1
|
Lin Q, Ouyang X, Pan Q, Huang J, Zhang Z, Yang Y, Wang H, Yang L, Zhu X, Li X, Zhang R. Extracts of Drynariae Rhizoma Promote Bone Formation in OVX Rats through Modulating the Gut Microbiota. PLANTA MEDICA 2025; 91:127-141. [PMID: 39500341 DOI: 10.1055/a-2462-4844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Drynariae Rhizoma has been commonly used as a preventive and therapeutic agent for bone diseases. However, its pharmacological mechanisms have not been fully elucidated. Here, we aimed to investigate the effects of Drynariae Rhizoma in a bilateral ovariectomized rat model and explore the correlation with gut microbiome. We established an ovariectomized rat model, which we treated with different doses of Drynariae Rhizoma (Drynariae Rhizoma-Low, 0.27 g/kg/day; Drynariae Rhizoma-Middle, 0.81 g/kg/day; Drynariae Rhizoma-High, 2.43 g/kg/day) through intragastric administration for 12 weeks. Results showed that Drynariae Rhizoma alleviated body weight, moderated bone microstructure, and promoted the expression of bone formation-related factors in ovariectomized rats, in which Drynariae Rhizoma-High showed the most significant effects among the three doses. Furthermore, the effects of Drynariae Rhizoma on promoting bone formation were correlated to the changes in microbial richness and the restorations of several genera, among which Ruminiclostridium and Ruminococcaceae_UCG_007 were positively correlated with the bone formation-related factors, and both were enriched in the Drynariae Rhizoma-High group as biomarkers. Moreover, CMP-legionaminate biosynthesis I might be a crucial pathway of Drynariae Rhizoma to regulate gut microbiota. The content of serum short-chain fatty acids in the ovariectomized rats were regulated by Drynariae Rhizoma. Our results demonstrate that Drynariae Rhizoma promotes bone formation in ovariectomized rats, and is related to the regulation of the gut microbiota structure.
Collapse
Affiliation(s)
- Qing Lin
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, Guangdong, China
| | - Xinchen Ouyang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Qi Pan
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Jiajia Huang
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Zhifen Zhang
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Yumei Yang
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Haoyu Wang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Li Yang
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Xiaofeng Zhu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, Guangdong, China
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Xiaoyun Li
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Ronghua Zhang
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, Guangdong, China
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Yan X, Yang Y, Huang W, Fu S, Cui B, Chu M, Dong Y, Peng Y, Song H, Shi J, Liu Q. Beneficial effects of the herbal medicine zuo gui wan in a mice model of Alzheimer's disease via Drp1-Mediated inhibition of mitochondrial fission and activation of AMPK/PGC-1α-regulated mitochondrial bioenergetics. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119425. [PMID: 39884486 DOI: 10.1016/j.jep.2025.119425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zuo Gui Wan (ZGW) is a well-known traditional Chinese medicine decoction used for approximately 400 years to treat age-related degenerative conditions, including cognitive impairment in older adults, osteoporosis, and general aging. However, the mechanism of action for ZGW remains unclear. AIMS OF THE STUDY This study aims to investigate the efficacy of ZGW in improving cognitive function in Alzheimer's disease (AD) animal models and to explore the underlying mechanisms, presenting a novel perspective in the field. MATERIALS AND METHODS Six-month-old male APP/PS1 mice were divided into three groups that received either metformin (200 mg/kg daily) or ZGW (6 and 12 g/kg daily). High-performance liquid chromatography was conducted for ZGW's quality control. Cognitive function was assessed using the Morris water maze test. Neuronal loss, synaptic plasticity, and β-amyloid (Aβ) deposition were evaluated through Western blot or immunofluorescence staining. The underlying molecular mechanisms were investigated using ELISA, Western blot, qRT-PCR, co-immunoprecipitation assay, ATP assay, and cytochrome c oxidase assay. RESULTS ZGW, administered in both low and high doses, significantly enhanced cognitive performance, notably decreased neuronal loss and Aβ deposition, and reduced levels of Aβ1-40/42. It also inhibited excessive mitochondrial division primarily by suppressing phosphorylated dynamin-related protein 1 (Drp1), especially at high doses of ZGW. Co-immunoprecipitation experiments further confirmed that ZGW inhibited the interaction between Aβ and p-Drp1. Furthermore, similar to the effects of the AMP-activated Protein Kinase (AMPK) activator metformin, ZGW led to a marked increase in the mitochondrial DNA copy number and upregulated the AMPK/PGC-1α/NRF1/TFAM pathway. Improvements in mitochondrial function were evident from the increased ATP production, elevated expression of superoxide dismutase 2, and upregulated cytochrome c oxidase activity. Additionally, the excess byproduct of reactive oxygen species, 4-hydroxy-2-nonenal, decreased in the group treated with ZGW. CONCLUSION This study provides compelling evidence that ZGW improves cognitive impairment in APP/PS1 mice by activating AMPK/PGC-1α-regulated mitochondrial bioenergetics and inhibiting Aβ-induced mitochondrial fragmentation, highlighting its potential as an effective therapeutic strategy for AD.
Collapse
Affiliation(s)
- Xirui Yan
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifang Yang
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Weiling Huang
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shuping Fu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Bo Cui
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Min Chu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yang Dong
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yinting Peng
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Haiyan Song
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jianrong Shi
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Qing Liu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
3
|
Li J, HaomingYou, Hu Y, Li R, Ouyang T, Ran Q, Zhang G, Huang Y. Effects of traditional Chinese medicine Zuo-Gui-Wan on gut microbiota in an osteoporotic mouse model. J Orthop Surg Res 2025; 20:128. [PMID: 39891262 PMCID: PMC11786422 DOI: 10.1186/s13018-025-05504-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/15/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND The target and mechanism of oral traditional Chinese medicine (TCM) have been important research directions for a long time. The close relationship between osteoporosis and gut microbiota (GM) has been confirmed. However, the relevance of oral TCM and the "Gut-Bone Axis" is still poorly understood. METHODS Twenty-one SPF C57BL/6J female mice were divided into sham (Sham), ovariectomized (OVX), and Zuo-Gui-Wan-treated (ZGW, 1.4 g/kg) groups. The osteoporosis mouse model was established through ovariectomy. After eight weeks of Zuo-Gui-Wan treatment via gavage, serum calcium, phosphorus, ALT, AST, CREA, and other biochemical indicators were measured. Subsequently, Micro-CT, HE staining, and analysis of gut microbiota were conducted to further explore the potential mechanism. RESULTS The anti-osteoporotic effects of ZGW were confirmed through micro-CT, histological, and biochemical tests in an OVX-induced osteoporosis mouse model. ZGW treatment also alters the diversity and composition of the gut microbiota and altered the Firmicutes/Bacteroidetes ratio. Further analysis reveals a correlation between specific bacterial groups and serum indicators. Mfuzz clustering analysis and metagenomeSeq analysis identified important microbiota species that were rescued or modulated by ZGW treatment. CONCLUSION These findings suggest that changes in gut microbiota abundance may be linked to ZGW's ability to improve osteoporosis. This study provides new insights into how ZGW treats osteoporosis, though further research is needed to clarify the mechanisms by which specific gut microbiota influence bone health.
