliferation and Migration via Activating Akt Signaling Pathways. Cells 2022; 11:cells11244088. [PMID: 36552854 PMCID: PMC9777333 DOI: 10.3390/cells11244088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Periodontitis is significantly associated with the risk of cancers in the lung and the digestive system. Emerging evidence shows a plausible link between periodontitis and several types of brain diseases. However, the association between periodontal infection and glioma remains unclear. In the cultured GL261 glioma cells, P. gingivalis lipopolysaccharide (LPS) significantly promoted cell proliferation at concentrations ranging from 10 to 1000 ng/mL. It promoted cell migration at a higher concentration (100 and 1000 ng/mL). Additionally, exposure to 100 ng/mL P. gingivalis LPS induced a significant increase in the expression of TNF-α, TGF-β, MMP2, and MMP9, as well as the phosphorylation level of Akt at Ser473. These changes induced by P. gingivalis LPS were significantly antagonized by the Akt inhibitor. Furthermore, a total of 48 patients with brain tumors were enrolled to investigate their periodontal status before receiving tumor management. Poor periodontal status [probing depth (PD) ≥ 6 mm and attachment loss (AL) >5 mm] was found in 42.9% (9/21) of patients with glioma, which was significantly higher than that in patients with benign tumors and the relevant data in the 4th National Oral Health Survey in China. The glioma patients with both AL > 5 mm and PD ≥ 6 mm had a higher ki-67 labeling index than those with AL ≤ 5 mm or PD < 6 mm. These findings support the association between periodontal infection and glioma progression.
Collapse
|
5
|
Sun L, Zhu Z, Jia X, Ying X, Wang B, Wang P, Zhang S, Yu J. The difference of human gut microbiome in colorectal cancer with and without metastases. Front Oncol 2022; 12:982744. [PMID: 36387258 PMCID: PMC9665410 DOI: 10.3389/fonc.2022.982744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/30/2022] [Indexed: 01/24/2023] Open
Abstract
Metastasis of colorectal cancer is deemed to be closely related to the changes in the human gut microbiome. The purpose of our study is to distinguish the differences in gut microbiota between colorectal cancer with and without metastases. Firstly, this study recruited colorectal cancer patients who met the established inclusion and exclusion criteria in the Oncology Department of Zhejiang Hospital of Traditional Chinese Medicine from February 2019 to June 2019. Fresh stool samples from healthy volunteers, non-metastatic patients, and metastatic patients were collected for 16S rRNA gene sequencing, to analyze the diversity and abundance of intestinal microorganisms in each group. The results showed that the microbial composition of the control group was more aplenty than the experimental group, while the difference also happened in the Tumor and the metastases group. At the phylum level, the abundance of Bacteroidetes significantly declined in the Tumor and the metastases group, compared with the control group. At the class level, Bacilli increased in experimental groups, while its abundance in the Tumor group was significantly higher than that in the metastases group. At the order level, the Tumor group had the highest abundance of Lactobacillales, followed by the metastases group and the control group had the lowest abundance. Overall, our study showed that the composition of the flora changed with the occurrence of metastasis in colorectal cancer. Therefore, the analysis of gut microbiota can serve as a supplement biological basis for the diagnosis and treatment of metastatic colorectal cancer which may offer the potential to develop non-invasive diagnostic tests.
