1
|
Wang Z, Bian W, Yan Y, Zhang DM. Functional Regulation of KATP Channels and Mutant Insight Into Clinical Therapeutic Strategies in Cardiovascular Diseases. Front Pharmacol 2022; 13:868401. [PMID: 35837280 PMCID: PMC9274113 DOI: 10.3389/fphar.2022.868401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
ATP-sensitive potassium channels (KATP channels) play pivotal roles in excitable cells and link cellular metabolism with membrane excitability. The action potential converts electricity into dynamics by ion channel-mediated ion exchange to generate systole, involved in every heartbeat. Activation of the KATP channel repolarizes the membrane potential and decreases early afterdepolarization (EAD)-mediated arrhythmias. KATP channels in cardiomyocytes have less function under physiological conditions but they open during severe and prolonged anoxia due to a reduced ATP/ADP ratio, lessening cellular excitability and thus preventing action potential generation and cell contraction. Small active molecules activate and enhance the opening of the KATP channel, which induces the repolarization of the membrane and decreases the occurrence of malignant arrhythmia. Accumulated evidence indicates that mutation of KATP channels deteriorates the regulatory roles in mutation-related diseases. However, patients with mutations in KATP channels still have no efficient treatment. Hence, in this study, we describe the role of KATP channels and subunits in angiocardiopathy, summarize the mutations of the KATP channels and the functional regulation of small active molecules in KATP channels, elucidate the potential mechanisms of mutant KATP channels and provide insight into clinical therapeutic strategies.
Collapse
Affiliation(s)
- Zhicheng Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Weikang Bian
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yufeng Yan
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Dai-Min Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Cardiology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Dai-Min Zhang,
| |
Collapse
|
2
|
Guo RB, Dong YF, Yin Z, Cai ZY, Yang J, Ji J, Sun YQ, Huang XX, Xue TF, Cheng H, Zhou XQ, Sun XL. Iptakalim improves cerebral microcirculation in mice after ischemic stroke by inhibiting pericyte contraction. Acta Pharmacol Sin 2022; 43:1349-1359. [PMID: 34697419 PMCID: PMC9160281 DOI: 10.1038/s41401-021-00784-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023] Open
Abstract
Pericytes are present tight around the intervals of capillaries, play an essential role in stabilizing the blood-brain barrier, regulating blood flow and immunomodulation, and persistent contraction of pericytes eventually leads to impaired blood flow and poor clinical outcomes in ischemic stroke. We previously show that iptakalim, an ATP-sensitive potassium (K-ATP) channel opener, exerts protective effects in neurons, and glia against ischemia-induced injury. In this study we investigated the impacts of iptakalim on pericytes contraction in stroke. Mice were subjected to cerebral artery occlusion (MCAO), then administered iptakalim (10 mg/kg, ip). We showed that iptakalim administration significantly promoted recovery of cerebral blood flow after cerebral ischemia and reperfusion. Furthermore, we found that iptakalim significantly inhibited pericytes contraction, decreased the number of obstructed capillaries, and improved cerebral microcirculation. Using a collagen gel contraction assay, we demonstrated that cultured pericytes subjected to oxygen-glucose deprivation (OGD) consistently contracted from 3 h till 24 h during reoxygenation, whereas iptakalim treatment (10 μM) notably restrained pericyte contraction from 6 h during reoxygenation. We further showed that iptakalim treatment promoted K-ATP channel opening via suppressing SUR2/EPAC1 complex formation. Consequently, it reduced calcium influx and ET-1 release. Taken together, our results demonstrate that iptakalim, targeted K-ATP channels, can improve microvascular disturbance by inhibiting pericyte contraction after ischemic stroke. Our work reveals that iptakalim might be developed as a promising pericyte regulator for treatment of stroke.