Collapse
Affiliation(s)
- Junjie Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chongqing University of Chinese Medicine, Chongqing, China
| | - HaomingYou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yucheng Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruxu Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianxin Ouyang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiang Ran
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guilong Zhang
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Huang
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
4
|
Feng Y, Shi K, Li D, Yang S, Dang X, Li J, Chen Y, Yao J, Zhang Y, Sun L, Liu F. Elucidating the metabolic mechanisms and active constituents of ZuoGui Wan in combatting postmenopausal osteoporosis: A metabolomics and network pharmacology approach. PHYTOMEDICINE PLUS 2025; 5:100711. [DOI: 10.1016/j.phyplu.2024.100711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Song C, Yan Q, Ma Y, Li P, Yang Y, Wang Y, Li W, Wan X, Li Y, Zhu R, Liu H, Zhang Z. Modified Zuo Gui Wan Ameliorates Ovariectomy-Induced Osteoporosis in Rats by Regulating the SCFA-GPR41-p38MAPK Signaling Pathway. Drug Des Devel Ther 2024; 18:6359-6377. [PMID: 39741920 PMCID: PMC11687096 DOI: 10.2147/dddt.s482965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/14/2024] [Indexed: 01/03/2025] Open
Abstract
Objective Modified Zuo Gui Wan (MZGW) was a combination of Zuo Gui Wan and red yeast rice used for treating osteoporosis (OP), but its mechanism remains unclear. We aimed to validate the anti-OP effect of MZGW and explore its underlying mechanism. Methods An ovariectomy (OVX) rat model in vivo and a RANKL-induced osteoclasts (OCs) model in vitro were established. Key active ingredients in MZGW high dose (MZGW-H) group were detected by UPLC-MS/MS. Micro-CT scans and histomorphology analysis were performed in OVX rats. 16S rRNA gene sequencing was performed to investigate the relationship between the anti-OP effect of MZGW-H and intestinal flora. CCK-8 assay was applied to examine the optimal concentration of Modified Zuo Gui Wan drug serum (MZGW-DS) on osteoclasts. The qRT-PCR and Western blotting were utilized to explore the potential anti-OP pathway of MZGW, namely the SCFA-GPR41-p38MAPK signaling pathway. GPR41 was knocked down to further reverse to verify whether the pathway was the key pathway for MZGW-DS to exert its inhibitory effect on osteoclasts. Results The three main blood components, Ferulic acid, L-Ascorbic acid and Riboflavin, were examined mainly by UPLC-MS/MS. 16S rRNA gene sequencing showed that MZGW-H changed the metabolism of SCFAs. In vivo studies verified that MZGW-H ameliorated microstructure damage, improved histological changes and reduced TRAP, BALP, and BGP in OVX rats by regulating the SCFA-GPR41-p38MAPK signaling pathway. CCK-8 revealed that 5% MZGW-DS group was the most optimal concentration of MZGW-DS to inhibit osteoclast differentiation. In vitro, MZGW-DS was better than peripheral blood concentration of SCFAs in inhibiting osteoclasts. After the knockout of GPR41, MZGW-DS could not inhibit the expression of osteoclast-related protein (CTSK and NFATc1) via SCFA-GPR41-p38MAPK signaling pathway. Conclusion MZGW-H effectively ameliorates OVX-induced osteoporosis partially achieved by increasing SCFAs metabolism and modulating the SCFA-GPR41-p38MAPK signaling pathway.
Collapse
Affiliation(s)
- Changheng Song
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Qiqi Yan
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Yujie Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Pei Li
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Ying Yang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Yuhan Wang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Wenjie Li
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Xinyu Wan
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Yubo Li
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Ruyuan Zhu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Haixia Liu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Zhiguo Zhang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
6
|
Ding X, Yang J, Wei Y, Wang M, Peng Z, He R, Li X, Zhao D, Leng X, Dong H. The Nexus Between Traditional Chinese Medicine and Immunoporosis: Implications in the Treatment and Management of Osteoporosis. Phytother Res 2024. [DOI: 10.1002/ptr.8397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/06/2024] [Indexed: 01/06/2025]
Abstract
ABSTRACTOsteoporosis (OP) is a globally prevalent bone disease characterized by reduced bone mass and heightened fracture risk, posing a significant health and economic challenge to aging societies worldwide. Osteoimmunology—an emerging field of study—investigates the intricate relationship between the skeletal and the immune systems, providing insights into the immune system's impact on bone health and disease progression. Recent research has demonstrated the essential roles played by various immune cells (T cells, B cells, macrophages, dendritic cells, mast cells, granulocytes, and innate lymphoid cells) in regulating bone metabolism, homeostasis, formation, and remodeling through interactions with osteoclasts (OC) and osteoblasts (OB). These findings underscore that osteoimmunology provides an essential theoretical framework for understanding the pathogenesis of various skeletal disorders, including OP. Traditional Chinese medicine (TCM) and its active ingredients have significant clinical value in OP treatment. Unfortunately, despite their striking multieffect pathways in the pharmacological field, current research has not yet summarized them in a comprehensive and detailed manner with respect to their interventional roles in immune bone diseases, especially OP. Consequently, this review addresses recent studies on the mechanisms by which immune cells and their communication molecules contribute to OP development. Additionally, it explores the potential therapeutic benefits of TCM and its active components in treating OP from the perspective of osteoimmunology. The objective is to provide a comprehensive framework that enhances the understanding of the therapeutic mechanisms of TCM in treating immune‐related bone diseases and to facilitate the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Xiaolei Ding
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, College of Traditional Chinese Medicine Changchun University of Chinese Medicine Changchun China
| | - Jie Yang
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, College of Traditional Chinese Medicine Changchun University of Chinese Medicine Changchun China
| | - Yuchi Wei
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, College of Traditional Chinese Medicine Changchun University of Chinese Medicine Changchun China
| | - Mingyue Wang
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, College of Traditional Chinese Medicine Changchun University of Chinese Medicine Changchun China
| | - Zeyu Peng