Collapse
Affiliation(s)
- Leitao Sun
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Zhenzheng Zhu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xinru Jia
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiangchang Ying
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Binbin Wang
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Peipei Wang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China,*Correspondence: Jieru Yu, ; Shuo Zhang, ; Peipei Wang,
| | - Shuo Zhang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (Xinhua Hospital of Zhejiang Province), Hangzhou, Zhejiang, China,*Correspondence: Jieru Yu, ; Shuo Zhang, ; Peipei Wang,
| | - Jieru Yu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China,*Correspondence: Jieru Yu, ; Shuo Zhang, ; Peipei Wang,
| |
Collapse
|
6
|
Macrophage polarization in THP-1 cell line and primary monocytes: A systematic review. Differentiation 2022; 128:67-82. [DOI: 10.1016/j.diff.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/27/2022] [Accepted: 10/02/2022] [Indexed: 11/21/2022]
|
7
|
Kabwe M, Dashper S, Tucci J. The Microbiome in Pancreatic Cancer-Implications for Diagnosis and Precision Bacteriophage Therapy for This Low Survival Disease. Front Cell Infect Microbiol 2022; 12:871293. [PMID: 35663462 PMCID: PMC9160434 DOI: 10.3389/fcimb.2022.871293] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
While the mortality rates for many cancers have decreased due to improved detection and treatments, that of pancreatic cancer remains stubbornly high. The microbiome is an important factor in the progression of many cancers. Greater understanding of the microbiome in pancreatic cancer patients, as well as its manipulation, may assist in diagnosis and treatment of this disease. In this report we reviewed studies that compared microbiome changes in pancreatic cancer patients and non-cancer patients. We then identified which bacterial genera were most increased in relative abundance across the oral, pancreatic, duodenal, and faecal tissue microbiomes. In light of these findings, we discuss the potential for utilising these bacteria as diagnostic biomarkers, as well as their potential control using precision targeting with bacteriophages, in instances where a causal oncogenic link is made.
Collapse
Affiliation(s)
- Mwila Kabwe
- Department of Rural Clinical Sciences, La Trobe Rural Health School, La Trobe University, Bendigo, VIC, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
| | - Stuart Dashper
- Melbourne Dental School, University of Melbourne, Melbourne, VIC, Australia
| | - Joseph Tucci
- Department of Rural Clinical Sciences, La Trobe Rural Health School, La Trobe University, Bendigo, VIC, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
| |
Collapse
|
8
|
Banavar G, Ogundijo O, Toma R, Rajagopal S, Lim YK, Tang K, Camacho F, Torres PJ, Gline S, Parks M, Kenny L, Perlina A, Tily H, Dimitrova N, Amar S, Vuyisich M, Punyadeera C. The salivary metatranscriptome as an accurate diagnostic indicator of oral cancer. NPJ Genom Med 2021; 6:105. [PMID: 34880265 PMCID: PMC8654845 DOI: 10.1038/s41525-021-00257-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Despite advances in cancer treatment, the 5-year mortality rate for oral cancers (OC) is 40%, mainly due to the lack of early diagnostics. To advance early diagnostics for high-risk and average-risk populations, we developed and evaluated machine-learning (ML) classifiers using metatranscriptomic data from saliva samples (n = 433) collected from oral premalignant disorders (OPMD), OC patients (n = 71) and normal controls (n = 171). Our diagnostic classifiers yielded a receiver operating characteristics (ROC) area under the curve (AUC) up to 0.9, sensitivity up to 83% (92.3% for stage 1 cancer) and specificity up to 97.9%. Our metatranscriptomic signature incorporates both taxonomic and functional microbiome features, and reveals a number of taxa and functional pathways associated with OC. We demonstrate the potential clinical utility of an AI/ML model for diagnosing OC early, opening a new era of non-invasive diagnostics, enabling early intervention and improved patient outcomes.
Collapse
Affiliation(s)
- Guruduth Banavar
- Viome Research Institute, Viome Life Sciences, Inc., New York City, USA.
| | - Oyetunji Ogundijo
- Viome Research Institute, Viome Life Sciences, Inc., New York City, USA
| | - Ryan Toma
- Viome Research Institute, Viome Life Sciences, Inc., Seattle, USA
| | | | - Yen Kai Lim
- The Saliva and Liquid Biopsy Translational Laboratory, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia
- The Translational Research Institute, Woolloongabba, Brisbane, QLD, Australia
| | - Kai Tang
- The Saliva and Liquid Biopsy Translational Laboratory, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia
- The Translational Research Institute, Woolloongabba, Brisbane, QLD, Australia
| | - Francine Camacho
- Viome Research Institute, Viome Life Sciences, Inc., New York City, USA
| | - Pedro J Torres
- Viome Research Institute, Viome Life Sciences, Inc., New York City, USA
| | - Stephanie Gline
- Viome Research Institute, Viome Life Sciences, Inc., New York City, USA
| | - Matthew Parks
- Viome Research Institute, Viome Life Sciences, Inc., New York City, USA
| | - Liz Kenny
- The School of Medicine, University of Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Ally Perlina
- Viome Research Institute, Viome Life Sciences, Inc., Seattle, USA
| | - Hal Tily
- Viome Research Institute, Viome Life Sciences, Inc., New York City, USA
| | | | | | | | - Chamindie Punyadeera
- The Saliva and Liquid Biopsy Translational Laboratory, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia.