Collapse
Affiliation(s)
- Ruo-bing Guo
- grid.89957.3a0000 0000 9255 8984Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166 China
| | - Yin-feng Dong
- grid.410745.30000 0004 1765 1045Nanjing University of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029 China
| | - Zhi Yin
- grid.412676.00000 0004 1799 0784The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Zhen-yu Cai
- grid.89957.3a0000 0000 9255 8984Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166 China
| | - Jin Yang
- grid.89957.3a0000 0000 9255 8984Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166 China
| | - Juan Ji
- grid.89957.3a0000 0000 9255 8984Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166 China
| | - Yu-qin Sun
- grid.89957.3a0000 0000 9255 8984Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166 China
| | - Xin-xin Huang
- grid.412676.00000 0004 1799 0784The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Teng-fei Xue
- grid.89957.3a0000 0000 9255 8984Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166 China
| | - Hong Cheng
- grid.412676.00000 0004 1799 0784The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Xi-qiao Zhou
- grid.410745.30000 0004 1765 1045Nanjing University of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029 China
| | - Xiu-lan Sun
- grid.89957.3a0000 0000 9255 8984Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166 China ,grid.410745.30000 0004 1765 1045Nanjing University of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029 China
| |
Collapse
|
3
|
Fang F, Zhang X, Li B, Gan S. miR-182-5p combined with brain-derived neurotrophic factor assists the diagnosis of chronic heart failure and predicts a poor prognosis. J Cardiothorac Surg 2022; 17:88. [PMID: 35501813 PMCID: PMC9063236 DOI: 10.1186/s13019-022-01802-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/21/2022] [Indexed: 11/10/2022] Open
Abstract
Objective Chronic heart failure (CHF) is a general progressive disorder with high morbidity and poor prognosis. This study analyzed the serum expression and clinical value of miR-182-5p and brain-derived neurotrophic factor (BDNF) in CHF patients. Methods A total of 82 CHF patients were selected as the study subjects (15 cases in NYHA stage I, 29 cases in stage II, 27 cases in stage III, and 11 cases in stage IV), with another 78 healthy people as the controls. The expression of serum miR-182-5p was detected by RT-qPCR. BDNF expression was measured by ELISA. Furthermore, the Pearson coefficient was used to analyze the correlation of miR-182-5p/BDNF with BNP and LVEF. ROC curve was employed to assess the potential of miR-182-5p or/and BDNF for the diagnosis of CHF. Kaplan–Meier survival curve was implemented to evaluate the prognostic value of miR-182-5p and BDNF. Results Serum miR-182-5p level was elevated and BDNF expression was lowered in CHF patients. Serum miR-182-5p in CHF patients was positively-related with BNP and inversely-correlated with LVEF, while serum BDNF was negatively-linked with BNP and positively-correlated with LVEF. ROC curve indicated the diagnostic value of serum miR-182-5p and BDNF for CHF and the diagnostic accuracy of miR-182-5p combined with BDNF was improved. Kaplan–Meier analysis unveiled that miR-182-5p low expression and BDNF high expression could predict the overall survival in CHF patients. Conclusion miR-182-5p expression is increased and BDNF level is decreased in CHF patients. miR-182-5p combined with BDNF can assist the diagnosis of CHF and predict a poor prognosis.
Collapse
Affiliation(s)
- Fang Fang
- Department of Cardiovascular Medicine, Xianning Central Hospital, No. 228 Jingui Road, Xian'an District, Xianning City, 437000, Hubei Province, China.
| | - Xiaonan Zhang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Shenyang Medical College, Xianning, 110000, Liaoning Province, China
| | - Bin Li
- Department of Cardiovascular Medicine, Xianning Central Hospital, No. 228 Jingui Road, Xian'an District, Xianning City, 437000, Hubei Province, China
| | - Shouyi Gan
- Department of Cardiovascular Medicine, Xianning Central Hospital, No. 228 Jingui Road, Xian'an District, Xianning City, 437000, Hubei Province, China
| |
Collapse
|
4
|
Michel T, Nougué H, Cartailler J, Lefèvre G, Sadoune M, Picard F, Cohen-Solal A, Logeart D, Launay JM, Vodovar N. proANP Metabolism Provides New Insights Into Sacubitril/Valsartan Mode of Action. Circ Res 2022; 130:e44-e57. [PMID: 35485239 DOI: 10.1161/circresaha.122.320882] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Sacubitril/valsartan (S/V) treatment is associated with clinical benefits in patients with heart failure with reduced ejection fraction (HFrEF), but its mode of action remains elusive, although it involves the increase of ANP (atrial natriuretic peptide). METHODS AND RESULTS Using a cohort of 73 HFrEF patients treated with S/V and controls, we deciphered the proteolytic cascade that converts proANP into 4 vasoactive peptides, including ANP, which exert vasodilatory actions. We found that proANP processing is sequential and involved meprin B, ECE (endothelin-converting enzyme) 1, and ANPEP (aminopeptidase N). This processing is limited in HFrEF patients when compared with controls via the downregulation of proANP production, corin, and meprin B activities by miR-425 and miR1-3p, resulting in limited production of proANP-derived bioactive peptides. S/V restored or compensated proANP processing by downregulating miR-425 and miR1-3p beyond levels observed in controls, hence increasing levels of proANP-derived bioactive peptides and vasodilation. In contrast, S/V directly and indirectly partially inhibited ECE1 and ANPEP. Consequently, ECE1 partial inhibition resulted in a lower-than-expected increase in ET1 (endothelin 1), tilting the vasoactive balance toward vasodilation, possibly explaining the hypotensive action of S/V. Finally, we show that proANP glycosylation interferes with the midregional proANP assay-a clinical surrogate for proANP production, preventing any pathophysiological interpretation of the results. Finally, the analysis of S/V dose escalation with respect to baseline treatments suggests S/V-specific effects. CONCLUSIONS These findings offer mechanistic evidence to the natriuretic peptide-defective state in HFrEF, which is improved by S/V. These data also strongly suggest that S/V increases plasma ANP by multiple mechanisms that involve the indirect regulation of 2 microRNAs, besides its protection from NEP (neprilysin) cleavage. Altogether, these data provide new insights on HFrEF pathophysiology and the mode of action of S/V.