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, College of Traditional Chinese Medicine Changchun University of Chinese Medicine Changchun China
| | - Rong He
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, College of Traditional Chinese Medicine Changchun University of Chinese Medicine Changchun China
| | - Xiangyan Li
- Northeast Asia Institute of Traditional Chinese Medicine Changchun University of Chinese Medicine Changchun China
| | - Daqing Zhao
- Northeast Asia Institute of Traditional Chinese Medicine Changchun University of Chinese Medicine Changchun China
| | - Xiangyang Leng
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, College of Traditional Chinese Medicine Changchun University of Chinese Medicine Changchun China
| | - Haisi Dong
- Northeast Asia Institute of Traditional Chinese Medicine Changchun University of Chinese Medicine Changchun China
| |
Collapse
|
7
|
Li Z, Liang Y, Wang Y, Lin Y, Zeng L, Zhang Y, Zhu L. Zuogui Pills alleviate cyclophosphamide-induced ovarian aging by reducing oxidative stress and restoring the stemness of oogonial stem cells through the Nrf2/HO-1 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118505. [PMID: 38945466 DOI: 10.1016/j.jep.2024.118505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zuogui Pill (ZGP) is a traditional herbal formula of Chinese Medicine with a long history of use in alleviating ovarian aging. AIM OF THE STUDY To examine the impact of ZGP on oxidative stress and the stemness of oogonial stem cells (OSCs) in cyclophosphamide (CTX)-induced ovarian aging, as well as its molecular mechanisms involving the nuclear factor erythroid 2-related factor 2 (Nrf2, NFE2L2)/heme oxygenase-1 (HO-1, Hmox1) pathway. MATERIALS AND METHODS Female Sprague-Dawley (SD) rats were randomly divided into seven groups: control, model (CTX), estradiol valerate (EV, 0.103 mg/kg), ZGP-L (low dose Zuogui Pill, 1.851 g/kg), ZGP-H (high dose Zuogui Pill, 3.702 g/kg), ML385 (30 mg/kg), and ML385+ZGP-L. After CTX modeling, the EV, ZGP-L, ZGP-H, and ML385+ZGP-L groups were treated by gavage for 8 weeks, while the ML385 and ML385+ZGP-L groups were administered the Nrf2 antagonist ML385 twice a week. OSCs were isolated after modeling and then treated with drug serum containing 10% ZGP or 10 μM ML385. The general conditions of the rats, including body weight, ovarian weight/body weight ratio, and estrous cycle, were observed. Ovarian ultrastructure, follicle and corpus luteum counts were assessed via hematoxylin and eosin (H&E) staining. Serum hormone levels were measured using enzyme-linked immunosorbent assay (ELISA). Nrf2/HO-1 pathway, stem cell, germ cell, and cell cycle biomarkers were analyzed by qPCR and Western blot. Cell viability was assessed by cell counting kit-8 (CCK-8) assay. Oxidative stress biomarkers were evaluated using flow cytometry and assay kits. Immunofluorescence was employed to detect and locate OSCs in the ovary, quantify the average fluorescence intensity, and identify OSCs. RESULTS After ZGP treatment, rats with CTX-induced ovarian aging exhibited improved general condition, increased body weight, higher total ovarian weight to body weight ratio, and a restoration of the estrous cycle similar to the control group. Serum levels of estradiol (E2) and follicle stimulating hormone (FSH), two sex hormones, were also improved. Ovarian ultrastructure and follicle count at all stages showed improvement. Moreover, the viability and proliferation capacity of OSCs were enhanced following ZGP intervention. The Nrf2/HO-1 pathway was found to be down-regulated in CTX-induced aging ovarian OSCs. However, ZGP reversed this effect by activating the expression of Nrf2, HO-1, and NAD(P)H oxidoreductase 1 (NQO1), increasing the activity of antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX), and reducing the accumulation of malonaldehyde (MDA) and reactive oxygen species (ROS), thus restoring resistance to oxidative stress. Additionally, ZGP improved the cell cycle of OSCs, up-regulated the expression of Cyclin D1 and Cyclin E1, restored cell stemness, promoted proliferation, enhanced the expression of cell stemness markers octamer-binding transcription factor 4 (Oct4) and mouse VASA homolog (MVH), and down-regulated the expression of P21, thereby inhibiting apoptosis. The therapeutic effects of ZGP against oxidative stress and restoration of cell stemness were attenuated following inhibition of the Nrf2 signaling pathway using ML385. CONCLUSIONS ZGP protected against CTX-induced ovarian aging by restoring normal ovarian function, alleviating oxidative stress in aging OSCs, promoting OSCs proliferation, and restoring their stemness in rats, possibly through regulating the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Zuang Li
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yunyi Liang
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yixuan Wang
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yuewei Lin
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Lihua Zeng
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yuying Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Ling Zhu
- Department of Gynecology, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
8
|
Tan M, Li Q, Yang B, Wang S, Chen Z. Insight of Chinese Herbal Medicine in Treating Osteoporosis: Achievements from 2013 to 2023. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1303-1328. [PMID: 39192680 DOI: 10.1142/s0192415x24500526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Osteoporosis is the most common bone metabolic disease, and it is becoming increasingly common as the global population ages. Osteoporosis and its complications, such as fractures and pain, negatively affect patient quality of life and easily lead to disability, placing enormous burdens on society. Although several anti-osteoporosis drugs are currently available, many adverse reactions have been observed during the long-term application of these drugs. Therefore, safer and more useful medications are urgently needed to replace those currently available. Chinese herbal medicine has been extensively used to treat osteoporosis, and the current literature confirms that such medicines have anti-osteoporosis effects, are safe, and have minimal side effects. Thus, Chinese herbal medicines are natural alternatives to pharmaceutical approaches to treating osteoporosis, and these medicines must be further developed and utilized. In this article, we review the mechanisms underlying the anti-osteoporosis effects of single herbal extracts and traditional Chinese medicine (TCM) formulas that have been elucidated since 2013, providing key evidence and support for future research on the anti-osteoporosis effects of Chinese herbal medicines. In addition, due to the complexity of the ingredients in Chinese herbal medicine, more thorough investigations are needed to determine the specific ingredients that are effective in osteoporosis treatment. Therefore, identifying the effective ingredients of Chinese herbal medicines will be a necessary focus in laboratory research and clinical application.
