1
|
Dash UC, Swain SK, Jena AB, Dandapat J, Sahoo AK. The ameliorative effect of Piper trioicum in attenuating cognitive deficit in scopolamine induced neurotoxicity in experimental rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116911. [PMID: 37451488 DOI: 10.1016/j.jep.2023.116911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional system of medicine, Piper species, or its components are widely used to treat many diseases including memory improvement. One of the wild species Piper trioicum Roxb. (Piperaceae) is found in South Asian countries. The whole plant is used as folk medicine to improve memory. AIM OF THE STUDY To our knowledge, no previous research has investigated the neuroprotective activities of P. trioicum. So, we studied the ameliorative effect of P. trioicum in attenuating cognitive deficit in scopolamine induced neurotoxicity in experimental rats. MATERIALS AND METHODS Wistar rats were exposed to scopolamine (3 mg/kg, i. p.) for 14 consecutive days, and the effect of P. trioicum (HAPT; oral, 300, 400 mg/kg) on scopolamine-invoked neurotoxicity in brain were studied. During the experimental period, behaviour analyses of rats were observed 30 min post-drug administration. The role of antioxidants of HAPT in scavenging cellular oxygen/peroxyl radicals were studied. Acetylcholinesterase and butyrylcholinesterase inhibitions, and mode of inhibition kinetics of HAPT were studied. Pathogenic cellular oxidative (MDA, GSH, SOD, and CAT), DNA damage (8-oxodG), neurochemical (acetyl- and, butyryl-cholinesterase), β-secretase (BACE-1 and 2), MAPτ, and neuroinflammation (IL-6, TNF-α) biomarkers in extension to the histopathological observation of brain cortex were studied. GC-MS/MS analysis was carried out to investigate the presence of bioactive constituents in HAPT. RESULTS HAPT, a rich source of phenol and flavonoid type antioxidants were responsible in quenching oxygen/peroxyl radicals and protected the cellular membrane, and lipoproteins against ROS in DPPH, ORAC, and CAPe tests. HAPT inhibited acetylcholinesterase and butyrylcholinesterase activities, and showed competitive-inhibition (reversible) towards cholinesterase activities. HAPT-400 significantly improved the learning and memory-impairment by restoring oxidative MDA, GSH, SOD, CAT, and DNA damage (8-oxodG) markers of serum, and cortex. It also improved acetyl- and, butyryl-cholinesterase, β-secretase, and MAPτ level in brain by restoring proinflammatory cytokines IL-6, and TNF-α indicators in neurotoxic rats. GC-MS/MS reported therapeutic significance active compounds were molecular-docked towards target proteins, found that proscillaridin showed the highest affinity towards AChE, BuChE, BACE1, and BACE2 with binding energy of ΔGb -9.1, ΔGb -10.2, ΔGb -11.4 and ΔGb -11.5 Kcal/mol, respectively. Cymarin and morphine-3-glucuronide showed the second highest binding affinity towards AChE (ΔGb -8.8) and BuChE (ΔGb -10.0), respectively. In BACE-1, betulin showed the second highest binding affinity ΔGb -10.7 Kcal/mol and in BACE-2, morphine-3-glucuronide showed the second highest binding affinity ΔGb -9.8 Kcal/mol. CONCLUSIONS Synergistic impact of proscillaridin, Cymarin, morphine-3-glucuronide, betulin like compounds in HAPT improved memory impairment, healing of tissue architecture of cortex with the restoration of neurochemical, neuroinflammation, and oxidative indicators in neurotoxic rats.
