1
|
Ren Y, Hu X, Qi M, Zhu W, Li J, Yang S, Dai C. Tangningtongluo Tablet ameliorates pancreatic damage in diabetic mice by inducing autophagy and inhibiting the PI3K/Akt/mTOR signaling pathway. Int Immunopharmacol 2024; 142:113032. [PMID: 39236456 DOI: 10.1016/j.intimp.2024.113032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/20/2024] [Accepted: 08/25/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Diabetes is a metabolic disease characterized by hyperglycaemia. Tangningtongluo Tablet (TNTL) is an inpatient formula extensively utilized to treat diabetes mellitus (DM), but the protective mechanism is not clear. This study aimed to investigate the relevant mechanisms by which TNTL affects pancreatic damage in diabetic mice and autophagy. METHODS The impact of TNTL on pancreatic damage in diabetic mice in vitro and in vivo was investigated via glucose and lipid metabolism analyses, HE staining, CCK-8, TUNEL staining, Annexin V/PI, and Western blotting. Molecular docking and Western blotting were used to verify the results of network pharmacological analysis, which was carried out to explore the mechanism by which TNTL affects DM. The autophagosome levels were visualized via RFP-GFP-LC3 and transmission electron microscopy, and lysosomal function was evaluated via Lysotracker red staining. Western blot, immunohistochemistry and immunofluorescence staining were used to detect the expression of the autophagy proteins LC3, p62 and LAMP2. RESULTS Compared with the model group, TNTL protected pancreas from oxidative stress, decreased the level of MDA, increased the levels of SOD and GSH-px, induced the occurrence of autophagy and decreased the levels of apoptotic factors. Moreover, TNTL inhibited the protein expression of p-PI3K, p-Akt and p-mTOR, increased the levels of LC3 and LAMP2 and decreased the level of p62, and the autophagy inhibitor CQ blocked the protective effect of TNTL on pancreatic damage in diabetic mice. CONCLUSION These results demonstrated that TNTL ameliorated pancreatic damage in diabetic mice by inhibiting the PI3K/Akt/mTOR signaling and regulating autophagy.
Collapse
Affiliation(s)
- Ying Ren
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Xiangka Hu
- Institute of Materia Medica, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Mushuang Qi
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Wanjun Zhu
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Jin Li
- The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, China; School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Shuyu Yang
- The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, China; School of Medicine, Xiamen University, Xiamen, Fujian 361005, China.
| | - Chunmei Dai
- Institute of Materia Medica, Jinzhou Medical University, Jinzhou, Liaoning 121001, China.
| |
Collapse
|
2
|
Zhang W, Sun J, Li Q, Liu C, Niu F, Yue R, Zhang Y, Zhu H, Ma C, Deng S. Free Radical-Mediated Grafting of Natural Polysaccharides Such as Chitosan, Starch, Inulin, and Pectin with Some Polyphenols: Synthesis, Structural Characterization, Bioactivities, and Applications-A Review. Foods 2023; 12:3688. [PMID: 37835341 PMCID: PMC10572827 DOI: 10.3390/foods12193688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Polyphenols and polysaccharides are very important natural products with special physicochemical properties and extensive biological activities. Recently, polyphenol-polysaccharide conjugates have been synthesized to overcome the limitations of polysaccharides and broaden their application range. Grafted copolymers are produced through chemical coupling, enzyme-mediated, and free radical-mediated methods, among which the free radical-induced grafting reaction is the most cost-effective, ecofriendly, safe, and plausible approach. Here, we review the grafting reactions of polysaccharides mediated by free radicals with various bioactive polyphenols, such as gallic acid (GA), ferulic acid (FA), and catechins. A detailed introduction of the methods and their mechanisms for free radical-mediated grafting is given. Structural characterization methods of the graft products, including thin-layer chromatography (TLC), ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, nuclear magnetic resonance (NMR) analysis, and X-ray diffraction (XRD) are introduced. Furthermore, the biological properties of polyphenol-polysaccharide conjugates are also presented, including antioxidant, antibacterial, antidiabetic, and neuroprotection activities, etc. Moreover, the potential applications of polyphenol-polysaccharide conjugates are described. Finally, the challenges and research prospects of graft products are summarized.
