1
|
Irannejadrankouhi S, Mivehchi H, Eskandari-Yaghbastlo A, Nejati ST, Emrahoglu S, Nazarian M, Zahedi F, Madani SM, Nabi-Afjadi M. Innovative nanoparticle strategies for treating oral cancers. Med Oncol 2025; 42:182. [PMID: 40285805 DOI: 10.1007/s12032-025-02728-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
Conventional therapies for oral squamous cell carcinoma (OSCC), a serious worldwide health problem, are frequently constrained by inadequate targeting and serious side effects. Drug delivery systems (DDS) based on nanoparticles provide a possible substitute by improving drug stability, target accuracy, and lowering toxicity. By addressing issues like irregular vasculature and thick tumor matrices, these methods allow for more effective medication administration. For instance, the delivery of cisplatin via liposomes, as opposed to free drug formulations, results in a 40% improvement in tumor suppression. Likewise, compared to traditional techniques, poly (lactic-co-glycolic acid) (PLGA) nanoparticles can produce up to 2.3 times more intertumoral drug accumulation. These platforms have effectively administered natural substances like curcumin and chemotherapeutics like paclitaxel, enhancing therapeutic results while reducing adverse effects. Despite their promise, several types of nanoparticles have drawbacks. For example, PLGA nanoparticles have scaling issues because of their complicated production, whereas liposomes are quickly removed from circulation. In preclinical investigations, functionalized nanoparticles-like EGFR-targeted gold nanoparticles-improve selectivity and effectiveness by obtaining up to 90% receptor binding. By preferentially accumulating in tumors via the increased permeability and retention (EPR) effect, nanoparticles also improve immunotherapy and radiation. Mechanistically, they increase the death of cancer cells by causing DNA damage, interfering with cell division, and producing reactive oxygen species (ROS). There are still issues with toxicity (such as the buildup of metallic nanoparticles in the liver) and large-scale manufacturing. Nevertheless, developments in multifunctional platforms and stimuli-responsive nanoparticles show promise for getting over these obstacles. These developments open the door to more individualized and successful OSCC therapies.
Collapse
Affiliation(s)
| | - Hassan Mivehchi
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | | | | | - Sahand Emrahoglu
- School of Dental Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Mohammad Nazarian
- Faculty of Dentistry, Belarusion State Medical University, Minsk, Belarus
| | - Farhad Zahedi
- Institute of Molecular Biophysics, Florida State University, 91 Chieftan Way, Tallahassee, FL, 32306, USA
| | - Seyed Mahdi Madani
- Faculty of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, University of Tarbiat Modares, Tehran, Iran.
| |
Collapse
|
2
|
Zhang Y, Amin K, Zhang Q, Yu Z, Jing W, Wang Z, Lyu B, Yu H. The application of dietary fibre as microcapsule wall material in food processing. Food Chem 2025; 463:141195. [PMID: 39276558 DOI: 10.1016/j.foodchem.2024.141195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/11/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
In the food industry, functional ingredients derived from active substances of natural sources and microbiological resources are gaining acceptance and demand due to their beneficial health properties. However, the inherent instability of these constituents poses a challenge in utilizing their functional properties. Microencapsulation with dietary fibre as wall material technology offers a promising solution, providing convenient manipulability and effective safeguarding of encapsulated substances. This paper presents a comprehensive overview of the current state of research on dietary fibre-based microcapsules in food processing. It examines their functional attributes, the preparation technology, and their applications within the food industry. Furthermore, the constraints associated with industrial production are discussed, as well as potential future developments. This article offers researchers a reference point and a theoretical basis for the selection of innovative food ingredients, the high-value utilisation of dietary fibre, and the design of conservation strategies for functional substances in food production.
Collapse
Affiliation(s)
- Ying Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Khalid Amin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Qiang Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Ziyue Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Wendan Jing
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Zhaohui Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Bo Lyu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China.
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China.
| |
Collapse
|
3
|
Sun M, Wang T, Zhu Y, Ling F, Bai J, Tang C. Gas immnuo-nanomedicines fight cancers. Biomed Pharmacother 2024; 180:117595. [PMID: 39476762 DOI: 10.1016/j.biopha.2024.117595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/08/2024] [Accepted: 10/21/2024] [Indexed: 11/14/2024] Open
Abstract
Certain gas molecules, including hydrogen (H2), nitric oxide (NO), carbon monoxide (CO), hydrogen sulfide (H2S), oxygen (O2) and sulfur dioxide (SO2) exhibit significant biological functionalities that can modulate the immune response. Strategies pertaining to gas-based immune therapy have garnered considerable attention in recent years. Nevertheless, delivering various gas molecules precisely into tumors, which leads to enhanced anti-tumor immunotherapeutic effect, is still a main challenge. The advent of gas treatment modality with desirable immunotherapeutic efficiency has been made possible by the rapid development of nanotechnology, which even derives the concept of the gas immnuo-nanomedicines (GINMs). In light of the fact, we herein aim to furnish a cutting-edge review on the latest progress of GINMs. The underlying mechanisms of action for several gases utilized in cancer immunotherapy are initially outlined. Additionally, it provides a succinct overview of the current clinical landscape of gas therapy, and introduces GINMs specifically designed for cancer treatment based on immunotherapeutic principles across multiple strategies. Last but not least, we address the challenges and opportunities associated with GINMs, exploring the potential future developments and clinical applications of this innovative approach.
Collapse
Affiliation(s)
- Mengchi Sun
- Huzhou Key Laboratory of Translational Medicine, Department of Hepatopancreatobiliary Surgery, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang, China; School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China; College of Art and Science, Northeast Agricultural University, Harbin, Heilongjiang, China.
| | - Tianye Wang
- Department of General Surgery, The First Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yinmei Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Feng Ling
- Huzhou Key Laboratory of Translational Medicine, Department of Hepatopancreatobiliary Surgery, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang, China
| | - Jingwen Bai
- College of Art and Science, Northeast Agricultural University, Harbin, Heilongjiang, China.
| | - Chengwu Tang
- Huzhou Key Laboratory of Translational Medicine, Department of Hepatopancreatobiliary Surgery, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang, China.
| |
Collapse
|
4
|
Dabiri S, Jafari S, Molavi O. Advances in nanocarrier-mediated delivery of chrysin: Enhancing solubility, bioavailability, and anticancer efficacy. BIOIMPACTS : BI 2024; 15:30269. [PMID: 40161948 PMCID: PMC11954748 DOI: 10.34172/bi.30269] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/11/2024] [Accepted: 04/24/2024] [Indexed: 04/02/2025]
Abstract
Chrysin, a natural phytochemical compound found in various plant sources, possesses diverse pharmacological benefits, including anticancer, antioxidant, antidiabetic, neuroprotective, cardioprotective, hepatoprotective, immunoregulatory, and anti-inflammatory properties. Despite its well-documented biological activities, chrysin's low water solubility and bioavailability hinder its clinical development. This review explores the application of nanocarriers as a strategic approach to overcome these challenges and enhance the delivery of chrysin. Nanocarriers, including polymer-based nanoparticles (NPs), lipid-based NPs, and inorganic nanocarriers, have shown promise in improving the solubility, bioavailability, and tumor-targeted delivery of chrysin. The paper discusses chrysin's anticancer effects on different types of human cancers, elucidating its impact on crucial signaling pathways involved in tumorigenesis. The review categorizes and analyzes various nanocarriers, providing insights into their structural properties and drug release profiles. Among the nanocarriers, polymer-based NPs, especially those utilizing PLGA, emerge as promising strategies for chrysin encapsulation, demonstrating improvements in drug release, stability, and bioavailability. Lipid-based NPs and inorganic nanocarriers also exhibit potential in enhancing chrysin delivery. The comprehensive insights provided contribute to a deeper understanding of chrysin's pharmacological properties and its potential clinical applications, offering valuable perspectives for future research and translation into clinical settings. The review underscores the importance of selecting suitable structures for chrysin encapsulation to enhance its physicochemical properties and anticancer effects, paving the way for innovative nanomedicine approaches in cancer therapy.