- The Translational Research Institute, Woolloongabba, Brisbane, QLD, Australia.
| |
Collapse
|
9
|
Utispan K, Koontongkaew S. Mucin 1 regulates the hypoxia response in head and neck cancer cells. J Pharmacol Sci 2021; 147:331-339. [PMID: 34663515 DOI: 10.1016/j.jphs.2021.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 11/20/2022] Open
Abstract
Mucin 1 (MUC1) is a transmembrane glycoprotein that contributes to the cellular response in hypoxic conditions in different carcinomas. We investigated the gene expression pattern of MUCs (1, 2, 4, 5AC, 5B, 6, 15, 16, and 19) in isogenic primary (HN4 and HN30) and metastatic (HN12 and HN31) head and neck squamous cell carcinoma (HNSCC) cell lines. MUC1 was significantly up-regulated at the mRNA and protein levels in HN12 and HN31 cells, whereas, other MUCs exhibited diverse expression patterns between HNSCC cell lines. Immunohistochemistry demonstrated that MUC1 was exclusively expressed in cancer cells; however, there was no significant correlation between MUC1 expression and malignancy grading. Inducing hypoxia with CoCl2 significantly increased cell viability, MUC1, hypoxia-inducible factor alpha (HIF-1α), and vascular endothelial growth factor A (VEGF-A) expression in HN12 cells, but not HN31 cells. Interestingly, in hypoxia, cell viability, HIF-1α and VEGF-A expression were significantly reduced in MUC1-knockdown HN12 cells. The current report is the first to demonstrate that MUC1 is required in the regulation of hypoxia-related genes in HNSCC cells. Thus, our results suggest that MUC1 modulates the hypoxic effects in HNSCC cells through HIF-1α regulation.
Collapse
Affiliation(s)
- Kusumawadee Utispan
- Oral Biology Research Unit, Faculty of Dentistry, Thammasat University (Rangsit Campus), Pathum Thani, 12121, Thailand.
| | | |
Collapse
|
10
|
Sun J, Tang Q, Zhang J, Chen G, Peng J, Chen L. Possible Immunotherapeutic Strategies Based on Carcinogen-Dependent Subgroup Classification for Oral Cancer. Front Mol Biosci 2021; 8:717038. [PMID: 34497832 PMCID: PMC8419237 DOI: 10.3389/fmolb.2021.717038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/23/2021] [Indexed: 11/13/2022] Open
Abstract
The oral cavity serves as an open local organ of the human body, exposed to multiple external factors from the outside environment. Coincidentally, initiation and development of oral cancer are attributed to many external factors, such as smoking and drinking, to a great extent. This phenomenon was partly explained by the genetic abnormalities traditionally induced by carcinogens. However, more and more attention has been attracted to the influence of carcinogens on the local immune status. On the other hand, immune heterogeneity of cancer patients is a huge obstacle for enhancing the clinical efficacy of tumor immunotherapy. Thus, in this review, we try to summarize the current opinions about variant genetic changes and multiple immune alterations induced by different oral cancer carcinogens and discuss the prospects of targeted immunotherapeutic strategies based on specific immune abnormalities caused by different carcinogens, as a predictive way to improve clinical outcomes of immunotherapy-treated oral cancer patients.