Collapse
Affiliation(s)
- Umesh Chandra Dash
- Regional Plant Resource Centre, Medicinal & Aromatic Plant Division, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India
| | - Sandeep Kumar Swain
- Regional Plant Resource Centre, Medicinal & Aromatic Plant Division, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India
| | - Atala Bihari Jena
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, 751004, India
| | - Jagneshwar Dandapat
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, 751004, India
| | - Atish Kumar Sahoo
- Regional Plant Resource Centre, Medicinal & Aromatic Plant Division, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India.
| |
Collapse
|
2
|
Swain SK, Chandra Dash U, Sahoo AK. Hydrolea zeylanica improves cognitive impairment in high-fat diet fed-streptozotocin-induced diabetic encephalopathy in rats via regulating oxidative stress, neuroinflammation, and neurotransmission in brain. Heliyon 2022; 8:e11301. [DOI: 10.1016/j.heliyon.2022.e11301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/06/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
|
3
|
Dash UC, Swain SK, Kanhar S, Banjare P, Roy PP, Dandapat J, Sahoo AK. The modulatory role of prime identified compounds in Geophila repens in mitigating scopolamine-induced neurotoxicity in experimental rats of Alzheimer's disease via attenuation of cholinesterase, β-secretase, MAPt levels and inhibition of oxidative stress imparts inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114637. [PMID: 34534598 DOI: 10.1016/j.jep.2021.114637] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Geophila repens (L.) I.M. Johnst (Rubiaceae) is a small perennial creeper native to India, China, and other countries in Southeast Asia. The hot decoction of leaves is used orally for memory enhancing by the local folk of Andhra Pradesh, India. The ethnomedicinal claim of G. repens as memory enhancer was initially studied by the authors. Results demonstrated the important antioxidant and anticholinesterase activities of isolated molecule Pentylcurcumene and bioactive hydroalcohol extract of leaves of G. repens (GRHA). AIM OF THE STUDY Based on the previous findings, additional research is needed to examine the efficacy of GRHA for memory enhancing properties. We therefore investigated the modulatory role of prime identified compounds in GRHA in mitigating scopolamine-induced neurotoxicity in experimental rats of Alzheimer's disease (AD) via attenuation of cholinesterase, β-secretase, MAPt levels and inhibition of oxidative stress imparts inflammation. METHODS Scopolamine (3 mg/kg) induced experimental rats of AD were treated with GRHA (300, 400 mg/kg) for 14 days. During the experimental period, elevated T-maze and locomotion-activity were performed to assess learning and memory efficacy of GRHA. At the end of the experiment, biochemical, neurochemical, neuroinflammation and histopathological observation of brain cortex were examined. GC-MS/MS analysis reported 31 compounds, among them 8 bioactive compounds possess antioxidant, neuroinflammation, neuroprotective activities, and were considered for docking analysis towards cholinesterase, β-secretase activities in AD. RESULTS GRHA 400 significantly improved learning and memory impairment with the improvement of oxidative stress (MDA, SOD, GSH, CAT), DNA damage (8-OHdG), neurochemical (AChE, BuChE, BACE1, BACE2, MAPt), neuroinflammation (IL-6, TNF-α) markers in neurotoxic rats. Docking studies of 8 compounds demonstrated negative binding energies for cholinesterase and β-secretase indicating high affinity for target enzymes in AD. Test results were corroborated by the improvement of cellular tissue architecture of brain cortex in AD rats. CONCLUSION Synergistic action of genistin, quercetin-3-D-galactoside, 9,12,15-octadecatrienoic-acid methyl-ester, phytol, retinal, stigmasterol, n-hexadecanoic acid, β-sitosterol in GRHA restores memory-deficits via attenuation of cholinesterase, β-secretase, MAPt level and inhibition of oxidative-stress imparts inflammation in AD.
Collapse
Affiliation(s)
- Umesh Chandra Dash
- Regional Plant Resource Centre, Medicinal & Aromatic Plant Division, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India
| | - Sandeep Kumar Swain
- Regional Plant Resource Centre, Medicinal & Aromatic Plant Division, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India
| | - Satish Kanhar
- Regional Plant Resource Centre, Medicinal & Aromatic Plant Division, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India
| | - Purusottam Banjare
- Division of Pharmaceutical & Medicinal Chemistry, Institute of Pharmacy, Guru Ghasidas University, Bilaspur, 495009, Chhattisgarh, India
| | - Partha Pratim Roy
- Division of Pharmaceutical & Medicinal Chemistry, Institute of Pharmacy, Guru Ghasidas University, Bilaspur, 495009, Chhattisgarh, India
| | - Jagneshwar Dandapat
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, 751004, India
| | - Atish Kumar Sahoo
- Regional Plant Resource Centre, Medicinal & Aromatic Plant Division, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India.