Collapse
Affiliation(s)
- Sheida Dabiri
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevda Jafari
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
5
|
Nivetha S, Asha KRT, Srinivasan S, Murali R, Kanagalakshmi A. p-Coumaric acid pronounced protective effect against potassium bromate-induced hepatic damage in Swiss albino mice. Cell Biochem Funct 2024; 42:e4076. [PMID: 38895919 DOI: 10.1002/cbf.4076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
Potassium bromate (KBrO3) is a common dietary additive, pharmaceutical ingredient, and significant by-product of water disinfection. p-coumaric acid (PCA) is a naturally occurring nutritional polyphenolic molecule with anti-inflammatory and antioxidant activities. The goal of the current investigation was to examine the protective effects of p-coumaric acid against the liver damage caused by KBrO3. The five groups of animals-control, KBrO3 (100 mg/kg bw), treatment with KBrO3 along with Silymarin (100 mg/kg bw), KBrO3, followed by PCA (100 mg/bw, and 200 mg/kg bw) were randomly assigned to the animals. Mice were slaughtered, and blood and liver tissues were taken for assessment of the serum biochemical analysis for markers of liver function (alanine transaminase, aspartate transaminase, alkaline phosphatase, albumin, and protein), lipid markers and antioxidant markers (TBARS), glutathione peroxidase [GSH-Px], glutathione (GSH), and markers of hepatic oxidative stress (CAT), (SOD), as well as histological H&E stain, immunohistochemical stain iNOS, and COX-2 as markers of inflammatory cytokines. PCA protects against acute liver failure by preventing the augmentation of blood biochemical markers and lipid profiles. In mice liver tissues, KBrO3 increases lipid indicators and depletes antioxidants, leading to an increase in JNK, ERK, and p38 phosphorylation. Additionally, PCA inhibited the production of pro-inflammatory cytokines and reduced the histological alterations in KBrO3-induced hepatotoxicity. Notably, PCA effectively mitigated KBrO3-induced hepatic damage by obstructing the TNF-α/NF-kB-mediated inflammatory process signaling system. Additionally, in KBrO3-induced mice, PCA increased the intensities of hepatic glutathione (GSH), SOD, GSH-Px, catalase, and GSH activities. Collectively, we demonstrate the molecular evidence that PCA eliminated cellular inflammatory conditions, mitochondrial oxidative stress, and the TNF-α/NF-κB signaling process, thereby preventing KBrO3-induced hepatocyte damage.
Collapse
Affiliation(s)
- Selvaraj Nivetha
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, India
- Department of Biochemistry, Government Arts College, Paramakudi, India
| | | | - Subramani Srinivasan
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, India
- Department of Biochemistry, Government Arts College for Women, Krishnagiri, India
| | - Raju Murali
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, India
- Department of Biochemistry, Government Arts College for Women, Krishnagiri, India
| | - Ambothi Kanagalakshmi
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, India
- Department of Biochemistry, Government Arts College for Women, Krishnagiri, India
| |
Collapse
|
6
|
Yang X, Sun Y, Zhang H, Liu F, Chen Q, Shen Q, Kong Z, Wei Q, Shen JW, Guo Y. CaCO 3 nanoplatform for cancer treatment: drug delivery and combination therapy. NANOSCALE 2024; 16:6876-6899. [PMID: 38506154 DOI: 10.1039/d3nr05986c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The use of nanocarriers for drug delivery has opened up exciting new possibilities in cancer treatment. Among them, calcium carbonate (CaCO3) nanocarriers have emerged as a promising platform due to their exceptional biocompatibility, biosafety, cost-effectiveness, wide availability, and pH-responsiveness. These nanocarriers can efficiently encapsulate a variety of small-molecule drugs, proteins, and nucleic acids, as well as co-encapsulate multiple drugs, providing targeted and sustained drug release with minimal side effects. However, the effectiveness of single-drug therapy using CaCO3 nanocarriers is limited by factors such as multidrug resistance, tumor metastasis, and recurrence. Combination therapy, which integrates multiple treatment modalities, offers a promising approach for tackling these challenges by enhancing efficacy, leveraging synergistic effects, optimizing therapy utilization, tailoring treatment approaches, reducing drug resistance, and minimizing side effects. CaCO3 nanocarriers can be employed for combination therapy by integrating drug therapy with photodynamic therapy, photothermal therapy, sonodynamic therapy, immunotherapy, radiation therapy, radiofrequency ablation therapy, and imaging. This review provides an overview of recent advancements in CaCO3 nanocarriers for drug delivery and combination therapy in cancer treatment over the past five years. Furthermore, insightful perspectives on future research directions and development of CaCO3 nanoparticles as nanocarriers in cancer treatment are discussed.
Collapse
Affiliation(s)
- Xiaorong Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Yue Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Hong Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Fengrui Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Qin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Qiying Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhe Kong
- Center for Advanced Optoelectronic Materials and Devices, Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Qiaolin Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| | - Jia-Wei Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yong Guo
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
7
|
Xu L, Zhao Q, Xie Y, Bai G, Liu H, Chen Q, Duan H, Wang L, Xu H, Sun Y, Ling G, Ge W, Zhu Y. Telmisartan loading thermosensitive hydrogel repairs gut epithelial barrier for alleviating inflammatory bowel disease. Colloids Surf B Biointerfaces 2024; 236:113799. [PMID: 38367290 DOI: 10.1016/j.colsurfb.2024.113799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Inflammatory bowel disease (IBD) remains a global health concern with a complex and incompletely understood pathogenesis. In the course of IBD development, damage to intestinal epithelial cells and a reduction in the expression of tight junction (TJ) proteins compromise the integrity of the intestinal barrier, exacerbating inflammation. Notably, the renin-angiotensin system and angiotensin II receptor type 1 (AT1R) play a crucial role in regulating the pathological progression including vascular permeability, and immune microenvironment. Thus, Telmisartan (Tel), an AT1R inhibitor, loading thermosensitive hydrogel was constructed to investigate the potential of alleviating inflammatory bowel disease through rectal administration. The constructed hydrogel exhibits an advantageous property of rapid transformation from a solution to a gel state at 37°C, facilitating prolonged drug retention within the gut while mitigating irritation associated with rectal administration. Results indicate that Tel also exhibits a beneficial effect in ameliorating colon shortening, colon wall thickening, cup cell lacking, crypt disappearance, and inflammatory cell infiltration into the mucosa in colitis mice. Moreover, it significantly upregulates the expression of TJ proteins in colonic tissues thereby repairing the intestinal barrier damage and alleviating the ulcerative colitis (UC) disease process. In conclusion, Tel-loaded hydrogel demonstrates substantial promise as a potential treatment modality for IBD.
Collapse
Affiliation(s)
- Lu Xu
- Department of Pharmacy, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210008, China
| | - Qin Zhao
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province 210008, China
| | - Yiqiong Xie
- Department of Pharmacy, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210008, China
| | - Ge Bai
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210008, China
| | - Hongwen Liu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210008, China
| | - Qi Chen
- Department of Gastroenterology, China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, Jiangsu Province 210008, China
| | - Hongjue Duan
- Nanjing Medical Center for Clinical Pharmacy, Nanjing, Jiangsu Province 210008, China
| | - Lishan Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210008, China
| | - Hang Xu
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR 999078, China; Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yuxiang Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China
| | - Gao Ling
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu Province 210008, China.
| | - Weihong Ge
- Department of Pharmacy, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210008, China; Nanjing Medical Center for Clinical Pharmacy, Nanjing, Jiangsu Province 210008, China.
| | - Yun Zhu
- Department of Pharmacy, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210008, China; Nanjing Medical Center for Clinical Pharmacy, Nanjing, Jiangsu Province 210008, China.