Collapse
Affiliation(s)
- Wenting Zhang
- Xuzhou Institute of Agricultural Sciences, Jiangsu Xuhuai District, Xuzhou 221131, China; (W.Z.); (F.N.); (R.Y.); (Y.Z.); (H.Z.); (C.M.); (S.D.)
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China;
| | - Jian Sun
- Xuzhou Institute of Agricultural Sciences, Jiangsu Xuhuai District, Xuzhou 221131, China; (W.Z.); (F.N.); (R.Y.); (Y.Z.); (H.Z.); (C.M.); (S.D.)
| | - Qiang Li
- Xuzhou Institute of Agricultural Sciences, Jiangsu Xuhuai District, Xuzhou 221131, China; (W.Z.); (F.N.); (R.Y.); (Y.Z.); (H.Z.); (C.M.); (S.D.)
| | - Chanmin Liu
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China;
| | - Fuxiang Niu
- Xuzhou Institute of Agricultural Sciences, Jiangsu Xuhuai District, Xuzhou 221131, China; (W.Z.); (F.N.); (R.Y.); (Y.Z.); (H.Z.); (C.M.); (S.D.)
| | - Ruixue Yue
- Xuzhou Institute of Agricultural Sciences, Jiangsu Xuhuai District, Xuzhou 221131, China; (W.Z.); (F.N.); (R.Y.); (Y.Z.); (H.Z.); (C.M.); (S.D.)
| | - Yi Zhang
- Xuzhou Institute of Agricultural Sciences, Jiangsu Xuhuai District, Xuzhou 221131, China; (W.Z.); (F.N.); (R.Y.); (Y.Z.); (H.Z.); (C.M.); (S.D.)
| | - Hong Zhu
- Xuzhou Institute of Agricultural Sciences, Jiangsu Xuhuai District, Xuzhou 221131, China; (W.Z.); (F.N.); (R.Y.); (Y.Z.); (H.Z.); (C.M.); (S.D.)
| | - Chen Ma
- Xuzhou Institute of Agricultural Sciences, Jiangsu Xuhuai District, Xuzhou 221131, China; (W.Z.); (F.N.); (R.Y.); (Y.Z.); (H.Z.); (C.M.); (S.D.)
| | - Shaoying Deng
- Xuzhou Institute of Agricultural Sciences, Jiangsu Xuhuai District, Xuzhou 221131, China; (W.Z.); (F.N.); (R.Y.); (Y.Z.); (H.Z.); (C.M.); (S.D.)
| |
Collapse
|
3
|
Nakhate VP, Akojwar NS, Sinha SK, Lomte AD, Dhobi M, Itankar PR, Prasad SK. Wound healing potential of Acacia catechu in streptozotocin-induced diabetic mice using in vivo and in silico approach. J Tradit Complement Med 2023; 13:489-499. [PMID: 37693096 PMCID: PMC10492149 DOI: 10.1016/j.jtcme.2023.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/14/2023] [Accepted: 05/30/2023] [Indexed: 09/12/2023] Open
Abstract
Background and aim Acacia catechu Wild. (Fabaceae) barks are traditionally used in the treatment of diabetes and wounds. Therefore, the objective of the present study was to evaluate the wound healing potential of the alcoholic extract of A. catechu (EAC) in streptozotocin-induced diabetic mice. Experimental procedures EAC was first subjected to phytochemical estimations and standardization using (-) epicatechin as marker with the help of HPLC. Diabetes was induced in mice using streptozotocin and the wound healing potential of EAC was evaluated using excision and incision wound models on topical and oral treatment. Various biochemical parameters, in vivo antioxidants, cytokine profiling, VEGF, and histopathological examination were also performed. Further, molecular docking studies were performed using ligand (-) epicatechin on human inducible nitric oxide synthase. Results and conclusion Phytochemically, EAC showed the presence of tannins, flavonoids, phenolic compounds, and saponins, while the content of (-) epicatechin was reported to be 7.81% w/w. The maximum healing of wounds (91.84 ± 1.10%) was observed in mice treated with a combination of both topical (10% gel) and oral (extract at 200 mg/kg) followed by topically and orally treated groups respectively after 14 days of treatment. These groups also showed significant restoration of altered biochemical parameters, antioxidant enzymes and cytokines. The molecular docking studies confirmed the role of (-) epicatechin in stabilizing the human inducible nitric oxide synthase with inhibitor showing binding energy of -8.31 kcal/mol. The present study confirmed the role of (-) epicatechin as a major marker in diabetic wound healing potential of A. catechu.
