1
|
Qin M, Zhao C, Xu S, Pan Y, Zhang S, Jiang J, Yu C, Li J, Tian J, Zhao X, Liu W. Role of sRNAs protein molecules in extracellular vesicles derived from Lactobacillus plantarum rejuvenate against ultraviolet B-induced photoaging in human keratinocytes. Int J Biol Macromol 2024; 276:133988. [PMID: 39032887 DOI: 10.1016/j.ijbiomac.2024.133988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Ultraviolet B (UVB) radiation accelerates the aging process of skin cells by triggering oxidative stress and inflammatory responses. The aim of this study was to investigate the mechanism of action of sRNAs and protein molecules in the regenerative extracellular vesicles of Lactobacillus plantarum against the UVB-induced photoaging process of human keratinocytes. The extracellular vesicles regenerated by Lactobacillus plantarum were isolated and purified to identify sRNAs and protein components. Human keratinocytes were treated with UVB radiation to simulate the photoaging model. The effects of different concentrations of vesicle extract on cell survival rate, oxidative stress index and inflammatory marker expression were evaluated in control group and treatment group. The results showed that the regenerated extracellular vesicles of L. plantarum significantly improved the survival rate of keratinocytes after UVB radiation, and delayed the aging process of skin cells by reducing oxidative stress and inhibiting inflammatory response.
Collapse
Affiliation(s)
- Mengyao Qin
- Heilongjiang Academy of Sciences, Harbin 150000, China
| | - Chunyu Zhao
- Division of General Practice, Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Shanshan Xu
- Heilongjiang Academy of Sciences, Harbin 150000, China
| | - Yu Pan
- Heilongjiang Academy of Sciences, Harbin 150000, China
| | - Song Zhang
- Heilongjiang Academy of Sciences, Harbin 150000, China
| | - Jiaping Jiang
- Heilongjiang Academy of Sciences, Harbin 150000, China
| | - Chunjing Yu
- Heilongjiang Academy of Sciences, Harbin 150000, China
| | - Jianing Li
- Division of General Practice, Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Jiangtian Tian
- Key Laboratory of Myocardial Ischemia, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Xiaoyu Zhao
- Heilongjiang Academy of Sciences, Harbin 150000, China.
| | - Wei Liu
- Key Laboratory of Myocardial Ischemia, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
2
|
Shu P, Jiang L, Li M, Li Y, Yuan Z, Lin L, Wen J, Aisa HA, Du Z. Comparison of five retinoids for anti-photoaging therapy: Evaluation of anti-inflammatory and anti-oxidative activities in vitro and therapeutic efficacy in vivo. Photochem Photobiol 2024; 100:633-645. [PMID: 37990342 DOI: 10.1111/php.13872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 11/23/2023]
Abstract
Over the past decades, increasing evidences have demonstrated that five retinoids, including retinol (ROL), retinol acetate (RAc), retinol propionate (RP), retinol palmitate (RPalm), and hydroxypinacolone retinoate (HPR), can be potential therapeutic agents for skin photoaging. However, therapeutic efficacies and biosafety have never been compared to these compounds. This study aimed to determine the optimal retinoid type(s) for anti-photoaging therapy both in vitro and in vivo. Our data demonstrated that four retinoids (RPalm, RP, HPR and ROL) but not RAc were effective for anti-photoaging treatment at 5 μg/mL in vitro, with action mechanisms associated with antioxidative, anti-inflammatory and anti-skin ECM degradation activities. Notably, both RPalm and RP appeared superior to HPR and ROL for those activities. Importantly, both RPalm and RP were shown to be optimal for anti-photoaging therapy when topically applied at 5 mg/kg in a UVB-induced mice model of photoaging, which is consistent with their high anti-photoaging activities in vitro. Additionally, topical application of these five retinoids showed satisfactory biosafety without causing significant apoptosis in animal organs, although RP application led to a slight decline in animal body weights. Collectively, these data have laid a good foundation for the next development of the clinical application of these retinoids for skin healthcare.