| |
Collapse
|
8
|
Zhang Y, Wu Y, Du H, Li Z, Bai X, Wu Y, Li H, Zhou M, Cao Y, Chen X. Nano-Drug Delivery Systems in Oral Cancer Therapy: Recent Developments and Prospective. Pharmaceutics 2023; 16:7. [PMID: 38276483 PMCID: PMC10820767 DOI: 10.3390/pharmaceutics16010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/16/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Oral cancer (OC), characterized by malignant tumors in the mouth, is one of the most prevalent malignancies worldwide. Chemotherapy is a commonly used treatment for OC; however, it often leads to severe side effects on human bodies. In recent years, nanotechnology has emerged as a promising solution for managing OC using nanomaterials and nanoparticles (NPs). Nano-drug delivery systems (nano-DDSs) that employ various NPs as nanocarriers have been extensively developed to enhance current OC therapies by achieving controlled drug release and targeted drug delivery. Through searching and analyzing relevant research literature, it was found that certain nano-DDSs can improve the therapeutic effect of drugs by enhancing drug accumulation in tumor tissues. Furthermore, they can achieve targeted delivery and controlled release of drugs through adjustments in particle size, surface functionalization, and drug encapsulation technology of nano-DDSs. The application of nano-DDSs provides a new tool and strategy for OC therapy, offering personalized treatment options for OC patients by enhancing drug delivery, reducing toxic side effects, and improving therapeutic outcomes. However, the use of nano-DDSs in OC therapy still faces challenges such as toxicity, precise targeting, biodegradability, and satisfying drug-release kinetics. Overall, this review evaluates the potential and limitations of different nano-DDSs in OC therapy, focusing on their components, mechanisms of action, and laboratory therapeutic effects, aiming to provide insights into understanding, designing, and developing more effective and safer nano-DDSs. Future studies should focus on addressing these issues to further advance the application and development of nano-DDSs in OC therapy.
Collapse
Affiliation(s)
- Yun Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China; (Y.Z.); (Y.W.); (Z.L.); (X.B.); (Y.W.); (H.L.); (M.Z.)
| | - Yongjia Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China; (Y.Z.); (Y.W.); (Z.L.); (X.B.); (Y.W.); (H.L.); (M.Z.)
| | - Hongjiang Du
- Department of Stomatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, China;
| | - Zhiyong Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China; (Y.Z.); (Y.W.); (Z.L.); (X.B.); (Y.W.); (H.L.); (M.Z.)
| | - Xiaofeng Bai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China; (Y.Z.); (Y.W.); (Z.L.); (X.B.); (Y.W.); (H.L.); (M.Z.)
| | - Yange Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China; (Y.Z.); (Y.W.); (Z.L.); (X.B.); (Y.W.); (H.L.); (M.Z.)
| | - Huimin Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China; (Y.Z.); (Y.W.); (Z.L.); (X.B.); (Y.W.); (H.L.); (M.Z.)
| | - Mengqi Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China; (Y.Z.); (Y.W.); (Z.L.); (X.B.); (Y.W.); (H.L.); (M.Z.)
| | - Yifeng Cao
- Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xuepeng Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China; (Y.Z.); (Y.W.); (Z.L.); (X.B.); (Y.W.); (H.L.); (M.Z.)
| |
Collapse
|
9
|
Zashikhina N, Gandalipov E, Dzhuzha A, Korzhikov-Vlakh V, Korzhikova-Vlakh E. Dual drug loaded polypeptide delivery systems for cancer therapy. J Microencapsul 2023:1-19. [PMID: 37824702 DOI: 10.1080/02652048.2023.2270064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
The present study was aimed to prepare and examine in vitro novel dual-drug loaded delivery systems. Biodegradable nanoparticles based on poly(L-glutamic acid-co-D-phenylalanine) were used as nanocarriers for encapsulation of two drugs from the paclitaxel, irinotecan, and doxorubicin series. The developed delivery systems were characterised with hydrodynamic diameters less than 300 nm (PDI < 0.3). High encapsulation efficiencies (≥75%) were achieved for all single- and dual-drug formulations. The release studies showed faster release at acidic pH, with the release rate decreasing over time. The release patterns of the co-encapsulated forms of substances differed from those of the separately encapsulated drugs, suggesting differences in drug-polymer interactions. The joint action of encapsulated drugs was analysed using the colon cancer cells, both for the dual-drug delivery sytems and a mixture of single-drug formulations. The encapsulated forms of the drug combinations demonstrated comparable efficacy to the free forms, with the encapsulation enhancing solubility of the hydrophobic drug paclitaxel.
Collapse
Affiliation(s)
- Natalia Zashikhina
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia
| | - Erik Gandalipov
- International Institute of Solution Chemistry and Advanced Materials Technologies, ITMO University, St. Petersburg, Russia
| | - Apollinariia Dzhuzha
- Institute of Chemistry, Saint-Petersburg State University, St. Petersburg, Russia
| | - Viktor Korzhikov-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia
- Institute of Chemistry, Saint-Petersburg State University, St. Petersburg, Russia
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia
- Institute of Chemistry, Saint-Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
10
|
Oliyapour Y, Dabiri S, Molavi O, Hejazi MS, Davaran S, Jafari S, Montazersaheb S. Chrysin and chrysin-loaded nanocarriers induced immunogenic cell death on B16 melanoma cells. Med Oncol 2023; 40:278. [PMID: 37624439 DOI: 10.1007/s12032-023-02145-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/29/2023] [Indexed: 08/26/2023]
Abstract
Induction of immunogenic cell death (ICD) is a promising strategy for cancer immunotherapy. Chrysin, which has potential anticancer effects, faces limitations in clinical applications due to its poor water solubility. This study aimed to formulate chrysin with PEG-poly(α-benzylcarboxylate-ε-caprolactone) (PBCL) nanoparticles (NPs) and assess their anticancer and ICD-inducing potency in melanoma cells, comparing with free chrysin. The co-solvent evaporation method was employed to develop chrysin-loaded NPs. UV spectroscopy, dynamic light scattering, and the dialysis bag method were used to evaluate the encapsulation efficiency (EE), particle size, polydispersity index (PDI), and drug release profile, respectively. The anticancer effects of the drugs were assessed using the MTT and trypan blue exclusion assays. Flow cytometry was employed to evaluate apoptosis and calreticulin (CRT) expression. ELISA and western blotting were used to detect heat shock protein 90 (HSP90), Annexin A1, GRP78 (Glucose-related protein78), and activated protein kinase R-like endoplasmic reticulum kinase (p-PERK). Chrysin-loaded PEG-PBCL NPs (chrysin-PEG-PBCL) showed an EE of 97 ± 1%. Chrysin-PEG-PBCL was 38.18 ± 3.96 nm in size, with a PDI being 0.62 ± 0.23. Chrysin-PEG-PBCL showed an initial burst release, followed by sustained release over 24 h. Chrysin-PEG-PBCL exhibited a significantly stronger anticancer effect in B16 cells. Chrysin-PEG-PBCL was found to be more potent in inducing apoptosis. Both free chrysin and chrysin NPs induced ICD as indicated by an increase in the levels of ICD biomarkers. Interestingly, chrysin NPs were found to be more potent inducers of ICD than the free drug. These findings demonstrate that chrysin and chrysin-PEG-PBCL NPs can induce ICD in B16 cells. PEG-PBCL NPs significantly enhanced the potency of chrysin in inducing ICD compared to its free form.
Collapse
Affiliation(s)
- Yasaman Oliyapour
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sheida Dabiri
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Mohammad Saeid Hejazi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran
| | - Soodabeh Davaran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevda Jafari
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614711, Iran.