Collapse
Affiliation(s)
- Mingshuai Tan
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, P. R. China
| | - Qiang Li
- Department of Orthopedic Medicine, Suining Municipal Hospital of Traditional Chinese Medicine, Suining 629000, P. R. China
| | - Bencheng Yang
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, P. R. China
| | - Sihan Wang
- School of Chinese Medicine, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Ze Chen
- Department of Orthopedic Medicine, Suining Municipal Hospital of Traditional Chinese Medicine, Suining 629000, P. R. China
| |
Collapse
|
9
|
Zhang Y, Zhao X, Zhao N, Meng H, Zhang Z, Song Y, Shan L, Zhang X, Zhang W, Sang Z. Chronic Excess Iodine Intake Inhibits Bone Reconstruction Leading to Osteoporosis in Rats. J Nutr 2024; 154:1209-1218. [PMID: 38342405 DOI: 10.1016/j.tjnut.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024] Open
Abstract
BACKGROUND Although iodine modulates bone metabolism in the treatment of thyroid disease, the effect of iodine intake on bone metabolism remains less known. OBJECTIVE This study evaluated the effect of excess iodine intake in rats on bone reconstruction in the 6th and 12th month of intervention. METHOD Rats were treated with different doses of iodinated water: the normal group (NI, 6.15 μg/d), 5-fold high iodine group (5HI, 30.75 μg/d), 10-fold high iodine group (10HI, 61.5 μg/d), 50-fold high iodine group (50HI, 307.5 μg/d), and 100-fold high iodine group (100HI, 615 μg/d). Thyroid hormone concentrations were determined by a chemiluminescent immunoassay. Morphometry and microstructure of bone trabecula were observed by hematoxylin and eosin staining and microcomputed tomography, respectively. Alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP) staining were performed to evaluate the activity of osteoblasts and osteoclasts, respectively. RESULTS The 24-h urine iodine concentration increased with iodine intake. The rats in the HI groups had higher serum thyroid-stimulating hormone and decreased serum free thyroxine concentrations in the 12th month than the NI group (all P < 0.05). The percentage of the trabecular bone area and osteoblast perimeter in the 100HI group were significantly lower than those in the NI group (P < 0.05). Increased structure model index was observed in the 50HI and 100HI groups compared with the NI group in the 6th month and increased trabecular separation in the 12th month (all P < 0.05). ALP and TRAP staining revealed osteoblastic bone formation was reduced, and the number of TRAP+ multinucleated cells decreased with increasing iodine intake. CONCLUSIONS Excess iodine intake may increase the risk of hypothyroidism in rats. Chronic excess iodine intake can lead to abnormal changes in skeletal structure, resulting in reduced activity of osteoblasts and osteoclasts, which inhibits the process of bone reconstruction and may lead to osteoporosis.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Key Laboratory of Environmental Nutrition and Population Health, Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, Tianjin, China
| | - Xin Zhao
- Department of Hand Microsurgery, Tianjin Hospital, Tianjin, China
| | - Na Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Haohao Meng
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Key Laboratory of Environmental Nutrition and Population Health, Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, Tianjin, China
| | - Zixuan Zhang
- Department of Preventive Medicine Specialty, School of Public Health, Jilin University, Changchun City, China
| | - Yan Song
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Key Laboratory of Environmental Nutrition and Population Health, Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, Tianjin, China
| | - Le Shan
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Key Laboratory of Environmental Nutrition and Population Health, Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, Tianjin, China
| | - Xinbao Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Key Laboratory of Environmental Nutrition and Population Health, Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, Tianjin, China
| | - Wanqi Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Key Laboratory of Environmental Nutrition and Population Health, Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, Tianjin, China
| | - Zhongna Sang
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Key Laboratory of Environmental Nutrition and Population Health, Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
10
|
Tang X, Huang Y, Fang X, Tong X, Yu Q, Zheng W, Fu F. Cornus officinalis: a potential herb for treatment of osteoporosis. Front Med (Lausanne) 2023; 10:1289144. [PMID: 38111697 PMCID: PMC10725965 DOI: 10.3389/fmed.2023.1289144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/17/2023] [Indexed: 12/20/2023] Open
Abstract
Osteoporosis (OP) is a systemic metabolic skeletal disorder characterized by a decline in bone mass, bone mineral density, and deterioration of bone microstructure. It is prevalent among the elderly, particularly postmenopausal women, and poses a substantial burden to patients and society due to the high incidence of fragility fractures. Kidney-tonifying Traditional Chinese medicine (TCM) has long been utilized for OP prevention and treatment. In contrast to conventional approaches such as hormone replacement therapy, TCM offers distinct advantages such as minimal side effects, low toxicity, excellent tolerability, and suitability for long-term administration. Extensive experimental evidence supports the efficacy of kidney-tonifying TCM, exemplified by formulations based on the renowned herb Cornus officinalis and its bioactive constituents, including morroniside, sweroside, flavonol kaempferol, Cornuside I, in OP treatment. In this review, we provide a comprehensive elucidation of the underlying pathological principles governing OP, with particular emphasis on bone marrow mesenchymal stem cells, the homeostasis of osteogenic and osteoclastic, and the regulation of vascular and immune systems, all of which critically influence bone homeostasis. Furthermore, the therapeutic mechanisms of Cornus officinalis-based TCM formulations and Cornus officinalis-derived active constituents are discussed. In conclusion, this review aims to enhance understanding of the pharmacological mechanisms responsible for the anti-OP effects of kidney-tonifying TCM, specifically focusing on Cornus officinalis, and seeks to explore more efficacious and safer treatment strategies for OP.
Collapse
Affiliation(s)
- Xinyun Tang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, China
| | - Yuxin Huang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, China
| | - Xuliang Fang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, China
| | - Xuanying Tong
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, China
| | - Qian Yu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, China
| | - Wenbiao Zheng
- Department of Orthopedics, Taizhou Municipal Hospital, Taizhou, China
| | - Fangda Fu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| |
Collapse
|
11
|
Li Y, Wang J, Ma J, Hu S, Yang Y, Yang C, Huo S, Yang Y, Zhaxi Y. Differentially expressed transcripts study during pregnancy and postpartum anestrus of yak ( Bos grunniens). Anim Biotechnol 2023; 34:4041-4049. [PMID: 37671949 DOI: 10.1080/10495398.2023.2252035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Background: Yak is the main livestock species in the plateau area, and its reproductive performance is low, usually two years or three years. A very few of yaks recover within a certain period of time after delivery and smoothly enter the next estrous cycle, while most of them enter the postpartum anestrus and show no estrus performance. However, the key biological factors and influencing mechanisms that cause postpartum anestrus in yaks are not clear. Objective: To study the expression of differential transcripts in ovaries of yak during pregnancy and postpartum anestrus. Methods: Each three yaks in pregnancy and anestrus under natural grazing conditions in Haiyan County, Qinghai Province were selected and slaughtered, and their ovaries were collected and sent to Biomarker Technologies. Oxford Nanopore Technologies single-molecule real-time electrical signal sequencing technology was used to perform full-length transcriptome sequencing. Astalavista software was used to identify the types of alternative splicing events in yak estrus and pregnancy, and TAPIS pipeline was used to identify alternative polyadenylation. Results: The results showed that there were 1751 differentially expressed transcripts (DETs) between pregnancy and anestrus in yak, of which 808 were upregulated and 943 were downregulated. GO analysis showed that the biological processes of DETs were mainly reproductive, reproductive and rhythmic processes. KEGG analysis showed that the DET cell junction-related adhesion junction protein (β-catenin) and amino terminal kinase (JNK) were involved in FAs (local adhesion). Phosphatidylinositol-3-kinase (PI3K) is involved in the PI3K/AKT/mTOR signaling pathway. Circadian rhythm output cycle failure (Clock) and brain and muscle tissue aromatic hydrocarbon receptor nuclear transporter-like protein 1 (Bmal1) are involved in circadian rhythm signaling pathway. Conclusion: This study found that β-catenin, JNK, PI3K, Clock and Bmal1 were closely related to postpartum anestrus in yak.