Collapse
Affiliation(s)
- Vinayak P. Nakhate
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Natasha S. Akojwar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Saurabh K. Sinha
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Amarsinh D. Lomte
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Mahaveer Dhobi
- Department of Pharmacognosy and Phytochemistry, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Prakash R. Itankar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Satyendra K. Prasad
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| |
Collapse
|
4
|
Parvez M, Hussain F, Khan M. Crude extract from Euphorbia prostrata extended curative period of glibenclemide in alloxan-induced diabetic rats. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2023; 20:372-378. [PMID: 36662647 DOI: 10.1515/jcim-2022-0315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/03/2023] [Indexed: 06/16/2023]
Abstract
OBJECTIVES Euphorbia prostrata is traditionally used alongside antidiabetic agents to manage diabetes. Bioactive ingredients of medicinal herbs may alter the overall pharmacokinetics of antidiabetic agents. METHODS We assessed hypoglycemic activities of ethanolic plant extract (EPE) singly and its effects on antidiabetic properties of gliclazide, glibenclemide and metformin in allaxonized rats. Varying concentrations of EPE (250 and 500 mg/kg) with or without metformin (10 mg/kg), glibenclemide (2 mg/kg) and gliclazide (5 mg/kg) were orally administered to evaluate herb-drug interaction. RESULTS The levels of blood glucose declined significantly after treatment with metformin, glibenclemide and gliclazide singly (p<0.01) or concomitantly with EPE (p<0.001). Concentration dependent mild to moderate reduction (5.2 and 10.0%) was registered in blood glucose for 250 and 500 mg/kg of EPE respectively. The overall reduction in blood glucose due to combined treatment with EPE and standard agents was additive. On the other hand, synergistic herb-drug interaction was registered for insulin levels in rats that received glibenclamide and gliclazide alongside EPE. Extract with metformin had antagonistic insulin outcome. Regarding the duration of hypoglycemic activities, periodical changes were similar in case of glibenclamide and gliclazide separately or in combination with EPE. However, in case of metformin with extract, the blood glucose continued to decline for 14 h and retained at 15.0% below the baseline values even after 24 h of treatment. CONCLUSIONS In conclusion, the extract itself had weak hypoglycemic effects but prolonged the therapeutic duration of metformin to more than 24 h when administered combinedly.
Collapse
Affiliation(s)
- Mohammad Parvez
- Institute of Biological Sciences, Sarhad University of Science and Information Technology (SUIT), Peshawar, Pakistan
| | - Farrukh Hussain
- Institute of Biological Sciences, Sarhad University of Science and Information Technology (SUIT), Peshawar, Pakistan
| | - Murad Khan
- Environmental and Conservation Sciences, University of Swat, Swat, Pakistan
| |
Collapse
|
5
|
Yang M, Hao Z, Wang X, Zhou S, Xiao C, Zhu D, Yang Y, Wei J, Zheng X, Feng W. Four undescribed iridoid glycosides with antidiabetic activity from fruits of Cornus officinalis Sieb. Et Zucc. Fitoterapia 2023; 165:105393. [PMID: 36528150 DOI: 10.1016/j.fitote.2022.105393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
Four novel iridoid glycosides neocornuside E-H (1-4), together with nine known ones (5-13), were isolated from fruits of Cornus officinalis. Their chemical structures were determined on the basis of spectroscopic analyses and comparing of the literature data. All of the isolated compounds were evaluated for their antidiabetic activity in insulin resistant HepG2 cells. Compounds 2, 4, 5, 8, and 12 exhibited antidiabetic activities with EC50 values of 40.12, 2.54, 70.43, 15.31, and 4.86 μM, respectively. Flow Sight cytometry analysis indicated that compounds 2, 4, 5, 8, and 12 improved the ability of 2-NBDG uptake of insulin-induced HepG2 cells.