Collapse
Affiliation(s)
- Thibault Michel
- Inserm UMR-S 942, Université Paris Cité, France (T.M., H.N., J.C., M.S., A.C.-S., D.L., J.-M.L., N.V.)
| | - Hélène Nougué
- Inserm UMR-S 942, Université Paris Cité, France (T.M., H.N., J.C., M.S., A.C.-S., D.L., J.-M.L., N.V.).,Department of Anaesthesiology and Intensive Care Unit, Hôpital Lariboisière, Paris, France (H.N., J.C.)
| | - Jérôme Cartailler
- Inserm UMR-S 942, Université Paris Cité, France (T.M., H.N., J.C., M.S., A.C.-S., D.L., J.-M.L., N.V.).,Department of Anaesthesiology and Intensive Care Unit, Hôpital Lariboisière, Paris, France (H.N., J.C.)
| | - Guillaume Lefèvre
- AP-HP, Hôpital Tenon, Biochemistry Department, Sorbonne Université, Paris, France (G.L.)
| | - Malha Sadoune
- Inserm UMR-S 942, Université Paris Cité, France (T.M., H.N., J.C., M.S., A.C.-S., D.L., J.-M.L., N.V.)
| | - François Picard
- Heart Failure Unit, Haut-Lévêque Hospital, Pessac, France (F.P.)
| | - Alain Cohen-Solal
- Inserm UMR-S 942, Université Paris Cité, France (T.M., H.N., J.C., M.S., A.C.-S., D.L., J.-M.L., N.V.).,Department of Cardiology, Lariboisière Hospital, Paris, France (A.C.-S., D.L.)
| | - Damien Logeart
- Inserm UMR-S 942, Université Paris Cité, France (T.M., H.N., J.C., M.S., A.C.-S., D.L., J.-M.L., N.V.).,Department of Cardiology, Lariboisière Hospital, Paris, France (A.C.-S., D.L.)
| | - Jean-Marie Launay
- Inserm UMR-S 942, Université Paris Cité, France (T.M., H.N., J.C., M.S., A.C.-S., D.L., J.-M.L., N.V.)
| | - Nicolas Vodovar
- Inserm UMR-S 942, Université Paris Cité, France (T.M., H.N., J.C., M.S., A.C.-S., D.L., J.-M.L., N.V.)