Collapse
Affiliation(s)
- Jiwei Sun
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Junyuan Zhang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Guangjin Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jinfeng Peng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
11
|
Chakraborty R, Vickery K, Darido C, Ranganathan S, Hu H. Bacterial Antigens Reduced the Inhibition Effect of Capsaicin on Cal 27 Oral Cancer Cell Proliferation. Int J Mol Sci 2021; 22:ijms22168686. [PMID: 34445392 PMCID: PMC8395464 DOI: 10.3390/ijms22168686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 11/19/2022] Open
Abstract
Oral cancer is a major global health problem with high incidence and low survival rates. The oral cavity contains biofilms as dental plaques that harbour both Gram-negative and Gram-positive bacterial antigens, lipopolysaccharide (LPS) and lipoteichoic acid (LTA), respectively. LPS and LTA are known to stimulate cancer cell growth, and the bioactive phytochemical capsaicin has been reported to reverse this effect. Here, we tested the efficacy of oral cancer chemotherapy treatment with capsaicin in the presence of LPS, LTA or the combination of both antigens. LPS and LTA were administered to Cal 27 oral cancer cells prior to and/or concurrently with capsaicin, and the treatment efficacy was evaluated by measuring cell proliferation and apoptotic cell death. We found that while capsaicin inhibits oral cancer cell proliferation and metabolism (MT Glo assay) and increases cell death (Trypan blue exclusion assay and Caspase 3/7 expression), its anti-cancer effect was significantly reduced on cells that are either primed or exposed to the bacterial antigens. Capsaicin treatment significantly increased oral cancer cells’ suppressor of cytokine signalling 3 gene expression. This increase was reversed in the presence of bacterial antigens during treatment. Our data establish a rationale for clinical consideration of bacterial antigens that may interfere with the treatment efficacy of oral cancer.
Collapse
Affiliation(s)
- Rajdeep Chakraborty
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (R.C.); (K.V.)
- Applied Biosciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia;
| | - Karen Vickery
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (R.C.); (K.V.)
| | - Charbel Darido
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia;
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Shoba Ranganathan
- Applied Biosciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia;
| | - Honghua Hu
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (R.C.); (K.V.)
- Correspondence:
| |
Collapse
|
12
|
Chen Q, Shao Z, Liu K, Zhou X, Wang L, Jiang E, Luo T, Shang Z. Salivary Porphyromonas gingivalis predicts outcome in oral squamous cell carcinomas: a cohort study. BMC Oral Health 2021; 21:228. [PMID: 33941164 PMCID: PMC8091688 DOI: 10.1186/s12903-021-01580-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 04/21/2021] [Indexed: 01/11/2023] Open
Abstract
Background Studies suggest Porphyromonas gingivalis (Pg) increased the incidence of oral squamous cell carcinoma (OSCC). However, fimA genotypes distribution of Pg, the origination of Pg in tissue, and its prognostic value are inconclusive. We aimed to investigate the frequency of fimA genotypes in OSCC patients, study the association between Pg and OSCC, and explore the prognostic value of Pg. Methods The abundance of Pg in saliva from the OSCC group and the OSCC-free group was analysed by qPCR. The presence of Pg was explored in OSCC tissue and para-cancerous tissue by in situ hybridization. The frequency of fimA genotypes in saliva and OSCC tissue was determined by PCR, then PCR products were sequenced and compared. Clinical data were extracted, and patients followed up for a median period of 23 months. Clinicopathological variables were compared with the abundance of Pg using Pearson Chi-square test or Fisher’s exact test. The disease-free survival (DFS) rate was calculated by Kaplan–Meier method with log-rank tests. Results Comparing the OSCC-free group, 95 patients with OSCC showed a high abundance of Pg in saliva (P = 0.033), and OSCC tissue showed strong in situ expression of Pg compared with paired normal tissue. Patients with OSCC showed a dominant distribution of Pg with genotype I + Ib (21.1%), II (31.6%), and IV (21.1%). FimA genotypes detected in saliva were in accordance with those in OSCC tissue, there was, moreover, a significant similarity in amplified Pg fragments. Of the 94 responsive OSCC patients, the recurrence rate was 26.6% (25/94). Overabundance of Pg in saliva showed advanced pathologic staging (P = 0.008), longer disease-free time (P = 0.029) and lower recurrence rate (P = 0.033). The overabundance of Pg in saliva was associated with improved disease-free survival (P = 0.049). Conclusions This study indicated that Pg might involve in the pathogenesis of OSCC, Pg carrying fimA I, Ib, II, and IV were prevalent genotypes in patients with OSCC, the provenance of Pg in OSCC tissue might be from the salivary microbial reservoir, and the abundance of Pg in saliva might consider as a favorable potential prognostic indicator in OSCC.