Collapse
Affiliation(s)
- Meng Yang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou 450046, China
| | - Zhiyou Hao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou 450046, China
| | - Xiaolan Wang
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou 450046, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Shiqi Zhou
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou 450046, China
| | - Chaoyuan Xiao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou 450046, China
| | - Denghui Zhu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou 450046, China
| | - Ying Yang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou 450046, China
| | - Junjun Wei
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou 450046, China
| | - Xiaoke Zheng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou 450046, China.
| | - Weisheng Feng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou 450046, China.
| |
Collapse
|
6
|
Yu C, Gao Y, Wang X, Zhang R, Liu N, Rong Z, Wang Z, Yang J, Xie M, Zhang H, Bao H. The chemical constituents and gastroprotective effects of Calanthe fimbriata Franch. Biomed Pharmacother 2022; 153:113468. [DOI: 10.1016/j.biopha.2022.113468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/14/2022] [Accepted: 07/23/2022] [Indexed: 11/29/2022] Open
|
7
|
Ghai D, Kaur A, Kahlon PS, Pawar SV, Sembi JK. A Walk Through the Maze of Secondary Metabolism in Orchids: A Transcriptomic Approach. FRONTIERS IN PLANT SCIENCE 2022; 13:837563. [PMID: 35574139 PMCID: PMC9100589 DOI: 10.3389/fpls.2022.837563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Orchids have a huge reservoir of secondary metabolites making these plants of immense therapeutic importance. Their potential as curatives has been realized since times immemorial and are extensively studied for their medicinal properties. Secondary metabolism is under stringent genetic control in plants and several molecular factors are involved in regulating the production of the metabolites. However, due to the complex molecular networks, a complete understanding of the specific molecular cues is lacking. High-throughput omics technologies have the potential to fill up this lacuna. The present study deals with comparative analysis of high-throughput transcript data involving gene identification, functional annotation, and differential expression in more than 30 orchid transcriptome data sets, with a focus to elucidate the role of various factors in alkaloid and flavonoid biosynthesis. Comprehensive analysis of the mevalonate (MVA) pathway, methyl-d-erythritol 4-phosphate (MEP) pathway, and phenylpropanoid pathway provide specific insights to the potential gene targets for drug discovery. It is envisaged that a positive stimulation of these pathways through regulation of pivotal genes and alteration of specific gene expression, could facilitate the production of secondary metabolites and enable efficient tapping of the therapeutic potential of orchids. This further would lay the foundation for developing strategies for genetic and epigenetic improvement of these plants for development of therapeutic products.
Collapse
Affiliation(s)
- Devina Ghai
- Department of Botany, Panjab University, Chandigarh, India
| | - Arshpreet Kaur
- Department of Botany, Panjab University, Chandigarh, India
| | - Parvinderdeep S. Kahlon
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Sandip V. Pawar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | |
Collapse
|
8
|
Nanjala C, Ren J, Mutie FM, Waswa EN, Mutinda ES, Odago WO, Mutungi MM, Hu GW. Ethnobotany, phytochemistry, pharmacology, and conservation of the genus Calanthe R. Br. (Orchidaceae). JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114822. [PMID: 34774685 DOI: 10.1016/j.jep.2021.114822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/24/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Genus Calanthe (family Orchidaceae) consists of more than 207 species distributed in both tropical and subtropical regions. In traditional medicine, Calanthe species provide remedies against various conditions such as arthritis, rheumatism, traumatic injuries, snake-bites, abdominal discomfort, nose bleeding, common colds, ulcers, chronic coughs, and others. Some species are also used as aphrodisiacs, tonics, and as pain relievers on joints and toothaches. AIM OF THE REVIEW This review provides comprehensive information on the herbal uses, chemical components, pharmacological activities, and conservation of Calanthe, which might be useful in the future development of potent herbal medicines and facilitate the enactment of better conservation strategies. MATERIALS AND METHODS Relevant information was obtained from online databases including SCI-Finder, Google Scholar, Web of Science, Science Direct, PubMed, Springer, IOP Science, and other web sources such as PubChem, The Plant List, and World Flora Online. Books, Ph.D. and MSc dissertations were used for unpublished literature. Information from Chinese literature was obtained from the CNKI database. RESULTS In total, 19 species of the genus Calanthe have been reported to be used in traditional medicine in different countries of Asia. A total of 265 chemical compounds from different chemical classes including, alkaloids, terpenoids, phenolic compounds and phenolic derivatives, phenanthrenes, and others, have been identified from Calanthe species. Calanquinone A isolated from C. arisanensis has been reported to exhibit antitumor activity against six malignant cell lines. Other bioactive compounds from Calanthe with pharmacological activity include phenanthrenes, phenanthrenequinones, 6'-O-β-D-apiofuranosylindican, 4H-Pyran-4one, 2, 3-dihydro-3,5 dihydroxy-6-methyl, and calanthoside. These compounds exhibit valuable biological properties such as hair restoration, anticancer activity, anti-inflammatory and antiarthritic activity, antidiabetic and hepatoprotective potency, antiplatelet aggregation action, and antibacterial and antifungal activities. Some Calanthe species, including C. ecallosa and C. yuana, are endangered in the IUCN red list. The high risk of extinction is attributed to illegal trade and unsustainable harvesting and utilization. CONCLUSIONS This review summarizes the herbal uses, chemical components, biological activity, and conservation of Calanthe. The pharmacological studies on this genus are limited; thus, extensive research on the toxicology, pharmaceutical standardization, and mechanism of action of the isolated bioactive compounds are needed. Since some species of Calanthe are listed as endangered, stringent guidelines on trade, collection, and sustainable utilization of medicinal orchids should be set up to facilitate the conservation of these species.