| |
Collapse
|
4
|
An insight into the bioactive compounds of genus Homalium with therapeutic potential in different diseases: Current applications and future prospects. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Zhang Y, Kong J, Zhang JH, Wang L, Zhang W, Liu B, Jiang YY. Chemical Constituents and Pharmacological Activities of Family Flacourtiaceae: A Class of Important Phytomedicine. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:287-328. [PMID: 32160758 DOI: 10.1142/s0192415x20500159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Flacourtiaceae plants are widely used as folk medicines in traditional medicine systems for its chemical diversity and pharmacological activities. In many different areas, Flacourtiaceae plants are used as traditional medicines for the treatment of ulcers, malaria, rheumatism. The Flacourtiaceae plants contain a very plentiful chemical composition, and phytochemical studies show that the Flacourtiaceae plants contained terpenoids, aromatic glycosides, flavnoids, phenylpropanoids, alkaloids, fatty hydrocarbon, and other compounds. In pharmacological studies, various extract and isolated individual compounds exhibited antitumor, anti-oxidation, and anti-inflammatory activities. In this review, the literature data on the chemical constituents and pharmacological investigations of the Flacourtiaceae plants are summarized, to provide information about a more comprehensive chemical composition and detailed pharmacological activities of Flacourtiaceae plants, with a view of further development of clinical medication. However, research on quantitative analysis, toxicity, and drug safety in vitro and in vivo is still insufficient, and further research is required.
Collapse
Affiliation(s)
- Yu Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Jing Kong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Jin-Hua Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Lu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Wei Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Bin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Yan-Yan Jiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| |
Collapse
|
6
|
Kanhar S, Roy PP, Sahoo AK. Computational and experimental validation of free radical scavenging properties of high‐performance thin‐layer chromatography quantified phenyl myristate in
Homalium nepalense. J Sep Sci 2020; 43:1566-1575. [DOI: 10.1002/jssc.201901178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Satish Kanhar
- Medicinal & Aromatic Plant Division, Regional Plant Resource Centre, Forest & Environment DepartmentGovernment of Odisha Bhubaneswar India
| | - Partha Pratim Roy
- Division of Pharmaceutical & Medicinal ChemistryInstitute of PharmacyGuru Ghasidas University Bilaspur Chhattisgarh India
| | - Atish Kumar Sahoo
- Medicinal & Aromatic Plant Division, Regional Plant Resource Centre, Forest & Environment DepartmentGovernment of Odisha Bhubaneswar India
| |
Collapse
|
7
|
Swain SK, Chandra Dash U, Kanhar S, Sahoo AK. Ameliorative effects of Hydrolea zeylanica in streptozotocin-induced oxidative stress and metabolic changes in diabetic rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 247:112257. [PMID: 31589968 DOI: 10.1016/j.jep.2019.112257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/12/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hydrolea zeylanica L. Vahl. (Hydroleaceae) is an aquatic medicinal plant used as leafy vegetable in some parts of India. In south Odisha and Hazaribag district of Jharkhand, India, decoction of leaves is used as household remedy for diabetes. To our knowledge, no prior studies have examined the antidiabetic activity of H. zeylanica to validate its ethnomedicinal claim. PURPOSE With this aim in mind, we examined the bioactivity of hydroalcohol fraction of leaves of H. zeylanica (HAHZ) in streptozotocin-induced oxidative stress in diabetic rats. MATERIALS AND METHODS In vitro antidiabetic and free radical scavenging activities of different fractions of H. zeylanica were performed. The most effective bioactive fraction e.g. HAHZ was considered for kinetic studies to understand the mode of inhibition of α-glucosidase and α-amylase. To understand the chemical composition, GC-MS/MS and LC-MS/MS analysis of HAHZ were performed. To find out the molecular