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran.
| |
Collapse
|
11
|
Senevirathna K, Jayawickrama SM, Jayasinghe YA, Prabani KIP, Akshala K, Pradeep RGGR, Damayanthi HDWT, Hettiarachchi K, Dorji T, Lucero‐Prisno DE, Rajapakse RMG, Kanmodi KK, Jayasinghe RD. Nanoplatforms: The future of oral cancer treatment. Health Sci Rep 2023; 6:e1471. [PMID: 37547360 PMCID: PMC10397482 DOI: 10.1002/hsr2.1471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 08/08/2023] Open
Abstract
Background and Aims Cytotoxicity is a key disadvantage of using chemotherapeutic drugs to treat cancer. This can be overcome by encapsulating chemotherapeutic drugs in suitable carriers for targeted delivery, allowing them to be released only at the cancerous sites. Herein, we aim to review the recent scientific developments in the utilization of nanotechnology-based drug delivery systems for treating oral malignancies that can lead to further improvements in clinical practice. Methods A comprehensive literature search was conducted on PubMed, Google Scholar, ScienceDirect, and other notable databases to identify recent peer-reviewed clinical trials, reviews, and research articles related to nanoplatforms and their applications in oral cancer treatment. Results Nanoplatforms offer a revolutionary strategy to overcome the challenges associated with conventional oral cancer treatments, such as poor drug solubility, non-specific targeting, and systemic toxicity. These nanoscale drug delivery systems encompass various formulations, including liposomes, polymeric nanoparticles, dendrimers, and hydrogels, which facilitate controlled release and targeted delivery of therapeutic agents to oral cancer sites. By exploiting the enhanced permeability and retention effect, Nanoplatforms accumulate preferentially in the tumor microenvironment, increasing drug concentration and minimizing damage to healthy tissues. Additionally, nanoplatforms can be engineered to carry multiple drugs or a combination of drugs and diagnostic agents, enabling personalized and precise treatment approaches. Conclusion The utilization of nanoplatforms in oral cancer treatment holds significant promise in revolutionizing therapeutic strategies. Despite the promising results in preclinical studies, further research is required to evaluate the safety, efficacy, and long-term effects of nanoformulations in clinical settings. If successfully translated into clinical practice, nanoplatform-based therapies have the potential to improve patient outcomes, reduce side effects, and pave the way for more personalized and effective oral cancer treatments.
Collapse
Affiliation(s)
- Kalpani Senevirathna
- Centre for Research in Oral Cancer, Faculty of Dental SciencesUniversity of PeradeniyaPeradeniyaSri Lanka
| | - Shalindu M. Jayawickrama
- Centre for Research in Oral Cancer, Faculty of Dental SciencesUniversity of PeradeniyaPeradeniyaSri Lanka
| | - Yovanthi A. Jayasinghe
- Centre for Research in Oral Cancer, Faculty of Dental SciencesUniversity of PeradeniyaPeradeniyaSri Lanka
| | - Karunakalage I. P. Prabani
- Centre for Research in Oral Cancer, Faculty of Dental SciencesUniversity of PeradeniyaPeradeniyaSri Lanka
| | - Kushani Akshala
- Department of Agricultural Biology, Faculty of AgricultureUniversity of PeradeniyaPeradeniyaSri Lanka
| | | | | | - Kalani Hettiarachchi
- Centre for Research in Oral Cancer, Faculty of Dental SciencesUniversity of PeradeniyaPeradeniyaSri Lanka
| | - Thinley Dorji
- Department of Internal MedicineCentral Regional Referral HospitalGelegphuBhutan
| | - Don E. Lucero‐Prisno
- Department of Global Health and DevelopmentLondon School of Hygiene and Tropical MedicineLondonUK
| | | | - Kehinde K. Kanmodi
- Faculty of DentistryUniversity of PuthisastraPhnom PenhCambodia
- School of DentistryUniversity of RwandaKigaliRwanda
- School of Health and Life SciencesTeesside UniversityMiddlesbroughUK
- Cephas Health Research Initiative IncIbadanNigeria
| | - Ruwan D. Jayasinghe
- Centre for Research in Oral Cancer, Faculty of Dental SciencesUniversity of PeradeniyaPeradeniyaSri Lanka
- Faculty of DentistryUniversity of PuthisastraPhnom PenhCambodia
| |
Collapse
|
12
|
Pan P, Li J, Liu X, Hu C, Wang M, Zhang W, Li M, Liu Y. Plasmid containing VEGF-165 and ANG-1 dual genes packaged with fibroin-modified PEI to promote the regeneration of vascular network and dermal tissue. Colloids Surf B Biointerfaces 2023; 224:113210. [PMID: 36841206 DOI: 10.1016/j.colsurfb.2023.113210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/04/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023]
Abstract
Reducing the cytotoxicity of cationic polymers is the major issue to their use as a gene delivery carrier. In this study, plasmids containing encoding vascular endothelial cell growth factor 165 and angiopoietin-1 were packaged with the conjugates of cationic fibroin (CSF) and polyethylenimine (PEI), instead of packaging pDNA with PEI alone, to prepare nanocomplexes (CSF+PEI)/pDNA. The complexes were loaded into a silk fibroin scaffold to enhance its function to induce microvascular network generation and dermal tissue regeneration. The results of transfecting EA.hy926 cells with the complexes in vitro showed that (CSF+PEI)/pDNA had a stronger transfection ability than PEI/pDNA. Importantly, compared with PEI as the gene carrier alone, the cell viability was significantly increased and the cytotoxicity was effectively reduced after the conjugate of CSF and PEI was used as the gene carrier. The results of angiogenesis in chick embryo chorioallantoic membranes showed that compared with scaffolds loaded with PEI/pDNA, the neovascularization ratio in scaffolds loaded with (CSF+PEI)/pDNA was significantly increased. In vivo experimental results of scaffolds implantation for full-thickness skin defects in SD rats showed that, compared with loading PEI/pDNA complex, loading (CSF+PEI)/pDNA complex in the scaffold more effectively promoted the formation of vascular network in the scaffold and accelerated the regeneration of dermal tissue. The gene delivery system established in this study has application potential not only in the regeneration of vascular-containing tissues, but also in tumor gene therapy.
Collapse
Affiliation(s)
- Peng Pan
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Jing Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Xueping Liu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Cheng Hu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Mengmeng Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Wenjing Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Mingzhong Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren'ai Road, Industrial Park, Suzhou 215123, China.
| | - Yu Liu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren'ai Road, Industrial Park, Suzhou 215123, China.
| |
Collapse
|
13
|
Casella G, Carlotto S, Lanero F, Mozzon M, Sgarbossa P, Bertani R. Cyclo- and Polyphosphazenes for Biomedical Applications. Molecules 2022; 27:8117. [PMID: 36500209 PMCID: PMC9736570 DOI: 10.3390/molecules27238117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Cyclic and polyphosphazenes are extremely interesting and versatile substrates characterized by the presence of -P=N- repeating units. The chlorine atoms on the P atoms in the starting materials can be easily substituted with a variety of organic substituents, thus giving rise to a huge number of new materials for industrial applications. Their properties can be designed considering the number of repetitive units and the nature of the substituent groups, opening up to a number of peculiar properties, including the ability to give rise to supramolecular arrangements. We focused our attention on the extensive scientific literature concerning their biomedical applications: as antimicrobial agents in drug delivery, as immunoadjuvants in tissue engineering, in innovative anticancer therapies, and treatments for cardiovascular diseases. The promising perspectives for their biomedical use rise from the opportunity to combine the benefits of the inorganic backbone and the wide variety of organic side groups that can lead to the formation of nanoparticles, polymersomes, or scaffolds for cell proliferation. In this review, some aspects of the preparation of phosphazene-based systems and their characterization, together with some of the most relevant chemical strategies to obtain biomaterials, have been described.