Collapse
Affiliation(s)
- Consolata Nanjala
- CAS Key Laboratory of Plant Germplasm and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jing Ren
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
| | - Fredrick Munyao Mutie
- CAS Key Laboratory of Plant Germplasm and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Emmanuel Nyongesa Waswa
- CAS Key Laboratory of Plant Germplasm and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Elizabeth Syowai Mutinda
- CAS Key Laboratory of Plant Germplasm and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Wyclif Ochieng Odago
- CAS Key Laboratory of Plant Germplasm and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Moses Mutuse Mutungi
- CAS Key Laboratory of Plant Germplasm and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Guang-Wan Hu
- CAS Key Laboratory of Plant Germplasm and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Nanjala C, Ren J, Mutie FM, Waswa EN, Mutinda ES, Odago WO, Mutungi MM, Hu GW. Ethnobotany, phytochemistry, pharmacology, and conservation of the genus Calanthe R. Br. (Orchidaceae). JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114822. [DOI: https:/doi.org/10.1016/j.jep.2021.114822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
|
10
|
Guo Q, Xiao X, Lu L, Ai L, Xu M, Liu Y, Goff HD. Polyphenol-Polysaccharide Complex: Preparation, Characterization and Potential Utilization in Food and Health. Annu Rev Food Sci Technol 2022; 13:59-87. [PMID: 35041793 DOI: 10.1146/annurev-food-052720-010354] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polysaccharides and polyphenols coexist in many plant-based food products. Polyphenol-polysaccharide interactions may affect the physicochemical, functional, and physiological properties, such as digestibility, bioavailability, and stability, of plant-based foods. In this review, the interactions (physically or covalently linked) between the selected polysaccharides and polyphenols are summarized. The preparation and structural characterization of the polyphenol-polysaccharide conjugates, their structural-interaction relationships, and the effects of the interactions on functional and physiological properties of the polyphenol and polysaccharide molecules are reviewed. Moreover, potential applications of polyphenol-polysaccharide conjugates are discussed. This review aids in a comprehensive understanding of the synthetic strategy, beneficial bioactivity, and potential application of polyphenol-polysaccharide complexes. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Ministry of Education, Tianjin, China
| | - Xingyue Xiao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Ministry of Education, Tianjin, China
| | - Laifeng Lu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Ministry of Education, Tianjin, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China;
| | - Meigui Xu
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yan Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Ministry of Education, Tianjin, China
| | - H Douglas Goff
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
11
|
Abubakar A, Nazifi AB, Maje IM, Tanko Y, Anuka JA, Abdurahman EM. Chlorophytum alismifolium mitigates microvascular complications of type 2 diabetes mellitus: the involvement of oxidative stress and aldose reductase. Drug Metab Pers Ther 2021; 37:69-80. [PMID: 35385895 DOI: 10.1515/dmpt-2021-0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/28/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVES Chlorophytum alismifolium (C. alismifolium) tubers are used in the management of diabetes. This research evaluated the effect of ethylacetate extract of C. alismifolium (EACA) on microvascular complications and the possible association of oxidative stress and aldose reductase in type 2 diabetic rats. METHODS C. alismifolium tubers were subjected to sequential extraction until ethylacetate extract was obtained using a soxhlet apparatus. The LD50 was determined using the OECD 425 guideline. The animals were placed on high fat diet for 42 days and then induced with hyperglycaemia using 40 mg/kg of streptozotocin. Diabetic neuropathy