mechanism of action of HAHZ, streptozotocin-induced oxidative stress and metabolic changes in diabetic rats were studied. RESULTS HAHZ demonstrated significantly higher radical scavenging and antidiabetic activities. Kinetic analysis revealed that HAHZ inhibited α-glucosidase competitively, and α-amylase mixed competitively. To understand the chemical composition, GC-MS/MS and LC-MS/MS analysis of HAHZ identified 32 compounds and among which R-limonene (0.52%), perillartine (0.41%), N-formyl-L-lysine (1.49%), limonen-6-ol, pivalate (1.43%), lidocaine (1.70%) and gamolenic acid (2.80%) were reported to have antioxidant and antidiabetic activities. HAHZ-400 mg/kg showed significant (p < 0.001) improvement in serum markers (SGOT, SGPT, ALP, total bilirubin, total protein, triglycerides, total cholesterol, HDL-C, LDL-C) and oxidative markers (MDA, SOD, CAT, GSH) in serum, liver and pancreas at effective dose dependent manner. In histopathological observation, HAHZ-400 mg/kg showed marked improvement in restoring cellular architecture of liver and pancreas. CONCLUSION In diabetic rats, the improvement in glycemic control mechanism was achieved upon stimulating insulin secretion by R-limonene, perillartine, N-formyl-L-lysine, limonen-6-ol, pivalate, lidocaine and gamolenic acid of HAHZ.
Collapse
Affiliation(s)
- Sandeep Kumar Swain
- Regional Plant Resource Centre, Medicinal & Aromatic Plant Division, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India
| | - Umesh Chandra Dash
- Regional Plant Resource Centre, Medicinal & Aromatic Plant Division, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India
| | - Satish Kanhar
- Regional Plant Resource Centre, Medicinal & Aromatic Plant Division, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India
| | - Atish Kumar Sahoo
- Regional Plant Resource Centre, Medicinal & Aromatic Plant Division, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India.
| |
Collapse
|
8
|
Yin F, Feng F, Wang L, Wang X, Li Z, Cao Y. SREBP-1 inhibitor Betulin enhances the antitumor effect of Sorafenib on hepatocellular carcinoma via restricting cellular glycolytic activity. Cell Death Dis 2019; 10:672. [PMID: 31511501 PMCID: PMC6739379 DOI: 10.1038/s41419-019-1884-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/20/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022]
Abstract
Lipid metabolism that correlates tightly to the glucose metabolic regulation in malignant cells includes hepatocellular carcinoma (HCC) cells. The transcription factor Sterol Regulatory Element Binding Protein 1 (SREBP-1), a regulator of fatty acid synthesis, has been shown to pivotally regulate the proliferation and metastasis of HCC cells. However, the intrinsic mechanism by which SREBP-1 regulates the survival of HCC cells remains unclear. In this study, among HCC patients who had dismal responses to Sorafenib, a high SREBP-1 level was found in the tumors and correlated to poor survival. This observation suggested the negative role of SREBP-1 in clinical HCC prognosis. Our mechanistical studies reveal that the inhibition of SREBP-1 via its inhibitor Betulin suppresses cellular glucose metabolism. In addition to the reduced glycolytic activity, a thwarted metastatic potential was observed in HCC cells upon Betulin administration. Moreover, our data show that SREBP-1 inhibition facilitated the antitumor effects of Sorafenib on HCC cells and xenograft tumors.
Collapse
Affiliation(s)
- Fan Yin
- Department of Oncology, the Second Medical Centre & National Clinical Research Center of Geriatric Disease, Chinese PLA General Hospital, 100853, Beijing, People's Republic of China.
| | - Fan Feng
- Center for Clinical Laboratory, the Fifth Medical Centre, Chinese PLA General Hospital, 100039, Beijing, People's Republic of China
| | - Lei Wang
- Department of Gastroenterology, the First Medical Centre, Chinese PLA General Hospital, 100843, Beijing, People's Republic of China
| | - Xiaoning Wang
- Department of Blood Transfusion, the First Hospital of Jilin University, Changchun, 130021, Jilin Province, People's Republic of China
| | - Zongwei Li
- Department of Gastroenterology, the First Medical Centre, Chinese PLA General Hospital, 100843, Beijing, People's Republic of China
| | - Yu Cao
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, 33612, Tampa, FL, USA.