Collapse
Affiliation(s)
- Yang Li
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Jine Wang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Junyuan Ma
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Songming Hu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Yahua Yang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Chongfa Yang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Shengdong Huo
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Yanmei Yang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Yingpai Zhaxi
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
12
|
Li H, Wang C, Yao J, Jin Y, Song X, Meng Q, Wu J, Liu Q, Liu M, Sun H. Circ_0114581 promotes osteogenic differentiation of BMSCs via the MiR-155-5p/HNRNPA3 axis. Life Sci 2023; 333:122127. [PMID: 37769807 DOI: 10.1016/j.lfs.2023.122127] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Osteoporosis (OP) is a common metabolic bone disease characterized by deterioration of bone tissue structure, reduction of bone mass, and susceptibility to fracture. More and new suitable therapeutic targets need to be discovered. The purpose of this study was to explore the ceRNA mechanisms of circRNAs involved in osteoporosis. In this study, a competing endogenous RNA (ceRNA) regulatory network was obtained through the application of OP-related high throughput data sets. Our results provided evidence that HNRNPA3 was involved in the regulation of osteogenic differentiation in BMSCs. Testing of human bone tissues and ovariectomized mice bones proved that its expression level was negatively correlated with OP. The utilization of miRNA mimic or inhibitor proved that miR-155-5p could negatively regulate the expression of HNRNPA3, while overexpression of hsa_circ_0114581 with a circRNA overexpression vector proved that hsa_circ_0114581 could indirectly promoted HNRNPA3 expression and osteogenic differentiation by sponging hsa-miR-155-5p. A serious of luciferase reporter assay experiments further verified the binding site between miR-155-5p and HNRNPA3 and the binding site between miR-155-5p and hsa_circ_0114581. This study proved that the hsa_circ_0114581/hsa-miR-155-5p/HNRNPA3 axis was related with OP. The results reveal valuable insights into the pathogenesis of OP and noncoding RNA markers that may have a treatment role and will help to provide hypotheses for future studies.
Collapse
Affiliation(s)
- Hao Li
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044, China; Academy of Integrative Medicine, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044, China
| | - Jialin Yao
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044, China
| | - Yue Jin
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044, China
| | - Xingyu Song
- Department of Orthopaedics, The First Affiliated Hospital, Dalian Medical University, No. 222, Zhongshan Road, Xigang District, Dalian 116011, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044, China
| | - Jingjing Wu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044, China
| | - Qi Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044, China
| | - Mozhen Liu
- Department of Orthopaedics, The First Affiliated Hospital, Dalian Medical University, No. 222, Zhongshan Road, Xigang District, Dalian 116011, China.
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044, China; Academy of Integrative Medicine, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044, China.
| |
Collapse
|
13
|
Li J, Cao H, Zhou X, Guo J, Zheng C. Advances in the study of traditional Chinese medicine affecting bone metabolism through modulation of oxidative stress. Front Pharmacol 2023; 14:1235854. [PMID: 38027015 PMCID: PMC10646494 DOI: 10.3389/fphar.2023.1235854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Bone metabolic homeostasis is dependent on coupled bone formation dominated by osteoblasts and bone resorption dominated by osteoclasts, which is a process of dynamic balance between bone formation and bone resorption. Notably, the formation of bone relies on the development of bone vasculature. Previous studies have shown that oxidative stress caused by disturbances in the antioxidant system of the whole organism is an important factor affecting bone metabolism. The increase in intracellular reactive oxygen species can lead to disturbances in bone metabolism, which can initiate multiple bone diseases, such as osteoporosis and osteoarthritis. Traditional Chinese medicine is considered to be an effective antioxidant. Cumulative evidence shows that the traditional Chinese medicine can alleviate oxidative stress-mediated bone metabolic disorders by modulating multiple signaling pathways, such as Nrf2/HO-1 signaling, PI3K/Akt signaling, Wnt/β-catenin signaling, NF-κB signaling, and MAPK signaling. In this paper, the potential mechanisms of traditional Chinese medicine to regulate bone me-tabolism through oxidative stress is summarized to provide direction and theoretical basis for future research related to the treatment of bone diseases with traditional Chinese medicine.
Collapse
Affiliation(s)
- Jiaying Li
- School of Sports and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Cao
- School of Sports and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xuchang Zhou
- School of Sports and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Jianmin Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Chengqiang Zheng
- School of Sports and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
14
|
Jiao Y, Wang X, Wang Q, Geng Q, Cao X, Zhang M, Zhao L, Deng T, Xu Y, Xiao C. Mechanisms by which kidney-tonifying Chinese herbs inhibit osteoclastogenesis: Emphasis on immune cells. Front Pharmacol 2023; 14:1077796. [PMID: 36814488 PMCID: PMC9939464 DOI: 10.3389/fphar.2023.1077796] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/25/2023] [Indexed: 02/08/2023] Open
Abstract
The immune system plays a crucial role in regulating osteoclast formation and function and has significance for the occurrence and development of immune-mediated bone diseases. Kidney-tonifying Chinese herbs, based on the theory of traditional Chinese medicine (TCM) to unify the kidney and strengthen the bone, have been widely used in the prevention and treatment of bone diseases. The common botanical drugs are tonifying kidney-yang and nourishing kidney-yin herbs, which are divided into two parts: one is the compound prescription of TCM, and the other is the single preparation of TCM and its active ingredients. These botanical drugs regulate osteoclastogenesis directly and indirectly by immune cells, however, we have limited information on the differences between the two botanical drugs in osteoimmunology. In this review, the mechanism by which kidney-tonifying Chinese herbs inhibiting osteoclastogenesis was investigated, emphasizing the immune response. The differences in the mechanism of action between tonifying kidney-yang herbs and nourishing kidney-yin herbs were analysed, and the therapeutic value for immune-mediated bone diseases was evaluated.
Collapse
Affiliation(s)
- Yi Jiao
- Beijing University of Chinese Medicine, China-Japan Friendship Clinical Medical College, Beijing, China,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xing Wang
- Beijing University of Chinese Medicine, China-Japan Friendship Clinical Medical College, Beijing, China,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Qiong Wang
- Beijing University of Chinese Medicine, China-Japan Friendship Clinical Medical College, Beijing, China,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Qishun Geng
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Xiaoxue Cao
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Mengxiao Zhang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Lu Zhao
- China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Tingting Deng
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yuan Xu
- Department of TCM Rheumatology, China-Japan Friendship Hospital, Beijing, China,*Correspondence: Yuan Xu, ; Cheng Xiao,
| | - Cheng Xiao
- Beijing University of Chinese Medicine, China-Japan Friendship Clinical Medical College, Beijing, China,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China,Department of Emergency, China-Japan Friendship Hospital, Beijing, China,*Correspondence: Yuan Xu, ; Cheng Xiao,
| |
Collapse
|
15
|
Kang X, Chen L, Yang S, Gong Z, Hu H, Zhang X, Liang C, Xu Y. Zuogui Wan slowed senescence of bone marrow mesenchymal stem cells by suppressing Wnt/β-catenin signaling. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115323. [PMID: 35483559 DOI: 10.1016/j.jep.2022.115323] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/11/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional Chinese medicine (TCM), Zuogui Wan (ZGW) is a classical prescription for senile disorders and delay aging. Modern studies show that ZGW promotes central nerve cell regeneration, prevents and cures osteoporosis, enhances the body's antioxidant capacity, regulates the body's immune function, and promotes mesenchymal stem cells (MSCs) proliferation. AIM OF THE STUDY It has been shown that MSCs aging is closely associated with organism's aging and age-related disorders. The study aimed to define the effects of ZGW on the aging bone marrow mesenchymal stem cells (BMSCs) and to identify the mechanisms of ZGW delaying BMSCs senescence. MATERIALS AND METHODS Network pharmacology analysis combined with GEO data mining, molecular docking and experimental validation were used to evaluate the mechanisms by which ZGW delays MSCs senescence (MSCS). LC-MS was used for quality control analysis of ZGW. RESULTS PPI network analysis revealed that EGF, TNF, JUN, MMPs, IL-6, MAPK8, and MYC are components of the core PPI network. GO and KEGG analyses revealed that oxidative stress, regulation of response to DNA damage stimuli, and Wnt signaling were significantly enriched. GEO database validation also indicated that Wnt signaling closely correlated with MSCs aging. Molecular docking analysis of the top-13 active components in the "ZGW-Targets-MSCS" network indicated that most components have strong affinity for key proteins in Wnt signaling, suggesting that modulation of Wnt signaling is an important mechanism of ZGW activity against MSCS. Further experimental validation found that ZGW indeed regulates Wnt signaling and suppresses the expression of age-related factors to enhance cell proliferation, ameliorate DNA damage, and reduce senescence-related secretory phenotype (SASP) secretion, thereby maintaining multidirectional differentiation of rat BMSCs. Similar results were obtained using the Wnt inhibitor, XAV-939. CONCLUSIONS Together, our data show that ZGW slows BMSCs aging by suppressing Wnt signaling.