was evaluated using thermal and mechanical methods. Serum was used for the assessment of oxidative stress markers and biochemical markers of retinopathy and nephropathy. Serum aldose reductase was investigated by utilizing the principle of enzyme-linked immunosorbent assay. RESULTS The median lethal dose of EACA was assessed to be above 5,000 mg/kg and it caused no mortality. Treatment with EACA significantly reduced the withdrawal times in both thermal and mechanical hyperalgesic methods (p<0.05). EACA also significantly reduced the levels of urea (p<0.001), albumin (p<0.05) and uric acid (p<0.001) in hyperglycaemic rats. EACA significantly decreased the amounts of low density lipoprotein and triglycerides (p<0.001). There was a remarkable elevation in the levels of high density lipoprotein (p<0.05). A significant (p<0.05) increase in the levels of magnesium was observed in the EACA-treated groups. EACA significantly increased catalase (p<0.05) and reduced malondialdehyde levels (p<0.05). The levels of aldose reductase was significantly (p<0.001) reduced by EACA compared to the hyperglycaemic control. CONCLUSIONS The ethylacetate extract of C. alismifolium has beneficial effects in alleviating microvascular complications of diabetes through the inhibition of oxidative stress and aldose reductase in diabetic rats.
Collapse
Affiliation(s)
- Abdulhakim Abubakar
- Department of Pharmacology and Therapeutics, Ahmadu Bello University, Zaria, Nigeria
| | | | - Idris Mohammed Maje
- Department of Pharmacology and Therapeutics, Ahmadu Bello University, Zaria, Nigeria
| | - Yusuf Tanko
- Department of Human Physiology, Ahmadu Bello University, Zaria, Nigeria
| | - Joseph Akpojo Anuka
- Department of Pharmacology and Therapeutics, Ahmadu Bello University, Zaria, Nigeria
| | | |
Collapse
|
12
|
Abubakar A, Nazifi AB, Maje IM, Tanko Y, Anuka JA, Abdurahman EM. Chlorophytum alismifolium mitigates microvascular complications of type 2 diabetes mellitus: the involvement of oxidative stress and aldose reductase. Drug Metab Pers Ther 2021; 0:dmdi-2021-0129. [PMID: 34392635 DOI: 10.1515/dmdi-2021-0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES Chlorophytum alismifolium (C. alismifolium) tubers are used in the management of diabetes. This research evaluated the effect of ethylacetate extract of C. alismifolium (EACA) on microvascular complications and the possible association of oxidative stress and aldose reductase in type 2 diabetic rats. METHODS C. alismifolium tubers were subjected to sequential extraction until ethylacetate extract was obtained using a soxhlet apparatus. The LD50 was determined using the OECD 425 guideline. The animals were placed on high fat diet for 42 days and then induced with hyperglycaemia using 40 mg/kg of streptozotocin. Diabetic neuropathy was evaluated using thermal and mechanical methods. Serum was used for the assessment of oxidative stress markers and biochemical markers of retinopathy and nephropathy. Serum aldose reductase was investigated by utilizing the principle of enzyme-linked immunosorbent assay. RESULTS The median lethal dose of EACA was assessed to be above 5,000 mg/kg and it caused no mortality. Treatment with EACA significantly reduced the withdrawal times in both thermal and mechanical hyperalgesic methods (p<0.05). EACA also significantly reduced the levels of urea (p<0.001), albumin (p<0.05) and uric acid (p<0.001) in hyperglycaemic rats. EACA significantly decreased the amounts of low density lipoprotein and triglycerides (p<0.001). There was a remarkable elevation in the levels of high density lipoprotein (p<0.05). A significant (p<0.05) increase in the levels of magnesium was observed in the EACA-treated groups. EACA significantly increased catalase (p<0.05) and reduced malondialdehyde levels (p<0.05). The levels of aldose reductase was significantly (p<0.001) reduced by EACA compared to the hyperglycaemic control. CONCLUSIONS The ethylacetate extract of C. alismifolium has beneficial effects in alleviating microvascular complications of diabetes through the inhibition of oxidative stress and aldose reductase in diabetic rats.