Collapse
Affiliation(s)
- Qingli Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospita1 of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, People's Republic of China
| | - Zhe Shao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospita1 of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, People's Republic of China.,Department of Oral and Maxillofacial-Head and Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Ke Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospita1 of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, People's Republic of China.,Department of Oral and Maxillofacial-Head and Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Xiaocheng Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospita1 of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, People's Republic of China
| | - Lin Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospita1 of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, People's Republic of China
| | - Erhui Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospita1 of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, People's Republic of China.,Department of Oral and Maxillofacial-Head and Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Tingting Luo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospita1 of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, People's Republic of China
| | - Zhengjun Shang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospita1 of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, People's Republic of China. .,Department of Oral and Maxillofacial-Head and Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China.
| |
Collapse
|
13
|
Núñez-Acurio D, Bravo D, Aguayo F. Epstein-Barr Virus-Oral Bacterial Link in the Development of Oral Squamous Cell Carcinoma. Pathogens 2020; 9:E1059. [PMID: 33352891 PMCID: PMC7765927 DOI: 10.3390/pathogens9121059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer. Its development has been associated with diverse factors such as tobacco smoking and alcohol consumption. In addition, it has been suggested that microorganisms are risk factors for oral carcinogenesis. Epstein-Barr virus (EBV), which establishes lifelong persistent infections and is intermittently shed in the saliva, has been associated with several lymphomas and carcinomas that arise in the oral cavity. In particular, it has been detected in a subset of OSCCs. Moreover, its presence in patients with periodontitis has also been described. Porphyromonas gingivalis (P. gingivalis) is an oral bacterium in the development of periodontal diseases. As a keystone pathogen of periodontitis, P. gingivalis is known not only to damage local periodontal tissues but also to evade the host immune system and eventually affect systemic health. Persistent exposure to P. gingivalis promotes tumorigenic properties of oral epithelial cells, suggesting that chronic P. gingivalis infection is a potential risk factor for OSCC. Given that the oral cavity serves as the main site where EBV and P. gingivalis are harbored, and because of their oncogenic potential, we review here the current information about the participation of these microorganisms in oral carcinogenesis, describe the mechanisms by which EBV and P. gingivalis independently or synergistically can collaborate, and propose a model of interaction between both microorganisms.
Collapse
Affiliation(s)
- Daniela Núñez-Acurio
- Laboratory of Oral Microbiology, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile;
- Laboratory of Oncovirology, Virology Program, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago 8380000, Chile
| | - Denisse Bravo
- Laboratory of Oral Microbiology, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile;
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Francisco Aguayo
- Laboratory of Oncovirology, Virology Program, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago 8380000, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| |
Collapse
|
14
|
Liu Y, Yuan X, Chen K, Zhou F, Yang H, Yang H, Qi Y, Kong J, Sun W, Gao S. Clinical significance and prognostic value of Porphyromonas gingivalis infection in lung cancer. Transl Oncol 2020; 14:100972. [PMID: 33279803 PMCID: PMC7718477 DOI: 10.1016/j.tranon.2020.100972] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
A variety of pathogenic microorganisms can promote the occurrence and development of malignant tumors by colonizing in the body. It has been shown that Porphyromonas gingivalis (P. gingivalis) can be colonized for a long time in upper gastrointestinal tumors and is closely related to the occurrence and development of esophageal cancer in previous studies of our team. Because the esophagus and trachea are closely adjacent and P. gingivalis can instantly enter and colonize in cells, we speculate that P. gingivalis may be colonized in lung cancer cells through oral or blood, promoting the malignant progression of lung cancer. In this study, we investigated P. gingivalis infection in lung carcinoma tissues and adjacent lung tissues, and found that the colonization rate of P. gingivalis in carcinoma tissues was significantly higher than that in adjacent lung tissues. Therefore, we propose that the microenvironment of cancer cells is more conducive to the survival of P. gingivalis. Then, we analyzed the correlation between P. gingivalis infection and clinicopathological features and survival prognosis of patients with lung cancer. It was found that P. gingivalis infection was closely related to smoking, drinking, lymph node metastasis and clinical stage. Moreover, the survival rate and median survival time of patients with P. gingivalis infection were significantly shortened. Therefore, we put forward the view that long term smoking and drinking will cause a bad oral environment, increasing the risk of P. gingivalis infection, then P. gingivalis infection will promote the malignant progression of lung cancer.