Collapse
Affiliation(s)
- Xiangping Kang
- College of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Long Chen
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Shuchen Yang
- College of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Zhangbin Gong
- College of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Haiyan Hu
- College of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xueli Zhang
- College of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Chao Liang
- College of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yanwu Xu
- College of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
16
|
Bao B, Yang Z, Deng S, Dai H, Feng J, Meng F, Li H, Wang J. Zuogui Wan improves spermatogenesis of GC1-spg cells through modulating AR-related pathways. Andrologia 2022; 54:e14407. [PMID: 35396750 DOI: 10.1111/and.14407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 11/28/2022] Open
Abstract
Zuogui Wan (ZGW) is a common prescription medication used in traditional Chinese medicine (TCM) to significantly improve the sperm quality and treat male infertility. This study evaluated the repair effect of ZGW and Levocarnitine (LEV) on GC1-spg cell injury induced by Glucosides of Tripterygium WilforDII Hook (GTW). The results showed that the ultrastructure and apoptosis rate of GC1- spg cells in LEV and ZGW group were considerably better than GTW. The transcriptional and translational level of CYP1A1, CYP17A1, androgen receptor (AR), SRD5A2 and proliferating cell nuclear antigen (PCNA) in GC-1spg cells of the LEV group were considerably elevated than GTW group (p < 0.05 or 0.01). Furthermore, the transcriptional and translational levels of CYP19A1, CYP17A1, AR, SRD5A2 and PCNA in GC-1spg cells in ZGW group were found to be considerably elevated than the LEV group (p < 0.05 or 0.01). The findings indicate that ZGW and LEV could increase the expression of PCNA, CYP17A1, CYP19A1, SRD5A2 and AR at transcriptional and translational levels, inhibit GC-1spg cell apoptosis and promoting cell proliferation, and the effect of ZGW was found to be significantly better than that of LEV.
Collapse
Affiliation(s)
- Binghao Bao
- Graduate School of Beijing University of Chinese Medicine, Beijing, China.,Andrology Department, China-Japan Friendship Hospital, Beijing, China
| | - Zhen Yang
- Graduate School of Beijing University of Chinese Medicine, Beijing, China.,Department of Andrology, Shunyi Hospital of Beijing Traditional Chinese medicine hospital, Beijing, China
| | - Sheng Deng
- Graduate School of Beijing University of Chinese Medicine, Beijing, China.,Andrology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hengheng Dai
- Graduate School of Beijing University of Chinese Medicine, Beijing, China.,Andrology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Junlong Feng
- Graduate School of Beijing University of Chinese Medicine, Beijing, China.,Andrology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fanchao Meng
- Graduate School of Beijing University of Chinese Medicine, Beijing, China.,Andrology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Haisong Li
- Andrology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jisheng Wang
- Andrology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
17
|
Shen G, Shang Q, Zhang Z, Zhao W, Chen H, Mijiti I, Chen G, Yu X, Yu F, Zhang P, He J, Zhang X, Tang J, Cui J, Liang D, Zeng L, Ren H, Jiang X. Zuo-Gui-Wan Aqueous Extract Ameliorates Glucocorticoid-Induced Spinal Osteoporosis of Rats by Regulating let-7f and Autophagy. Front Endocrinol (Lausanne) 2022; 13:878963. [PMID: 35592785 PMCID: PMC9111739 DOI: 10.3389/fendo.2022.878963] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/11/2022] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE This study proposes to explore the protective effect of Zuo-Gui-Wan (ZGW) aqueous extract on spinal glucocorticoid-induced osteoporosis (GIOP) in vivo and in vitro, and the underlying mechanisms of ZGW in GIOP and osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) were conducted. METHODS In vivo, SD rats were randomly divided into three groups: control group (CON), dexamethasone (DEXM) group, and ZGW group, which were given vehicle, DEXM injection, and ZGW intragastric administration at the same time. Vertebral bone microarchitecture, biomechanics, histomorphology, serum AKP activity, and the autophagosome of osteoblasts were examined. The mRNA expressions of let-7f, autophagy-associated genes (mTORC1, Beclin-1, ATG12, ATG5, and LC3), Runx2, and CTSK were examined. In vitro, the let-7f overexpression/silencing vector was constructed and transfected to evaluate the osteogenic differentiation of BMSCs. Western blot was employed to detect the expression of autophagy-associated proteins (ULK2, ATG5, ATG12, Beclin-1, LC3). RESULTS In vivo, ZGW promoted the bone quantity, quality, and strength; alleviated histological damage; increased the serum AKP activity; and reduced the autophagosome number in osteoblasts. Moreover, ZGW increased the let-7f, mTORC1, and Runx2 mRNA expressions and reduced the Beclin-1, ATG12, ATG5, LC3, and CTSK mRNA expressions. In vitro, bioinformatics prediction and dual luciferase reporter gene assay verified that let-7f targeted the binding to ULK2 and negatively regulated the ULK2 expression. Furthermore, by let-7f overexpression/silencing, ZGW may promote osteoblast differentiation of BMSCs by regulating let-7f and autophagy as evidenced by Western blot (ULK2, ATG5, ATG12, Beclin-1, LC3). CONCLUSIONS ZGW may ameliorate GC-induced spinal osteoporosis by promoting osteoblast differentiation of BMSCs by activation of let-7f and suppression of autophagy.