Collapse
Affiliation(s)
- Girolamo Casella
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Via Archirafi 22, 90123 Palermo, Italy
| | - Silvia Carlotto
- Department of Chemical Sciences (DiSC), University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
- Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), National Research Council (CNR), c/o Department of Chemical Sciences (DiSC), University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Francesco Lanero
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Mirto Mozzon
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Paolo Sgarbossa
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Roberta Bertani
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
14
|
Exploring the potential of site-specific co-delivery of Berberine alongside 5-fluorouracil in oral cancer: Formulation development, in-vitro apoptosis, ex-vivo permeability and in-vivo biocompatibility studies. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Mehnath S, Chitra K, Jeyaraj M. An all-in-one nanomaterial derived from rGO-MoS 2 for photo/chemotherapy of tuberculosis. NEW J CHEM 2022. [DOI: 10.1039/d1nj03549e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A combination of therapeutic modalities has recently emerged as an alternative technique for combating Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Sivaraj Mehnath
- Biomaterial and Nanomedicine Laboratory, National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai-25, Tamil Nadu, India
| | - Karuppannan Chitra
- Translational Research Platform for Veterinary Biological, Madhavaram Milk Colony, Chennai-51, Tamil Nadu, India
| | - Murugaraj Jeyaraj
- Biomaterial and Nanomedicine Laboratory, National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai-25, Tamil Nadu, India
| |
Collapse
|
16
|
Arjama M, Mehnath S, Rajan M, Jeyaraj M. Engineered Hyaluronic Acid-Based Smart Nanoconjugates for Enhanced Intracellular Drug Delivery. J Pharm Sci 2021; 112:1603-1614. [PMID: 34678274 DOI: 10.1016/j.xphs.2021.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022]
Abstract
Bacterial polysaccharides can be easily modified to offer dual stimuli-responsive drug delivery systems with double targeting potential. In this research work, bacterial polysaccharides hyaluronic acid (HA) were functionalized with α-tocopherol polyethylene glycol succinate (TPGS) and cholic acid (CA) to form multifunctional polysaccharides nanoconjugates (TPGS-HA-CA). Smart nanoconjugates were synthesized by forming a redox-responsive disulfide bond, and it is composed of double targeting ligands. Doxorubicin (DOX) encapsulated smart nanoconjugates were exhibited an average size of 200 nm with a uniform core-shell structure. It serves the pH-responsive side chain modulation of TPGS-HA-CA, which affords a high degree of swelling at acidic pH. Under the pH 5.0 it shows 57% of release due to the side chain modulation of C-H/N-H. Polysaccharides nanoconjugates exhibited the double stimuli-responsive drug delivery by rapid disassembly of disulfide linkage, which exhibited 72% drug release (pH 5.0+GSH 10 mM). In cytotoxic studies, DOX@TPGS-HA-CA exhibited a higher cytotoxic effect compared to DOX. Hyaluronic acid functionalization with CA, TPGS increases cell internalization, and dual stimuli activity promotes more cell death. Overall, multifunctional polysaccharides hydrogel nanoconjugates is a prospective material that has great potential for targeting breast cancer therapy.
Collapse
Affiliation(s)
- Mukherjee Arjama
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai 25, Tamil Nadu, India
| | - Sivaraj Mehnath
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai 25, Tamil Nadu, India
| | - Mariappan Rajan
- Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 21, Tamil Nadu, India
| | - Murugaraj Jeyaraj
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai 25, Tamil Nadu, India.
| |
Collapse
|
17
|
Zhou B, Ma Y, Li L, Shi X, Chen Z, Wu F, Liu Y, Zhang Z, Wang S. Pheophorbide co-encapsulated with Cisplatin in folate-decorated PLGA nanoparticles to treat nasopharyngeal carcinoma: Combination of chemotherapy and photodynamic therapy. Colloids Surf B Biointerfaces 2021; 208:112100. [PMID: 34547704 DOI: 10.1016/j.colsurfb.2021.112100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/30/2021] [Accepted: 09/05/2021] [Indexed: 01/09/2023]
Abstract
The adverse effect and drug resistance of Cisplatin (CDDP) could be potential reduced by delivering in targeted nanoparticles and by combining with adjuvant therapy such as photodynamic therapy. In this study, F/CDPR-NP was formulated and characterized for all the physicochemical, biological and in vivo analysis. The results obtained from various in vitro and biological studies showed that encapsulation of CDDP and PBR in PLGA nanoparticles results in controlled release of encapsulated drugs and exhibited significantly low cell viability in CNE-1 and HNE-1 cancer cells. F/CDPR-NP significantly prolonged the blood circulation of the encapsulated drugs. The AUC of CDDP from F/CDPR-NP (4-fold) was significantly higher compared to that of free CDDP and similarly significantly higher t1/2 for CDDP from F/CDPR-NP was observed. F/CDPR-NP in the presence of laser irradiation showed significant reduction in the tumor burden with low tumor cell proliferations compared to either CDPR-NP or free CDDP indicating the potential of targeted nanoparticles and photodynamic therapy. Overall, combination of treatment modalities and active targeting approach paved way for the higher antitumor activity in nasopharyngeal carcinoma model. The positive results from this study will show new horizon for the treatment of other cancer models.
Collapse
Affiliation(s)
- Benzhong Zhou
- Department of Otolaryngology, Head and Neck Surgery, The 901st Hospital of the Joint Logistics Support Force of PLA, Hefei, Anhui 230031, China
| | - Yunxia Ma
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Longqiao Li
- Department of Otolaryngology, Head and Neck Surgery, The 901st Hospital of the Joint Logistics Support Force of PLA, Hefei, Anhui 230031, China
| | - Xianping Shi
- Department of Otolaryngology, Head and Neck Surgery, The 901st Hospital of the Joint Logistics Support Force of PLA, Hefei, Anhui 230031, China
| | - Zhitai Chen
- Department of Otolaryngology, Head and Neck Surgery, The 901st Hospital of the Joint Logistics Support Force of PLA, Hefei, Anhui 230031, China
| | - Feifeng Wu
- Department of Otolaryngology, Head and Neck Surgery, The 901st Hospital of the Joint Logistics Support Force of PLA, Hefei, Anhui 230031, China
| | - Yang Liu
- Department of Otolaryngology, Head and Neck Surgery, The 901st Hospital of the Joint Logistics Support Force of PLA, Hefei, Anhui 230031, China
| | - Zesheng Zhang
- Department of Otolaryngology, Head and Neck Surgery, The 901st Hospital of the Joint Logistics Support Force of PLA, Hefei, Anhui 230031, China
| | - Shengguo Wang
- Department of Otolaryngology, Head and Neck Surgery, The 901st Hospital of the Joint Logistics Support Force of PLA, Hefei, Anhui 230031, China.
| |
Collapse
|
18
|
Nanoparticles in Dentistry: A Comprehensive Review. Pharmaceuticals (Basel) 2021; 14:ph14080752. [PMID: 34451849 PMCID: PMC8398506 DOI: 10.3390/ph14080752] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
In recent years, nanoparticles (NPs) have been receiving more attention in dentistry. Their advantageous physicochemical and biological properties can improve the diagnosis, prevention, and treatment of numerous oral diseases, including dental caries, periodontal diseases, pulp and periapical lesions, oral candidiasis, denture stomatitis, hyposalivation, and head, neck, and oral cancer. NPs can also enhance the mechanical and microbiological properties of dental prostheses and implants and can be used to improve drug delivery through the oral mucosa. This paper reviewed studies from 2015 to 2020 and summarized the potential applications of different types of NPs in the many fields of dentistry.
Collapse
|
19
|
Xu J, Jia Y, Liu M, Gu X, Li P, Fan Y. Preparation of Magnetic-Luminescent Bifunctional Rapeseed Pod-Like Drug Delivery System for Sequential Release of Dual Drugs. Pharmaceutics 2021; 13:pharmaceutics13081116. [PMID: 34452077 PMCID: PMC8398606 DOI: 10.3390/pharmaceutics13081116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/04/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022] Open
Abstract
Drug delivery systems (DDSs) limited to a single function or single-drug loading are struggling to meet the requirements of clinical medical applications. It is of great significance to fabricate DDSs with multiple functions such as magnetic targeting or fluorescent labeling, as well as with multiple-drug loading for enhancing drug efficacy and accelerating actions. In this study, inspired by the dual-chamber structure of rapeseed pods, biomimetic magnetic–luminescent bifunctional drug delivery carriers (DDCs) of 1.9 ± 0.3 μm diameter and 19.6 ± 4.4 μm length for dual drug release were fabricated via double-needle electrospraying. Morphological images showed that the rapeseed pod-like DDCs had a rod-like morphology and Janus dual-chamber structure. Magnetic nanoparticles and luminescent materials were elaborately designed to be dispersed in two different chambers to endow the DDCs with excellent magnetic and luminescent properties. Synchronously, the Janus structure of DDCs promoted the luminescent intensity by at least threefold compared to single-chamber DDCs. The results of the hemolysis experiment and cytotoxicity assay suggested the great blood and cell compatibilities of DDCs. Further inspired by the core–shell structure of rapeseeds containing oil wrapped in rapeseed pods, DDCs were fabricated to carry benzimidazole molecules and doxorubicin@chitosan nanoparticles in different chambers, realizing the sequential release of benzimidazole within 12 h and of doxorubicin from day 3 to day 18. These rapeseed pod-like DDSs with excellent magnetic and luminescent properties and sequential release of dual drugs have potential for biomedical applications such as targeted drug delivery, bioimaging, and sustained treatment of diseases.