Collapse
Affiliation(s)
- Abdulhakim Abubakar
- Department of Pharmacology and Therapeutics, Ahmadu Bello University, Zaria, Nigeria
| | | | - Idris Mohammed Maje
- Department of Pharmacology and Therapeutics, Ahmadu Bello University, Zaria, Nigeria
| | - Yusuf Tanko
- Department of Human Physiology, Ahmadu Bello University, Zaria, Nigeria
| | - Joseph Akpojo Anuka
- Department of Pharmacology and Therapeutics, Ahmadu Bello University, Zaria, Nigeria
| | | |
Collapse
|
13
|
Zhou YJ, Xu N, Zhang XC, Zhu YY, Liu SW, Chang YN. Chrysin Improves Glucose and Lipid Metabolism Disorders by Regulating the AMPK/PI3K/AKT Signaling Pathway in Insulin-Resistant HepG2 Cells and HFD/STZ-Induced C57BL/6J Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5618-5627. [PMID: 33979145 DOI: 10.1021/acs.jafc.1c01109] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Natural products with minor side effects have been reported to be an effective adjuvant therapy for glucose and lipid metabolism disorders. Chrysin, a flavone, has a wide range of physiological effects, such as antioxidant, anti-inflammatory, anti-diabetes, anti-hyperlipidemia, and hepatoprotective. This study was designed to explore the effects and mechanism of chrysin on metabolic syndrome using insulin-resistant HepG2 cells and HFD/STZ-induced C57BL/6J mice. The results indicated that chrysin significantly decreased insulin resistance, oxidative stress, inflammation, and liver injury. In addition, chrysin improved glycogen synthesis and fatty acid oxidation and inhibited gluconeogenesis and fatty acid synthesis by regulating GSK3β, G6Paes, PEPCK, SREBP1, FAS, and ACC1. Furthermore, the results of western blot and real-time PCR experiments demonstrated that chrysin modulated glucose and lipid metabolism through the AMPK/PI3K/AKT signaling pathway. Treatment with the AMPK inhibitor verified that AMPK activation is positively correlated with chrysin activity on glycolipid metabolism. This study confirms that chrysin is a potential treatment for glucose and lipid metabolism disorders.
Collapse
Affiliation(s)
- Ying-Jun Zhou
- The State Key Laboratory of Bioreactor Engineering, College of Bioengineering, East China University of Science and Technology, No.130 Meilong Road, Xuhui District, Shanghai 200237, People's Republic of China
| | - Nuo Xu
- The State Key Laboratory of Bioreactor Engineering, College of Bioengineering, East China University of Science and Technology, No.130 Meilong Road, Xuhui District, Shanghai 200237, People's Republic of China
| | - Xiao-Chen Zhang
- The State Key Laboratory of Bioreactor Engineering, College of Bioengineering, East China University of Science and Technology, No.130 Meilong Road, Xuhui District, Shanghai 200237, People's Republic of China
| | - Yu-Yan Zhu
- The State Key Laboratory of Bioreactor Engineering, College of Bioengineering, East China University of Science and Technology, No.130 Meilong Road, Xuhui District, Shanghai 200237, People's Republic of China
| | - Shao-Wei Liu
- The State Key Laboratory of Bioreactor Engineering, College of Bioengineering, East China University of Science and Technology, No.130 Meilong Road, Xuhui District, Shanghai 200237, People's Republic of China
| | - Ya-Ning Chang
- The State Key Laboratory of Bioreactor Engineering, College of Bioengineering, East China University of Science and Technology, No.130 Meilong Road, Xuhui District, Shanghai 200237, People's Republic of China
| |
Collapse
|
14
|
Abubakar A, Nazifi AB, Maje IM, Tanko Y, Anuka JA, Abdurahman EM. Antihyperglycaemic activity of ethylacetate extract of Chlorophytum alismifolium in type 2 diabetes: The involvement of peroxisome proliferator-activated receptor-γ and dipeptidyl peptidase-4. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2021; 19:78-84. [DOI: 10.1016/j.joim.2020.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/24/2020] [Indexed: 11/16/2022]
|
15
|
Ginsenoside Rg1 protects mice against streptozotocin-induced type 1 diabetic by modulating the NLRP3 and Keap1/Nrf2/HO-1 pathways. Eur J Pharmacol 2019; 866:172801. [PMID: 31738935 DOI: 10.1016/j.ejphar.2019.172801] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022]