Collapse
Affiliation(s)
- Gengyang Shen
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Spinal Surgery, Nanshan Hospital, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen Nanshan Hospital of Chinese Medicine, Guangzhou, China
| | - Qi Shang
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhida Zhang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenhua Zhao
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Honglin Chen
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ibrayinjan Mijiti
- Department of Spinal Surgery, The First People’s Hospital of Kashgar, Kashgar, China
| | - Guifeng Chen
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiang Yu
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fuyong Yu
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Zhang
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiahui He
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuelai Zhang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingjing Tang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianchao Cui
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - De Liang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lingfeng Zeng
- Department of Orthopedics, The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Xiaobing Jiang, ; Hui Ren, ; Lingfeng Zeng,
| | - Hui Ren
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Xiaobing Jiang, ; Hui Ren, ; Lingfeng Zeng,
| | - Xiaobing Jiang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Xiaobing Jiang, ; Hui Ren, ; Lingfeng Zeng,
| |
Collapse
|
18
|
Zhao J, Zeng L, Wu M, Huang H, Liang G, Yang W, Pan J, Liu J. Efficacy of Chinese patent medicine for primary osteoporosis: A network meta-analysis. Complement Ther Clin Pract 2021; 44:101419. [PMID: 34049211 DOI: 10.1016/j.ctcp.2021.101419] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/03/2021] [Accepted: 05/16/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND PURPOSE Chinese patent medicines (CPMs) have gained increasing attention for the treatment of primary osteoporosis (POP), but there is a lack of high-quality evidence regarding their efficacy. We conducted a network meta-analysis that considered both direct and indirect comparisons to assess and rank the efficacy and safety of CPMs for POP. METHODS Seven electronic databases were searched from their inception to May 2020. A random effects model was applied within a frequentist framework. RESULTS Thirty-eight studies with 16 kinds of medicines (13 CPMs, 3 Western medicines) and 3,941 patients were included in this study. This study showed that Jintiange capsule was the most efficacious for increasing the L2-L4 average bone mineral density (BMD) and that Zuogui Wan was the most efficacious for increasing the femoral neck BMD. Compared with calcium, Gusongjiangu Wan (RR = 10.04, 95% CI 1.36-74.32, p = 0.008), Gushukang granules (RR = 12.63, 95% CI 2.02-78.99, p = 0.015) and Xianling Gubao capsule (RR = 6.06, 95% CI 1.38-26.65, p = 0.0003) had fewer adverse reactions. CONCLUSION In the treatment of POP, Jintiange capsule and Zuogui Wan are effective CPMs for improving the BMD of the lumbar spine and femoral neck, respectively.
Collapse
Affiliation(s)
- Jinlong Zhao
- The Second School of Clinical Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The Research Team on Bone and Joint Degeneration and Injury, Guangdong Provincial Academy of Traditional Chinese Medicine, Guangzhou, 510120, China.
| | - Lingfeng Zeng
- The Second School of Clinical Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The Research Team on Bone and Joint Degeneration and Injury, Guangdong Provincial Academy of Traditional Chinese Medicine, Guangzhou, 510120, China.
| | - Ming Wu
- The Second School of Clinical Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The Research Team on Bone and Joint Degeneration and Injury, Guangdong Provincial Academy of Traditional Chinese Medicine, Guangzhou, 510120, China.
| | - Hetao Huang
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Province Hospital of Traditional Chinese Medicine), Guangzhou, 510120, China; The Research Team on Bone and Joint Degeneration and Injury, Guangdong Provincial Academy of Traditional Chinese Medicine, Guangzhou, 510120, China.
| | - Guihong Liang
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Province Hospital of Traditional Chinese Medicine), Guangzhou, 510120, China; The Research Team on Bone and Joint Degeneration and Injury, Guangdong Provincial Academy of Traditional Chinese Medicine, Guangzhou, 510120, China.
| | - Weiyi Yang
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Province Hospital of Traditional Chinese Medicine), Guangzhou, 510120, China; The Research Team on Bone and Joint Degeneration and Injury, Guangdong Provincial Academy of Traditional Chinese Medicine, Guangzhou, 510120, China.
| | - Jianke Pan
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Province Hospital of Traditional Chinese Medicine), Guangzhou, 510120, China; The Research Team on Bone and Joint Degeneration and Injury, Guangdong Provincial Academy of Traditional Chinese Medicine, Guangzhou, 510120, China.
| | - Jun Liu
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Province Hospital of Traditional Chinese Medicine), Guangzhou, 510120, China; The Research Team on Bone and Joint Degeneration and Injury, Guangdong Provincial Academy of Traditional Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|
19
|
Qin H, Zhao W, Jiao Y, Zheng H, Zhang H, Jin J, Li Q, Chen X, Gao X, Han Y. Aqueous Extract of Salvia miltiorrhiza Bunge- Radix Puerariae Herb Pair Attenuates Osteoporosis in Ovariectomized Rats Through Suppressing Osteoclast Differentiation. Front Pharmacol 2021; 11:581049. [PMID: 33708107 PMCID: PMC7941748 DOI: 10.3389/fphar.2020.581049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/11/2020] [Indexed: 11/21/2022] Open
Abstract
Traditional herb pair Salvia miltiorrhiza Bunge-Radix Puerariae (DG) owns various biological activities including anti-inflammatory and anti-oxidative stress. Oxidative stress is one high-risk factor for osteoporosis, then effect of DG on osteoporosis and underlying mechanisms was explored both in vivo and in vitro. Firstly, the predication from network pharmacology hinted that DG has the potential for ameliorating osteoporosis. Consistent with predication, DG significantly restored bone loss and deficiency of type II collagen, decreased TRAP and Cathepsin K positive areas in femur. Meanwhile it improved important characteristics of microarchitectural deterioration of tissue, reduced the numbers of NFATc1-positive osteoclast in the vertebra as well as decreased the serum osteoclast-specific cytokine RANKL and OPG release in OVX rats exhibiting its protective effect against osteoporosis. In vitro, DG noticeably decreased osteoclastic-special marker protein expressions of RANK, c-Fos and NFATc1. Furthermore, autophagy pathway p62/LC3B, ROS production and NF-κB were all activated by RANKL stimulation and blocked by DG pretreatment. Moreover, autophagy inhibitors, ROS scavenger, Ca2+ chelator and NF-κB inhibitor remarkably suppressed c-Fos and NFATc1 expressions. Taken together, DG may ameliorate osteoporosis by regulating osteoclast differentiation mediated by autophagy and oxidative stress. This study provided a mechanistic basis for DG treating osteoporosis and offered a safe dose for DG in preventing and improving bone diseases.