Collapse
Affiliation(s)
- Junwei Xu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; (J.X.); (Y.J.); (M.L.); (X.G.)
| | - Yunxue Jia
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; (J.X.); (Y.J.); (M.L.); (X.G.)
| | - Meili Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; (J.X.); (Y.J.); (M.L.); (X.G.)
| | - Xuenan Gu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; (J.X.); (Y.J.); (M.L.); (X.G.)
| | - Ping Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; (J.X.); (Y.J.); (M.L.); (X.G.)
- Correspondence: (P.L.); (Y.F.); Tel.: +86-010-8233-9811 (P.L.); +86-010-8233-9428 (Y.F.)
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; (J.X.); (Y.J.); (M.L.); (X.G.)
- School of Medical Science and Engineering, Beihang University, Beijing 100191, China
- Correspondence: (P.L.); (Y.F.); Tel.: +86-010-8233-9811 (P.L.); +86-010-8233-9428 (Y.F.)
| |
Collapse
|
20
|
Ngema LM, Adeyemi SA, Marimuthu T, Choonara YE. A review on engineered magnetic nanoparticles in Non-Small-Cell lung carcinoma targeted therapy. Int J Pharm 2021; 606:120870. [PMID: 34245844 DOI: 10.1016/j.ijpharm.2021.120870] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
There are growing appeals forthe design of efficacious treatment options for non-small-cell lung carcinoma (NSCLC) as it accrues to ~ 85% cases of lung cancer. Although platinum-based doublet chemotherapy has been the main therapeutic intervention in NSCLC management, this leads to myriad of problems including intolerability to the doublet regimens and detrimental side effects due to high doses. A new approach is therefore needed and warrants the design of targeted drug delivery systems that can halt tumor proliferation and metastasis by targeting key molecules, while exhibiting minimal side effects and toxicity. This review aims to explore the rational design of magnetic nanoparticles for the development of tumor-targeting systems for NSCLC. In the review, we explore the anticancer merits of conjugated linoleic acid (CLA) and provide a concise incursion into its application for the invention of functionalized magnetic nanoparticles in the targeted treatment of NSCLC. Recent nanoparticle-based targeted chemotherapies for targeting angiogenesis biomarkers in NSCLC will also be reviewed to further highlight versatility of magnetic nanoparticles. These developments through molecular tuning at the nanoscale and supported by comprehensive pre-clinical studies could lead to the establishment of precise nanosystems for tumor-homing cancer therapy.
Collapse
Affiliation(s)
- Lindokuhle M Ngema
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Samson A Adeyemi
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Thashree Marimuthu
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| |
Collapse
|
21
|
Weerachatyanukul W, Chotwiwatthanakun C, Jariyapong P. Dual VP28 and VP37 dsRNA encapsulation in IHHNV virus-like particles enhances shrimp protection against white spot syndrome virus. FISH & SHELLFISH IMMUNOLOGY 2021; 113:89-95. [PMID: 33823247 DOI: 10.1016/j.fsi.2021.03.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/18/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Accumulative evidence of using double stranded (ds) RNA encapsulated into virus like particle (VLP) nanocarrier has open feasibility to fight against shrimp viral infection in aquaculture field. In this study, we co-encapsulated VP37 and VP28 dsRNA into hypodermal and hematopoietic necrosis virus (IHHNV) like particle and investigated its protection against white spot syndrome virus (WSSV). Five micrograms of each dsRNA were used as starting materials to load into VLP, while the loading efficiency was slightly different, i.e, VP37 dsRNA had somewhat a better load into VLP's cavity. It was apparent that co-encapsulation of dual dsRNA showed a superior WSSV silencing ability than the single dsRNA counterpart as evidence by the lower WSSV gene expression and its copy number in the gill tissues. Besides, we also demonstrated that co-encapsulated dual dsRNA into IHHNV-VLP stimulated the increased number of hemocytes and the corresponding PO activity as well as up-regulated proPO gene expression in hemocytes to resist viral invasion after an acute stage of WSSV infection. This synergistic action of dual dsRNA encapsulated into IHHNV-VLPs could thus act to delay time of shrimp death and reduced shrimp cumulative mortality greater than the single, naked dsRNA treatment and positive control groups. The obtaining results would encourage the feasibility to use it as a new weapon to fight WSSV infection in shrimp aquaculture.
Collapse
Affiliation(s)
- Wattana Weerachatyanukul
- Department of Anatomy, Faculty of Science, Mahidol University, Rama 6 Road, Phyathai, Bangkok, 10400, Thailand
| | - Charoonroj Chotwiwatthanakun
- Academic and Curriculum Division, Nakhonsawan Campus, Mahidol University, Nakhonsawan, 60130, Thailand; Center of Excellence for Shrimp Molecular Biology and Biotechnology, Faculty of Science, Mahidol University, Rama 6 Road, Phyathai, Bangkok, 10400, Thailand
| | - Pitchanee Jariyapong
- School of Medicine, Walailak University, Thasala District, Nakhonsrithammarat, 80161, Thailand.
| |
Collapse
|
22
|
Xu P, Xiao J, Chi S. Piperlongumine attenuates oxidative stress, inflammatory, and apoptosis through modulating the GLUT-2/4 and AKT signaling pathway in streptozotocin-induced diabetic rats. J Biochem Mol Toxicol 2021; 35:1-12. [PMID: 33724628 DOI: 10.1002/jbt.22763] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/14/2020] [Accepted: 03/02/2021] [Indexed: 01/14/2023]
Abstract
The current study was done to measure the role of piperlongumine (PL) on hyperglycemia interrelated oxidative stress-mediated inflammation and apoptosis, inflammatory stress, and the diabetic insulin receptor substrate 2 (IRS2), protein kinase B (AKT), and glucose transporter 2 (GLUT-2)/4 signaling pathway in streptozotocin (STZ)-persuaded diabetic animals. Diabetes was initiated in experimental animals via a single dose intraperitoneal inoculation of STZ. Diabetic rats revealed an augmented blood-glucose level with drastically diminished plasma-insulin status. The functions of antioxidants were diminished with enhanced lipid peroxidation, conjugated dienes, and protein carbonyls noticed in diabetic rats' plasma and pancreatic tissues. An elevation of nuclear factor-κB (NF-κB), tumor necrosis factor-α, and interleukin-6 proteins was noticed in pancreatic tissues as well as IRS2, AKT, GLUT-2, and GLUT-4 marker expressions were quantified in the hepatic tissue of control and diabetic rats. Oral administration of PL for 30 days drastically lowered glucose and higher insulin status in STZ-induced diabetic rats. Impressively, PL oral supplementation considerably restored the antioxidant levels and reduced inflammation and diabetic marker expressions in STZ-diabetic rats. These results were supported through a histological study. Moreover, PL also augmented the level of B-cell lymphoma 2 and diminished the level of Bcl-2-associated X protein in STZ-treated rat's hepatic tissues. Thus, we concluded that PL excellently rescued pancreatic β cells through mitigating hyperglycemia via dynamic insulin secretion, activating antioxidants, and inhibiting inflammation and apoptosis in the pancreatic and hepatic tissue of diabetic rats.