| |
Collapse
|
5
|
Probe into the Target and Mechanism of Jianpi Xiaoke Prescription for Treating Type 2 Diabetes Mellitus through miRNA Expression Profiling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2020:7370350. [PMID: 33456489 PMCID: PMC7785360 DOI: 10.1155/2020/7370350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/24/2020] [Accepted: 12/05/2020] [Indexed: 02/07/2023]
Abstract
Methods Ten of the 31 SPF male Wistar rats were randomly taken as the control group; the remaining rats were fed a high-sugar and high-fat diet, combined with Streptozotocin (STZ, 35 mg/kg) that induced a type 2 diabetes model. The model rats were randomly divided into model groups (n = 11) and the JPXK group (n = 10). After 8 weeks of JPXK intervention, we detected the function of islet cells through HE staining and ELISA. High-pass sequencing technology was adopted to identify the differential expression of miRNA to explore the target of JPXK treatment, assess the relevant target genes, conduct functional analysis, and lastly verify the sequencing data by qRT-PCR. Results After treatment, FPG, FINS, and HOMA-IR levels of the treatment group improved significantly compared with those of the control group (P < 0.05). Among the miRNAs differentially expressed between the model group and the control group, there were 7 reversals after JPXK treatment, including miR-1-3p, miR-135a-5p, miR-181d-5p, miR-206-3p, miR-215, miR-3473, and miR-547-3p (log2FC ≥ 1 or ≤ -1, P < 0.05). Besides, the 1810 target genes associated with these 7 miRNAs were assessed by multiMiR. According to the results of the GO and KEGG analyses, they were associated with biological processes (e.g., glucose transport and fat cell formation), and it covered multiple signaling pathways, capable of regulating islet cell function (e.g., MAPK, PI3K-Akt, Ras, AMPK, and HIF-1 signaling pathways). The PCR verification results were consistent with the sequencing results. Conclusion This discovery interpreted the potential therapeutic targets and signaling pathways of JPXK prescription against T2DM based on miRNA expression profiling. In conclusion, our research provided novel research insights into traditional Chinese medicine (TCM) treatment of diabetes.
Collapse
|
6
|
Abstract
This review is focusing on the understanding of various factors and components governing and controlling the occurrence of ventricular arrhythmias including (i) the role of various ion channel-related changes in the action potential (AP), (ii) electrocardiograms (ECGs), (iii) some important arrhythmogenic mediators of reperfusion, and pharmacological approaches to their attenuation. The transmembrane potential in myocardial cells is depending on the cellular concentrations of several ions including sodium, calcium, and potassium on both sides of the cell membrane and active or inactive stages of ion channels. The movements of Na+, K+, and Ca2+ via cell membranes produce various currents that provoke AP, determining the cardiac cycle and heart function. A specific channel has its own type of gate, and it is opening and closing under specific transmembrane voltage, ionic, or metabolic conditions. APs of sinoatrial (SA) node, atrioventricular (AV) node, and Purkinje cells determine the pacemaker activity (depolarization phase 4) of the heart, leading to the surface manifestation, registration, and evaluation of ECG waves in both animal models and humans. AP and ECG changes are key factors in arrhythmogenesis, and the analysis of these changes serve for the clarification of the mechanisms of antiarrhythmic drugs. The classification of antiarrhythmic drugs may be based on their electrophysiological properties emphasizing the connection between basic electrophysiological activities and antiarrhythmic properties. The review also summarizes some important mechanisms of ventricular arrhythmias in the ischemic/reperfused myocardium and permits an assessment of antiarrhythmic potential of drugs used for pharmacotherapy under experimental and clinical conditions.
Collapse
Affiliation(s)
- Arpad Tosaki
- Department of Pharmacology, School of Pharmacy, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
7
|
Abstract
Cardiovascular disease is an enormous socioeconomic burden worldwide and remains a leading cause of mortality and disability despite significant efforts to improve treatments and personalize healthcare. Heart failure is the main manifestation of cardiovascular disease and has reached epidemic proportions. Heart failure follows a loss of cardiac homeostasis, which relies on a tight regulation of gene expression. This regulation is under the control of multiple types of RNA molecules, some encoding proteins (the so-called messenger RNAs) and others lacking protein-coding potential, named noncoding RNAs. In this review article, we aim to revisit the notion of regulatory RNA, which has been thus far mainly confined to noncoding RNA. Regulatory RNA, which we propose to abbreviate as regRNA, can include both protein-coding RNAs and noncoding RNAs, as long as they contribute, directly or indirectly, to the regulation of gene expression. We will address the regulation and functional role of messenger RNAs, microRNAs, long noncoding RNAs, and circular RNAs (ie, regRNAs) in heart failure. We will debate the utility of regRNAs to diagnose, prognosticate, and treat heart failure, and we will provide directions for future work.
Collapse
Affiliation(s)
| | - Blanche Schroen
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands (B.S., E.L.R., S.H.)
| | - Gabriela M. Kuster
- Clinic of Cardiology and Department of Biomedicine, University Hospital Basel and University of Basel, Switzerland (G.M.K.)
| | - Emma L. Robinson
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands (B.S., E.L.R., S.H.)
| | - Kerrie Ford
- Imperial College London, United Kingdom (K.F., C.E.)
| | - Iain B. Squire
- Department of Cardiovascular Sciences, University of Leicester, and NIHR Biomedical Research Centre, Glenfield Hospital, United Kingdom (I.B.S.)
| | - Stephane Heymans
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands (B.S., E.L.R., S.H.)
| | | | | | - Yvan Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health, Strassen, Luxembourg (C.P.d.C.G., Y.D.)
| | - On behalf of the EU-CardioRNA COST Action (CA17129)
- Cardiovascular Research Unit, Luxembourg Institute of Health, Strassen, Luxembourg (C.P.d.C.G., Y.D.)