Collapse
Affiliation(s)
- Huan Qin
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Wenwen Zhao
- School of Basic Medical Sciences, Qingdao University, Qingdao, China.,State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yang Jiao
- Department of Biomedical Engineering City University of Hong Kong, Hong Kong SAR, China
| | - Haoyi Zheng
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Hao Zhang
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Jingyu Jin
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Qiu Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xiuping Chen
- School of Basic Medical Sciences, Qingdao University, Qingdao, China.,State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xia Gao
- Qingdao Central Hospital, The Second Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yantao Han
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| |
Collapse
|
20
|
Zhang X, Huang F, Chen X, Wu X, Zhu J. Ginsenoside Rg3 attenuates ovariectomy-induced osteoporosis via AMPK/mTOR signaling pathway. Drug Dev Res 2020; 81:875-884. [PMID: 32898934 DOI: 10.1002/ddr.21705] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/11/2020] [Accepted: 05/30/2020] [Indexed: 01/06/2023]
Abstract
Ginsenoside Rg3, a ginsenoside isolated from Panax ginseng, can regulate autophagy via AMP-activated protein kinase/mammalian target of rapamycin (AMPK/mTOR) signaling pathway. AMPK/mTOR signaling and autophagy have been reported to be involved in osteogenesis. Here, the effect of Rg3 on ovariectomy (OVX)-induced osteoporosis is explored. In vivo, rats were treated with 20 mg/kg Rg3 after OVX and the body weight (BW) was monitored. Bone mineral density (BMD), hematoxylin-eosin staining of femur tissues, osteogenesis, autophagy, and AMPK/mTOR signaling were analyzed. In vitro, MC3T3-E1 cells were treated with 0, 1, 5, 10, 20, and 100 μmol/L Rg3. 10 and 20 μmol/L Rg3, which had no significant effect on cell viability and significantly affected AMPK/mTOR signaling, were chosen for further analysis. Then osteogenic differentiation was induced with Rg3 or/and AMPK inhibitor (Compound C). AMPK/mTOR signaling, autophagy, osteogenic differentiation, and mineralization by Alizarin Red staining were analyzed. The expression or activity of AMPK/mTOR signaling-related proteins, autophagy markers, and osteogenesis markers was measured by western blotting or commercial kits, and cell viability by cell counting kit-8 assay kits. Rg3 significantly alleviated OVX-induced BW increases, BMD declines and histological changes of femur tissues, promoted osteogenesis, autophagy, and AMPK signaling, but inhibited mTOR signaling in vivo. Moreover, Rg3 significantly enhanced AMPK signaling, autophagy, osteogenic differentiation, and mineralization, but suppressed mTOR signaling in vitro. However, Compound C significantly reversed Rg3-induced alterations in vitro, indicating that Rg3 regulated autophagy, osteogenic differentiation, and mineralization via AMPK/mTOR signaling. Hence, it was speculated that Rg3 might attenuate OVX-induced osteoporosis via AMPK/mTOR signaling pathway.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Department of Orthopaedics and Traumatology, Shenzhen University General Hospital, Shenzhen, 518055, People's Republic of China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Fenglan Huang
- Department of Endocrine and Metabolism, Shenzhen University General Hospital, Shenzhen, 518060, People's Republic of China
| | - Xiaoyong Chen
- Department of Orthopaedics and Traumatology, Shenzhen University General Hospital, Shenzhen, 518055, People's Republic of China
| | - Xiaoqing Wu
- Department of Orthopaedics and Traumatology, Shenzhen University General Hospital, Shenzhen, 518055, People's Republic of China
| | - Jinyu Zhu
- Department of Orthopaedics and Traumatology, Shenzhen University General Hospital, Shenzhen, 518055, People's Republic of China
| |
Collapse
|
21
|
Wang L, Zheng S, Huang G, Sun J, Pan Y, Si Y, Tu P, Xu G, Ma Y, Guo Y. Osthole-loaded N-octyl-O-sulfonyl chitosan micelles (NSC-OST) inhibits RANKL-induced osteoclastogenesis and prevents ovariectomy-induced bone loss in rats. J Cell Mol Med 2020; 24:4105-4117. [PMID: 32126148 PMCID: PMC7171421 DOI: 10.1111/jcmm.15064] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/13/2019] [Accepted: 11/22/2019] [Indexed: 12/17/2022] Open
Abstract
Osthole (OST), a derivative of Fructus Cnidii, has been proved to have potential anti‐osteoporosis effects in our recent studies. However, its pharmacological effects are limited in the human body because of poor solubility and bioavailability. Under the guidance of the classical theory of Chinese medicine, Osthole‐loaded N‐octyl‐O‐sulfonyl chitosan micelles (NSC‐OST), which has not previously been reported in the literature, was synthesized in order to overcome the defects and obtain better efficacy. In this study, we found that NSC‐OST inhibited on the formation and resorption activity of osteoclasts through using a bone marrow macrophage (BMM)‐derived osteoclast culture system in vitro, rather than affecting the viability of cells. We also found that NSC‐OST inhibited osteoclast formation, hydroxyapatite resorption and RANKL‐induced osteoclast marker protein expression. In terms of mechanism, NSC‐OST suppressed the NFATc1 transcriptional activity and the activation of NF‐κB signalling pathway. In vivo, ovariectomized (OVX) rat models were established for further research. We found that NSC‐OST can attenuate bone loss in OVX rats through inhibiting osteoclastogenesis. Consistent with our hypothesis, NSC‐OST is more effective than OST in parts of the results. Taken together, our findings suggest that NSC‐OST can suppress RANKL‐induced osteoclastogenesis and prevents ovariectomy‐induced bone loss in rats and could be considered a safe and more effective anti‐osteoporosis drug than OST.
Collapse
Affiliation(s)
- Lining Wang
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Suyang Zheng
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guicheng Huang
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Sun
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yalan Pan
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China.,TCM Nursing Intervention Laboratory of Chronic Disease Key Laboratory, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuhao Si
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Pengcheng Tu
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guihua Xu
- TCM Nursing Intervention Laboratory of Chronic Disease Key Laboratory, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yong Ma
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Guo
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
22
|
Sun S, Sun L, Kang Y, Tang L, Qin YX, Ta D. Therapeutic Effects of Low-Intensity Pulsed Ultrasound on Osteoporosis in Ovariectomized Rats: Intensity-Dependent Study. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:108-121. [PMID: 31587953 DOI: 10.1016/j.ultrasmedbio.2019.08.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/13/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
This study investigated the effects of low-intensity pulsed ultrasound (LIPUS) of different spatial-average-temporal-average intensity (ISATA) ranging from 15-150 mW/cm2 on the treatment of osteoporosis in ovariectomized rats. Healthy 3-mo-old female Sprague-Dawley rats were randomly divided into nine groups (n = 12 per group): sham-ovariectomy (OVX) control group, OVX control group and OVX groups treated with LIPUS at seven different intensities (ISATA: 15, 30, 50, 75, 100, 125 and 150 mW/cm2, respectively). LIPUS was applied to bilateral femurs 12 wk post-OVX for 20 min/d for 6 wk. Micro-computed tomography, biomechanical tests, serum biochemical analysis and grip strength tests were performed to evaluate the therapeutic effects of LIPUS at different intensities. Results revealed that LIPUS intensity yielded strong correlations with bone mineral density and bone microstructure (R2 = 0.57-0.83) and bone mechanical strength (R2 = 0.80-0.97), and that the intensity of 150 mW/cm2, instead of the 30 mW/cm2 widely used in bone fracture healing, was most effective in maintaining bone mass among all the LIPUS signals between 15 and 150 mW/cm2. This suggests that higher ultrasound intensity (i.e., 150 mW/cm2) may be more effective than lower intensity in mitigation of osteopenia and osteoporosis.
Collapse
Affiliation(s)
- Shuxin Sun
- Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Lijun Sun
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, China
| | - Yiting Kang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, China
| | - Liang Tang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, China
| | - Yi-Xian Qin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Dean Ta
- Department of Electronic Engineering, Fudan University, Shanghai, China; State Key Laboratory of ASIC and System, Fudan University, Shanghai, China; Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Shanghai, China.
| |
Collapse
|
23
|
Molecular mechanism of action of Liuwei Dihuang pill for the treatment of osteoporosis based on network pharmacology and molecular docking. Eur J Integr Med 2020. [DOI: 10.1016/j.eujim.2019.101009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|