Collapse
Affiliation(s)
- Ping Xu
- Department of Endocrinology and Metabolism, Shenzhen People's Hospital (Second Clinical Medical Collage of Jinan University), Shenzhen, Guangdong, China
| | - Juan Xiao
- Department of Endocrinology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Shuixia Chi
- Department of Traditional Chinese Medicine, Xianyang Central Hospital, Xianyang, China
| |
Collapse
|
23
|
Zheng W, Zhou Q, Yuan C. Nanoparticles for Oral Cancer Diagnosis and Therapy. Bioinorg Chem Appl 2021; 2021:9977131. [PMID: 33981334 PMCID: PMC8088384 DOI: 10.1155/2021/9977131] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Oral cancer is the sixth most common malignant cancer, affecting the health of people with an unacceptably high mortality rate. Despite numerous clinical methods in the diagnosis and therapy of oral cancer (e.g., magnetic resonance imaging, computed tomography, surgery, and chemoradiotherapy), they still remain far from optimal. Therefore, an urgent need exists for effective and practical techniques of early diagnosis and effective therapy of oral cancer. Currently, various types of nanoparticles have aroused wide public concern, representing a promising tool for diagnostic probes and therapeutic devices. Their inherent physicochemical features, including ultrasmall size, high reactivity, and tunable surface modification, enable them to overcome some of the limitations and achieve the expected diagnostic and therapeutic effect. In this review, we introduce different types of nanoparticles that emerged for the diagnosis and therapy of oral cancers. Then, the challenges and future perspectives for nanoparticles applied in oral cancer diagnosis and therapy are presented. The objective of this review is to help researchers better understand the effect of nanoparticles on oral cancer diagnosis and therapy and may accelerate breakthroughs in this field.
Collapse
Affiliation(s)
- Weiping Zheng
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Qihui Zhou
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266021, China
| | - Changqing Yuan
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
| |
Collapse
|
24
|
Orafaie A, Bahrami AR, Matin MM. Use of anticancer peptides as an alternative approach for targeted therapy in breast cancer: a review. Nanomedicine (Lond) 2021; 16:415-433. [PMID: 33615876 DOI: 10.2217/nnm-2020-0352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Breast cancer is the most common cancer in women worldwide. Traditional therapies are expensive and cause severe side effects. Targeted therapy is a powerful method to circumvent the problems of other therapies. It also allows drugs to localize at predefined targets in a selective manner. Currently, there are several monoclonal antibodies which target breast cancer cell surface markers. However, using antibodies has some limitations. In the last two decades, many investigators have discovered peptides that may be useful to target breast cancer cells. In this article, we provide an overview on anti-breast cancer peptides, their sources and biological activities. We further discuss the pros and cons of using anticancer peptides with further emphasis on how to improve their effectiveness in cancer therapy.
Collapse
Affiliation(s)
- Ala Orafaie
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Novel Diagnostics & Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
25
|
Hao X, Gai W, Wang L, Zhao J, Sun D, Yang F, Jiang H, Feng Y. 5-Boronopicolinic acid-functionalized polymeric nanoparticles for targeting drug delivery and enhanced tumor therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111553. [PMID: 33321617 DOI: 10.1016/j.msec.2020.111553] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/02/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022]
Abstract
Strong specificity for cancer cells is still the main challenge to deliver drugs for the therapy of cancer. Herein, we developed a convenient strategy to prepare a series of 5-boronopicolinic acid (BA) modified tumor-targeting drug delivery systems (T-DDSs) with strong tumor targeting function. An anti-tumor drug of camptothecin (CPT) was encapsulated into poly(lactide-co-glycolide)-g-polyethylenimine (PLGA-PEI) to form drug-loaded nanoparticles (NP/CPT). Then, the surface of NP/CPT was coated by BA with different polymer and BA molar ratios of 1:1, 1:5, 1:10 and 1:20 via electrostatic interaction to obtain T-DDSs with enhanced biocompatibility and specificity for tumor cells. The introduced BA can endow drug-loaded NPs with high targeting ability to tumor cells because of the overexpression of sialic acids (SA) in tumor cells, which possessed strong interaction with BA. Those T-DDSs exhibited good biocompatibility according to the results of MTT assay, hemolysis test and cellular uptake. Moreover, they were capable of decreasing the viability of breast cancer cell line 4T1 and MCF-7 cells with no obvious cytotoxicity for endothelial cells. Especially, T-DDS with 1:20 molar ratio displayed much higher cellular uptake than other groups, and also exhibited highly efficient in vivo anti-tumor effect. The significantly high targeting function and biocompatibility of T-DDSs improved their drug delivery efficiency and achieved good anti-tumor effect. The BA decorated T-DDSs provides a simple and robust strategy for the design and preparation of DDSs with good biocompatibility and strong tumor-specificity to promote drug delivery efficiency.
Collapse
Affiliation(s)
- Xuefang Hao
- Nano Innovation Institute, Inner Mongolia Key Laboratory of Carbon Nanomaterials, College of Chemistry and Materials Science, Inner Mongolia University for Nationalities, Tongliao 028000, China.
| | - Weiwei Gai
- Nano Innovation Institute, Inner Mongolia Key Laboratory of Carbon Nanomaterials, College of Chemistry and Materials Science, Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Lina Wang
- Nano Innovation Institute, Inner Mongolia Key Laboratory of Carbon Nanomaterials, College of Chemistry and Materials Science, Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Jiadi Zhao
- Nano Innovation Institute, Inner Mongolia Key Laboratory of Carbon Nanomaterials, College of Chemistry and Materials Science, Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Dandan Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Fan Yang
- Nano Innovation Institute, Inner Mongolia Key Laboratory of Carbon Nanomaterials, College of Chemistry and Materials Science, Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Haixia Jiang
- Analysis and Testing Center of Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China; Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin 300350, China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China.
| |
Collapse
|
26
|
Kastania G, Campbell J, Mitford J, Volodkin D. Polyelectrolyte Multilayer Capsule (PEMC)-Based Scaffolds for Tissue Engineering. MICROMACHINES 2020; 11:E797. [PMID: 32842692 PMCID: PMC7570195 DOI: 10.3390/mi11090797] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/22/2022]
Abstract
Tissue engineering (TE) is a highly multidisciplinary field that focuses on novel regenerative treatments and seeks to tackle problems relating to tissue growth both in vitro and in vivo. These issues currently involve the replacement and regeneration of defective tissues, as well as drug testing and other related bioapplications. The key approach in TE is to employ artificial structures (scaffolds) to support tissue development; these constructs should be capable of hosting, protecting and releasing bioactives that guide cellular behaviour. A straightforward approach to integrating bioactives into the scaffolds is discussed utilising polyelectrolyte multilayer capsules (PEMCs). Herein, this review illustrates the recent progress in the use of CaCO3 vaterite-templated PEMCs for the fabrication of functional scaffolds for TE applications, including bone TE as one of the main targets of PEMCs. Approaches for PEMC integration into scaffolds is addressed, taking into account the formulation, advantages, and disadvantages of such PEMCs, together with future perspectives of such architectures.
Collapse
Affiliation(s)
| | | | | | - Dmitry Volodkin
- School of Science and Technology, Department of Chemistry and Forensics, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK; (G.K.); (J.C.); (J.M.)
| |
Collapse
|
27
|
Encapsulation of Low-Molecular-Weight Drugs into Polymer Multilayer Capsules Templated on Vaterite CaCO 3 Crystals. MICROMACHINES 2020; 11:mi11080717. [PMID: 32722123 PMCID: PMC7463826 DOI: 10.3390/mi11080717] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/17/2022]
Abstract
Polyelectrolyte multilayer capsules (PEMCs) templated onto biocompatible and easily degradable vaterite CaCO3 crystals via the layer-by-layer (LbL) polymer deposition process have served as multifunctional and tailor-made vehicles for advanced drug delivery. Since the last two decades, the PEMCs were utilized for effective encapsulation and controlled release of bioactive macromolecules (proteins, nucleic acids, etc.). However, their capacity to host low-molecular-weight (LMW) drugs (<1–2 kDa) has been demonstrated rather recently due to a limited retention ability of multilayers to small molecules. The safe and controlled delivery of LMW drugs plays a vital role for the treatment of cancers and other diseases, and, due to their tunable and inherent properties, PEMCs have shown to be good candidates for smart drug delivery. Herein, we summarize recent progress on the encapsulation of LMW drugs into PEMCs templated onto vaterite CaCO3 crystals. The drug loading and release mechanisms, advantages and limitations of the PEMCs as LMW drug carriers, as well as bio-applications of drug-laden capsules are discussed based upon the recent literature findings.