Collapse
Affiliation(s)
- Yiwen Liu
- School of Information Engineering, Henan University of Science and Technology, Luoyang 471023, China; Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, the First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Xiang Yuan
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, the First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Kuisheng Chen
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Fuyou Zhou
- Department of Thoracic Surgery, Department of Pathology, Anyang Tumor Hospital, Anyang 455000, China
| | - Haijun Yang
- Department of Thoracic Surgery, Department of Pathology, Anyang Tumor Hospital, Anyang 455000, China
| | - Hong Yang
- School of PE, Henan University of Science and Technology, Luoyang 471023, China
| | - Yijun Qi
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, the First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Jinyu Kong
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, the First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Wei Sun
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, the First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Shegan Gao
- School of Information Engineering, Henan University of Science and Technology, Luoyang 471023, China; Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, the First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China.
| |
Collapse
|
15
|
The interplay of the oral microbiome and alcohol consumption in oral squamous cell carcinomas. Oral Oncol 2020; 110:105011. [PMID: 32980528 DOI: 10.1016/j.oraloncology.2020.105011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/11/2020] [Accepted: 09/11/2020] [Indexed: 12/24/2022]
Abstract
Oral cancer (OC) is among the top twenty occurring cancers in the world, with a mortality rate of 50%. A shift to a functionally inflammatory or a 'disease state' oral microbiome composition has been observed amongst patients with premalignant disorders and OC, with evidence suggesting alcohol could be exacerbating the inflammatory influence of the oral microorganisms. Alcohol dehydrogenase (ADH, EC 1.1.1.1) converts alcohol into a known carcinogenic metabolite, acetaldehyde and while ADH levels in oral mucosa are low, several oral commensal species possess ADH and could produce genotoxic levels of acetaldehyde. With a direct association between oral microbiome status, alcohol and poor oral health status combining to induce chronic inflammation with increased acetaldehyde levels - this leads to a tumour promoting environment. This new disease state increases the production of reactive oxygen species (ROS), while impairing anti-oxidant systems thus activating the redox signalling required for the promotion and survival of tumours. This review aims to highlight the evidence linking these processes in the progression of oral cancer.
Collapse
|
16
|
Ternes D, Karta J, Tsenkova M, Wilmes P, Haan S, Letellier E. Microbiome in Colorectal Cancer: How to Get from Meta-omics to Mechanism? Trends Microbiol 2020; 28:401-423. [PMID: 32298617 DOI: 10.1016/j.tim.2020.01.001] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/20/2019] [Accepted: 01/10/2020] [Indexed: 02/07/2023]
Abstract
Mounting evidence from metagenomic analyses suggests that a state of pathological microbial imbalance or dysbiosis is prevalent in the gut of patients with colorectal cancer. Several bacterial taxa have been identified of which representative isolate cultures interact with human cancer cells in vitro and trigger disease pathways in animal models. However, how the complex interrelationships in dysbiotic communities may be involved in cancer pathogenesis remains a crucial question. Here, we provide a survey of current knowledge of the gut microbiome in colorectal cancer. Moving beyond observational studies, we outline new experimental approaches for gaining ecosystem-level mechanistic understanding of the gut microbiome's role in cancer pathogenesis.