| |
Collapse
|
9
|
Dash UC, Kanhar S, Dixit A, Dandapat J, Sahoo AK. Isolation, identification, and quantification of Pentylcurcumene from Geophila repens: A new class of cholinesterase inhibitor for Alzheimer's disease. Bioorg Chem 2019; 88:102947. [PMID: 31028989 DOI: 10.1016/j.bioorg.2019.102947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/25/2019] [Accepted: 04/20/2019] [Indexed: 01/07/2023]
Abstract
The aerial part of Geophila repens (L.) I.M. Johnst (Rubiaceae) has been used in India to improve intelligence and memory for a long time. As part of our ongoing efforts in discovering potential bioactive compounds from G. repens, we have studied the isolation, identification, and quantification of a new class of cholinesterase inhibitor from G. repens for Alzheimer's disease (AD). Terpene was isolated from hydroalcohol extract of G. repens (GRHA) and its structure was identified "Pentylcurcumene" by spectroscopic data. HPTLC fingerprint analysis was performed and good separation was achieved in mobile phase (benzene:methanol; 7.5:2.5, v/v, 254 and 366 nm; Rf 0.51). The method was validated using ICH guidelines in terms of linearity, specificity, sensitivity, accuracy, precision, robustness and stability. In cellular antioxidant studies e.g. DPPH, oxygen-radical-absorbance-capacity (ORAC) and cell-based-antioxidant-protection-in-erythrocytes (CAP-e) assays showed that, Pentylcurcumene showed remarkably different degrees of antioxidant activities in dose-dependent manner. Pentylcurcumene demonstrated anticholinesterase activities e.g. IC50 of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition were 73.12 ± 0.56 and 97.65 ± 0.46 μg/ml, respectively. To better understand enzyme kinetics, Lineweaver-Burk plot of Pentylcurcumene displayed the highest affinity with competitive inhibition (reversible) towards both AChE (Vmax 0.8) and BChE (Vmax 0.6). An improved and advanced HPTLC tool of bioautography detection of Pentylcurcumene has been successfully demonstrated its anticholinesterase activities. Molecular docking simulations of Pentylcurcumene (ligand) and enzymes (proteins) exhibited the binding of ligand at active sites of AChE (human/rat) and BChE (human/homology) efficiently and also predicted the hydrophobic interaction of drug towards different amino acid residue within proteins. As per the results of antioxidant study and with the support of molecular docking analysis, it is concluded that Pentylcurcumene could be a potential first-line cholinesterase-inhibitor for AD.
Collapse
Affiliation(s)
- Umesh Chandra Dash
- Medicinal & Aromatic Plant Division, Regional Plant Resource Centre, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar 751015, India
| | - Satish Kanhar
- Medicinal & Aromatic Plant Division, Regional Plant Resource Centre, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar 751015, India
| | - Anshuman Dixit
- Institute of Life Sciences (ILS), NALCO Square, Bhubaneswar-751023, Odisha, India
| | - Jagnehswar Dandapat
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar 751004, India
| | - Atish Kumar Sahoo
- Medicinal & Aromatic Plant Division, Regional Plant Resource Centre, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar 751015, India.