Collapse
|
28
|
Bah MG, Bilal HM, Wang J. Fabrication and application of complex microcapsules: a review. SOFT MATTER 2020; 16:570-590. [PMID: 31845956 DOI: 10.1039/c9sm01634a] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The development of new functional materials requires cutting-edge technologies for incorporating different functional materials without reducing their functionality. Microencapsulation is a method to encapsulate different functional materials at nano- and micro-scales, which can provide the necessary protection for the encapsulated materials. In this review, microencapsulation is categorized into chemical, physical, physico-chemical and microfluidic methods. The focus of this review is to describe these four categories in detail by elaborating their various microencapsulation methods and mechanisms. This review further discusses the key features and potential applications of each method. Through this review, the readers could be aware of many aspects of this field from the fabrication processes, to the main properties, and to the applications of microcapsules.
Collapse
Affiliation(s)
- Mohamed Gibril Bah
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.
| | | | | |
Collapse
|
29
|
Su P, Veeraraghavan VP, Krishna Mohan S, Lu W. A ginger derivative, zingerone-a phenolic compound-induces ROS-mediated apoptosis in colon cancer cells (HCT-116). J Biochem Mol Toxicol 2019; 33:e22403. [PMID: 31714660 DOI: 10.1002/jbt.22403] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/30/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022]
Abstract
Zingerone (ZO), an active phenolic agent derived from Zingiber officinale (Ginger), has many pharmacological properties such as antioxidant, antiangiogenic, and antitumor. However, its potential value in cancer and the mechanism by which ZO wields its therapeutic effects remain obscure. Therefore, in this current study, we explored the effects of ZO on suppressing cell proliferation and enhancing apoptosis in colon cancer cells (HCT116). Our results indicated that ZO significantly enhances the production of reactive oxygen species, lipid peroxidation (thiobarbituric acid reactive substance [TBARS]), and loss of cell viability; and reduces mitochondrial membrane potential and antioxidant levels (SOD, CAT, and GSH) in ZO-treated HCT116 cells in a dose-dependent (2.5, 5, and 10 µM) manner. Furthermore, ZO induces oxidative stress-mediated apoptosis as evidenced by apoptotic morphological changes predicted by AO/EtBr, Hoechst staining and further confirmed by comet assay. Moreover, immunoblotting techniques showed that ZO treatment effectively enhances Bax, caspase-9, and caspase-3 expressions and decreases the expression of Bcl-2 in colon cancer cells. Together, our results evidenced that the antitumor effects of ZO reduce cell proliferation and stimulate apoptosis through modulating pro- and antiapoptotic molecular events in HCT116 colon cancer cells. Therefore, based on our findings, ZO may be used as a therapeutic agent for the treatment of colon cancer.
Collapse
Affiliation(s)
- Ping Su
- Department of Anorectal, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi Province, China
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Surapaneni Krishna Mohan
- Department of Medical Biochemistry, College of Applied Medical Sciences-Jubail (CAMSJ), Imam Abdulrahman Bin Faisal University, Al Jubail, Kingdom of Saudi Arabia (KSA)
| | - Wang Lu
- Department of Gastroenterology, The Second Affiliated Hospital of Air Force Medical University of People's Liberation Army, Xi'an, Shaanxi, China
| |
Collapse
|
30
|
Mehnath S, Ayisha Sithika MA, Arjama M, Rajan M, Amarnath Praphakar R, Jeyaraj M. Sericin-chitosan doped maleate gellan gum nanocomposites for effective cell damage in Mycobacterium tuberculosis. Int J Biol Macromol 2018; 122:174-184. [PMID: 30393136 DOI: 10.1016/j.ijbiomac.2018.10.167] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/13/2018] [Accepted: 10/24/2018] [Indexed: 01/22/2023]
Abstract
Polysaccharides are increasingly used as biodegradable nanocarrier to selectively deliver therapeutic agents to specific cells. In this study, maleate gellan gum (MA-GG) formed by addition of free radical polymerizable groups, which can be polymerized presence of acetone to design biodegradable three-dimensional networks, were synthesized by esterification. Natural silk sericin was grafted over the maleate gellan gum surface. Maleate Gellan Gum- Silk Sericin-Chitosan (MA-GG-SS-CS) nanocomposites loaded with rifampicin (RF) and pyrazinamide (PZA) to overcome the problems associated with Tuberculosis (TB) therapy. The pH responsive behavior of gellan gum nanocomposites was reposed by silk sericin and exhibited sustained release of 79% RF and 82% PZA for 120 h at pH 4.0. The designed formulations shows higher antimycobacterial activity and rapid delivery of drugs at TB infected macrophage. Nanomaterial effectively aggregated and internalized into the bacterial cells and MH-S cells. Dual drug release inside the cells makes damage in the cell membrane. Green nanocomposites studies pave the way for important use of macromolecules in pulmonary delivery TB drugs.
Collapse
Affiliation(s)
- Sivaraj Mehnath
- University of Madras, Guindy Campus, Chennai 25, Tamil Nadu, India
| | | | - Mukherjee Arjama
- University of Madras, Guindy Campus, Chennai 25, Tamil Nadu, India
| | | | | | | |
Collapse
|
31
|
Sericin/RBA embedded gellan gum based smart nanosystem for pH responsive drug delivery. Int J Biol Macromol 2018; 120:1561-1571. [PMID: 30261261 DOI: 10.1016/j.ijbiomac.2018.09.146] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/17/2018] [Accepted: 09/23/2018] [Indexed: 02/08/2023]
Abstract
Polysaccharides protein complex offers a green alternative to synthetic polymers in the drug delivery system. Sericin (SC), a natural protein, in combination with rice bran albumin (RBA) and gellan gum (GG) forms a green based protein polysaccharide complex. The sericin functionalized gellan gum-rice bran (SC-GG-RBA) nanocomposites were characterized by different characterization techniques. It shows their prominent ability in balancing the biocompatibility, stability, biodegradability, and functionality of nanocarriers. The nanocomposites exhibited spherical shape with core protein-polysaccharide structures, and the average size was about 218 nm. High amount of Doxorubicin (DOX) was encapsulated into SC-GG-RBA nanocomposites in order to investigate the effective drug release in acidic tumor environment. DOX of 84% was released in vitro condition after 120 h in pH 4.0. DOX loaded green nanocomposites shows IC50 5 μg/mL which was very low compared to free DOX of 9 μg/mL after treatment with MCF-7 cells. Only 42% of cells were survived after treatment with green nanocomposites. This was due to the effective uptake of nanomaterial by cancer cells and direct release of DOX in cytoplasmic region. Such high performance green nanocomposites have great potential in expanding the utilization of biomaterial from natural resources and development of sensible application in biomedical field.
Collapse
|
32
|
Mehnath S, Arjama M, Rajan M, Jeyaraj M. Development of cholate conjugated hybrid polymeric micelles for FXR receptor mediated effective site-specific delivery of paclitaxel. NEW J CHEM 2018. [DOI: 10.1039/c8nj03251c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of the present study was to explore the tumor targeting potential of a cholic acid (CA) conjugated polymeric micelle system for the effective delivery of paclitaxel (PTX).
Collapse
Affiliation(s)
- Sivaraj Mehnath
- Biomaterial and Nanomedicine Laboratory
- National Centre for Nanoscience and Nanotechnology
- University of Madras
- Guindy Campus
- Chennai
| | - Mukherjee Arjama
- Biomaterial and Nanomedicine Laboratory
- National Centre for Nanoscience and Nanotechnology
- University of Madras
- Guindy Campus
- Chennai
| | | | - Murugaraj Jeyaraj
- Biomaterial and Nanomedicine Laboratory
- National Centre for Nanoscience and Nanotechnology
- University of Madras
- Guindy Campus
- Chennai
| |
Collapse
|