Collapse
Affiliation(s)
- Dominik Ternes
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jessica Karta
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Mina Tsenkova
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Paul Wilmes
- Eco-Systems Biology group, Luxembourg Center for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Serge Haan
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Elisabeth Letellier
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
17
|
Geng F, Wang Q, Li C, Liu J, Zhang D, Zhang S, Pan Y. Identification of Potential Candidate Genes of Oral Cancer in Response to Chronic Infection With Porphyromonas gingivalis Using Bioinformatical Analyses. Front Oncol 2019; 9:91. [PMID: 30847302 PMCID: PMC6394248 DOI: 10.3389/fonc.2019.00091] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/31/2019] [Indexed: 12/27/2022] Open
Abstract
Recent investigations revealed the relationship between chronic periodontitis, Porphyromonas gingivalis and cancer. However, host genes that change in response to chronic infection with P. gingivalis and may contribute to oral cancer have remained largely unknown. In the present study, we aimed to comprehensively analyze microarray data obtained from the chronic infection model of immortalized oral epithelial cells that were persistently exposed to P. gingivalis for 15 weeks. Using protein-protein interaction (PPI) networks and Ingenuity Pathway Analysis (IPA), we identified hub genes, major biological processes, upstream regulators and genes potentially involved in tumor initiation and progression. We also validated gene expression and demonstrated genetic alteration of hub genes from clinical samples of head and neck cancer. Overall, we utilized bioinformatical methods to identify IL6, STAT1, LYN, BDNF, C3, CD274, PDCD1LG2, and CXCL10 as potential candidate genes that might facilitate the prevention and treatment of oral squamous cell carcinoma (OSCC), the most common type of head and neck squamous cell carcinoma (HNSCC).
Collapse
Affiliation(s)
- Fengxue Geng
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Qingxuan Wang
- State Key Laboratory of Oral Disease, School of Stomatology, Sichuan University, Chengdu, China
| | - Chen Li
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Junchao Liu
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Dongmei Zhang
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Shuwei Zhang
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Yaping Pan
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
18
|
Olsen I, Yilmaz Ö. Possible role of Porphyromonas gingivalis in orodigestive cancers. J Oral Microbiol 2019; 11:1563410. [PMID: 30671195 PMCID: PMC6327928 DOI: 10.1080/20002297.2018.1563410] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/11/2018] [Accepted: 12/15/2018] [Indexed: 02/07/2023] Open
Abstract
There is increasing evidence for an association between periodontitis/tooth loss and oral, gastrointestinal, and pancreatic cancers. Periodontal disease, which is characterized by chronic inflammation and microbial dysbiosis, is a significant risk factor for orodigestive carcinogenesis. Porphyromonas gingivalis is proposed as a keystone pathogen in chronic periodontitis causing both dysbiosis and discordant immune response. The present review focuses on the growing recognition of a relationship between P. gingivalis and orodigestive cancers. Porphyromonas gingivalis has been recovered in abundance from oral squamous cell carcinoma (OSCC). Recently established tumorigenesis models have indicated a direct relationship between P. gingivalis and carcinogenesis. The bacterium upregulates specific receptors on OSCC cells and keratinocytes, induces epithelial-to-mesenchymal (EMT) transition of normal oral epithelial cells and activates metalloproteinase-9 and interleukin-8 in cultures of the carcinoma cells. In addition, P. gingivalis accelerates cell cycling and suppresses apoptosis in cultures of primary oral epithelial cells. In oral cancer cells, the cell cycle is arrested and there is no effect on apoptosis, but macro autophagy is increased. Porphyromonas gingivalis promotes distant metastasis and chemoresistance to anti-cancer agents and accelerates proliferation of oral tumor cells by affecting gene expression of defensins, by peptidyl-arginine deiminase and noncanonical activation of β-catenin. The pathogen also converts ethanol to the carcinogenic intermediate acetaldehyde. In addition, P. gingivalis can be implicated in precancerous gastric and colon lesions, esophageal squamous cell carcinoma, head and neck (larynx, throat, lip, mouth and salivary glands) carcinoma, and pancreatic cancer. The fact that distant organs can be involved clearly emphasizes that P. gingivalis has systemic tumorigenic effects in addition to the local effects in its native territory, the oral cavity. Although coinfection with other bacteria, viruses, and fungi occurs in periodontitis, P. gingivalis relates to cancer even in absence of periodontitis. Thus, there may be a direct relationship between P. gingivalis and orodigestive cancers.
Collapse
Affiliation(s)
- Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Özlem Yilmaz
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|