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands (B.S., E.L.R., S.H.)
- Clinic of Cardiology and Department of Biomedicine, University Hospital Basel and University of Basel, Switzerland (G.M.K.)
- Imperial College London, United Kingdom (K.F., C.E.)
- Department of Cardiovascular Sciences, University of Leicester, and NIHR Biomedical Research Centre, Glenfield Hospital, United Kingdom (I.B.S.)
- IRCCS Policlinico San Donato, Milan, Italy (F.M.)
| |
Collapse
|
8
|
Evaluation of Vascular Endothelial Function in Young and Middle-Aged Women with Respect to a History of Pregnancy, Pregnancy-Related Complications, Classical Cardiovascular Risk Factors, and Epigenetics. Int J Mol Sci 2020; 21:ijms21020430. [PMID: 31936594 PMCID: PMC7013677 DOI: 10.3390/ijms21020430] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
The aim of the study was to examine the effect of previous pregnancies and classical cardiovascular risk factors on vascular endothelial function in a group of 264 young and middle-aged women 3 to 11 years postpartum. We examined microvascular functions by peripheral arterial tonometry and EndoPAT 2000 device with respect to a history of gestational hypertension, preeclampsia, fetal growth restriction, the severity of the disease with regard to the degree of clinical signs and delivery date. Besides, we compared Reactive Hyperemia Index (RHI) values and the prevalence of vascular endothelial dysfunction among the groups of women with normal and abnormal values of BMI, waist circumference, systolic and diastolic blood pressures, heart rate, total serum cholesterol levels, serum high-density lipoprotein cholesterol levels, serum low-density lipoprotein cholesterol levels, serum triglycerides levels, serum lipoprotein A levels, serum C-reactive protein levels, serum uric acid levels, and plasma homocysteine levels. Furthermore, we determined the effect of total number of pregnancies and total parity per woman, infertility and blood pressure treatment, presence of trombophilic gene mutations, current smoking of cigarettes, and current hormonal contraceptive use on the vascular endothelial function. We also examined the association between the vascular endothelial function and postpartum whole peripheral blood expression of microRNAs involved in pathogenesis of cardiovascular/cerebrovascular diseases (miR-1-3p, miR-16-5p, miR-17-5p, miR-20a-5p, miR-20b-5p, miR-21-5p, miR-23a-3p, miR-24-3p, miR-26a-5p, miR-29a-3p, miR-92a-3p, miR-100-5p, miR-103a-3p, miR-125b-5p, miR-126-3p, miR-130b-3p, miR-133a-3p, miR-143-3p, miR-145-5p, miR-146a-5p, miR-155-5p, miR-181a-5p, miR-195-5p, miR-199a-5p, miR-210-3p, miR-221-3p, miR-342-3p, miR-499a-5p, and miR-574-3p). A proportion of overweight women (17.94% and 20.59%) and women with central obesity (18.64% and 21.19%) had significantly lower RHI values at 10.0% false positive rate (FPR) both before and after adjustment of the data for the age of patients. At 10.0% FPR, a proportion of women with vascular endothelial dysfunction (RHI ≤ 1.67) was identified to have up-regulated expression profile of miR-1-3p (11.76%), miR-23a-3p (17.65%), and miR-499a-5p (18.82%) in whole peripheral blood. RHI values also negatively correlated with expression of miR-1-3p, miR-23a-3p, and miR-499a-5p in whole peripheral blood. Otherwise, no significant impact of other studied factors on vascular endothelial function was found. We suppose that screening of these particular microRNAs associated with vascular endothelial dysfunction may help to stratify a highly risky group of young and middle-aged women that would benefit from early implementation of primary prevention strategies. Nevertheless, it is obvious, that vascular endothelial dysfunction is just one out of multiple cardiovascular risk factors which has only a partial impact on abnormal expression of cardiovascular and cerebrovascular disease associated microRNAs in whole peripheral blood of young and middle-aged women.
Collapse
|