Abstract
Ginseng has been traditionally used to treat diabetes mellitus (DM) in China. Ginsenoside Rg1 is a major active ingredient in processed ginseng, which elicits proven biological and pharmacological effects. Although a correlation between nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) and predisposition to type 1 diabetes mellitus (T1DM) has been identified, the mechanism underlying the potential function and activation of NLRP3 inflammasome in DM have not been elucidated to date. The present study aimed to elucidate the effects and underlying mechanism of Rg1 on streptozotocin (STZ)-induced T1DM in mice through short or long-term observation. Concurrently, we intended to explore the relationships between inflammasome, pyroptosis and oxidative stress and the role of NLRP3 and Keap1/Nrf2/HO-1 pathways in the development and progression of DM. Using ELISA and Western blot analysis, we found that Rg1 attenuated abnormally elevated blood glucose, reduced inflammatory factors IL-1β and IL-18 in the blood, decreased ALT and AST levels, promoted insulin secretion, and weakened the function of NLRP3 in mouse liver and pancreas. In addition, Rg1 protected against STZ-induced reactive oxygen species-mediated inflammation by upregulating Nrf2/ARE pathway, which further activated antioxidant enzymes. Interestingly, Rg1 also regulated H3K9 methylation in liver and pancreas, as detected by immunohistochemistry. In summary, these data provide new understanding about the mechanism of Rg1 action, suggesting that it is a potential drug applied for preventing the occurrence and development of T1DM.
Collapse
|
16
|
Asgari MS, Mohammadi-Khanaposhtani M, Kiani M, Ranjbar PR, Zabihi E, Pourbagher R, Rahimi R, Faramarzi MA, Biglar M, Larijani B, Mahdavi M, Hamedifar H, Hajimiri MH. Biscoumarin-1,2,3-triazole hybrids as novel anti-diabetic agents: Design, synthesis, in vitro α-glucosidase inhibition, kinetic, and docking studies. Bioorg Chem 2019; 92:103206. [PMID: 31445191 DOI: 10.1016/j.bioorg.2019.103206] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/11/2019] [Accepted: 08/14/2019] [Indexed: 02/04/2023]
Abstract
A novel series of biscoumarin-1,2,3-triazole hybrids 6a-n was prepared and evaluated for α-glucosidase inhibitory potential. All fourteen derivatives exhibited excellent α-glucosidase inhibitory activity with IC50 values ranging between 13.0 ± 1.5 and 75.5 ± 7.0 µM when compared with the acarbose as standard inhibitor (IC50 = 750.0 ± 12.0 µM). Among the synthesized compounds, compounds 6c (IC50 = 13.0 ± 1.5 µM) and 6g (IC50 = 16.4 ± 1.7 µM) exhibited the highest inhibitory activity against α-glucosidase and were non-cytotoxic towards normal fibroblast cells. Kinetic study revealed that compound 6c inhibits the α-glucosidase in a competitive mode. Furthermore, molecular docking investigation was performed to find interaction modes of the biscoumarin-1,2,3-triazole derivatives.
Collapse
Affiliation(s)
| | - Maryam Mohammadi-Khanaposhtani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mitra Kiani
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ebrahim Zabihi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Roghayeh Pourbagher
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Rahmatollah Rahimi
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Biglar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mir Hamed Hajimiri
- Nano Alvand Company, Avicenna Tech Park, Tehran University of Medical Sciences, Tehran 1439955991, Iran.
| |
Collapse
|
17
|
Farkhondeh T, Samarghandian S, Roshanravan B. Impact of chrysin on the molecular mechanisms underlying diabetic complications. J Cell Physiol 2019; 234:17144-17158. [DOI: 10.1002/jcp.28488] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences Birjand Iran
| | - Saeed Samarghandian
- Noncommunicable Disease Research Center, Neyshabur University of Medical Sciences Neyshabur Iran
- Department of Basic Medical Sciences Neyshabur University of Medical Sciences Neyshabur Iran
| | - Babak Roshanravan
- Student Research Committee, Birjand University of Medical Sciences Birjand Iran
| |
Collapse
|