| |
Collapse
|
10
|
Hozzein WN, Al-Khalaf AA, Mohany M, Al-Rejaie SS, Ali DMI, Amin AA. The potential protective effect of two actinomycete extracts against carbon tetrachloride-induced hepatotoxicity in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:3834-3847. [PMID: 30539391 DOI: 10.1007/s11356-018-3904-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
The aim of this study was to investigate the potential protective effect of two extracts derived from two soil actinomycete strains, designated S19 and G30, against CCl4-induced hepatotoxicity in male rats. Sixty-four male rats were divided into four groups of 16 rats per group. The first group was a control group given corn oil and the nutritive medium which is composed of a mixture of the two used media. The second group received CCl4 only, the third group was administered CCl4 and the extract S19, and the fourth group was administered CCl4 and the extract G30. The results were taken after a treatment period of 8 weeks. Our data demonstrated that the two actinomycete extracts significantly (P < 0.01) lowered the CCl4-induced elevation of serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) after 8 weeks of treatment. The extract S19 had no effect on serum lactate dehydrogenase (LDH) and total bilirubin, whereas the extract G30 significantly decreased (P < 0.01) the elevated levels of these parameters in the serum, especially after 4 weeks of treatment. The levels of hepatic glutathione (GSH), glutathione peroxidase (GSH-Px), peroxidase (Px), catalase (CAT), and superoxide dismutase (SOD) significantly increased (P < 0.01), while those of malondialdehyde (MDA) markedly decreased in rats treated with the two extracts. Furthermore, histopathological lesions in the liver, including necrosis, inflammatory cell infiltration, hydropic degeneration, and congestion of the central vein, were partially reversed by treatment with the two microbial extracts. Our results provided evidence for the protective effect of the two used actinomycete extracts against CCl4-induced liver damage occurred through the reduction of oxidative stress and improvement of antioxidant defense markers.
Collapse
Affiliation(s)
- Wael N Hozzein
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
| | | | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Dalia M I Ali
- Botany Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Asmaa A Amin
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
11
|
Ameliorative effect of Homalium zeylanicum against carbon tetrachloride-induced oxidative stress and liver injury in rats. Biomed Pharmacother 2018; 111:305-314. [PMID: 30590318 DOI: 10.1016/j.biopha.2018.12.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/16/2018] [Accepted: 12/12/2018] [Indexed: 12/11/2022] Open
Abstract
Objective is to evaluate the ameliorative effects of Homalium zeylanicum in carbon tetrachloride-induced oxidative stress and liver injury in rats. To establish the nature of antioxidant principles in the bioactive ethyl acetate fractions of bark (HZEB) and leaf (HZEL); oxygen radical absorbance capacity (ORAC) and cell-based antioxidant protection in erythrocytes (CAP-e) assays were performed. From acute toxicity study, HZEB and HZEL at 200 and 300 mg/kg b.w., were relatively safe at their effective doses. The degree of protection was measured by using biochemical parameters such as serum glutamate oxaloacetate transaminase (SGOT), serum glutamate pyruvate transaminase (SGPT), alkaline phosphatase (ALP), total bilirubin (TB) and total protein (TP) contents. Hepatic markers e.g. thiobarbituric acid reactive species (TBARS), superoxide dismutase (SOD), catalase (CAT) and reduced glutathione (GSH) were evaluated along with histopathological observations of liver tissues. Both fractions showed significant improvement in restoring SGOT, SGPT, ALP, TB and TP level. TBARS, SOD, CAT and GSH levels were significantly altered towards normal values. Both fractions at 300 mg/kg showed remarkable improvement in liver markers as compared to silymarin. Histopathological examinations showed reduction in hepatic necrosis and appeared normal hepatocellular architecture in HZEB and HZEL treated groups. In CAP-e assay, IC50 of HZEB (54.66 mg/mL) was higher than HZEL (60.88 mg/mL) and in ORAC assay, AUC of HZEB and HZEL were 33.46, 21.29 respectively and results were comparable with trolox. GC-MS and LC-MS analysis identified a total no. of 44 compounds. Few compounds were identified as bioactive compounds e.g. catechol (7.23%), tetraacetyl-d-xylonic nitrile (3%), oleic acid (0.49%), 2,6-bis(1,1-dimethylethyl)-phenol (3.71%), 3,4,5-trimethoxy-phenol (0.31%), and conifer alcohol (7.41%). The presence of antioxidant principles in both fractions were responsible for hepatoprotective activities, however, the presence of catechol (7.23%) in the bark part imparted better activities in protecting liver than leaf of H. zeylanicum.
Collapse
|