Collapse
Affiliation(s)
- Peng Shu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, CAS Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xing Jiang, China
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ling Jiang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Menggeng Li
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen, Guangdong, China
| | - Yi Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Zhengqiang Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Li Lin
- Foshan Allan Conney Biotechnology Co., Ltd., Foshan, Guangdong, China
| | - Ju Wen
- Department of Dermatology, Guangdong Second People's Hospital, Guangzhou, Guangdong, China
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, CAS Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xing Jiang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyun Du
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, CAS Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xing Jiang, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Michalak M. Plant Extracts as Skin Care and Therapeutic Agents. Int J Mol Sci 2023; 24:15444. [PMID: 37895122 PMCID: PMC10607442 DOI: 10.3390/ijms242015444] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Natural ingredients have been used for centuries for skin treatment and care. Interest in the health effects of plants has recently increased due to their safety and applicability in the formulation of pharmaceuticals and cosmetics. Long-known plant materials as well as newly discovered ones are increasingly being used in natural products of plant origin. This review highlights the beneficial effects of plants and plant constituents on the skin, including moisturizing (e.g., Cannabis sativa, Hydrangea serrata, Pradosia mutisii and Carthamus tinctorius), anti-aging (e.g., Aegopodium podagraria, Euphorbia characias, Premna odorata and Warburgia salutaris), antimicrobial (e.g., Betula pendula and Epilobium angustifolium), antioxidant (e.g., Kadsura coccinea, Rosmarinus officinalis, Rubus idaeus and Spatholobus suberectus), anti-inflammatory (e.g., Antidesma thwaitesianum, Helianthus annuus, Oenanthe javanica, Penthorum chinense, Ranunculus bulumei and Zanthoxylum bungeanum), regenerative (e.g., Aloe vera, Angelica polymorpha, Digitaria ciliaris, Glycyrrihza glabra and Marantodes pumilum), wound healing (e.g., Agrimonia eupatoria, Astragalus floccosus, Bursera morelensis, Jatropha neopauciflora and Sapindus mukorossi), photoprotective (e.g., Astragalus gombiformis, Calea fruticose, Euphorbia characias and Posoqueria latifolia) and anti-tyrosinase activity (e.g., Aerva lanata, Bruguiera gymnorhiza, Dodonaea viscosa, Lonicera japonica and Schisandra chinensis), as well as their role as excipients in cosmetics (coloring (e.g., Beta vulgaris, Centaurea cyanus, Hibiscus sabdariffa and Rubia tinctiorum), protective and aromatic agents (e.g., Hyssopus officinalis, Melaleuca alternifolia, Pelargonium graveolens and Verbena officinalis)).
Collapse
Affiliation(s)
- Monika Michalak
- Department of Dermatology, Cosmetology and Aesthetic Surgery, Medical College, Jan Kochanowski University, 35-317 Kielce, Poland
| |
Collapse
|
4
|
Li K, Zhou P, Guo Y, Xu T, Lin S, Lin S, Ji C. Recent advances in exosomal non-coding RNA-based therapeutic approaches for photoaging. Skin Res Technol 2023; 29:e13463. [PMID: 37753673 PMCID: PMC10495620 DOI: 10.1111/srt.13463] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Photoaging is a degenerative biological process that affects the quality of life. It is caused by environmental factors including ultraviolet radiation (UVR), deep skin burns, smoking, active oxygen, chemical substances, and trauma. Among them, UVR plays a vital role in the aging process. AIM With the continuous development of modern medicine, clinical researchers have investigated novel approaches to treat aging. In particular, mesenchymal stem cells (MSCs), non-coding RNAs are involved in various physiological processes have broad clinical application as they have the advantages of convenient samples, abundant sources, and avoidable ethical issues. METHODS This article reviews research progress on five types of stem cell, exosomes, non-coding RNA in the context of photoaging treatment: adipose-derived stem cell, human umbilical cord MSCs, epidermal progenitor cells, keratinocyte stem cells, and hair follicle stem cells (HFSCs). It also includes stem cell related exosomes and their non-coding RNA research. RESULTS The results have clinical guiding significance for prevention and control of the onset and development of photoaging. It is found that stem cells secrete cytokines, cell growth factors, non-coding RNA, exosomes and proteins to repair aging skin tissues and achieve skin rejuvenation. In particular, stem cell exosomes and non-coding RNA are found to have significant research potential, as they possess the benefits of their source cells without the disadvantages which include immune rejection and granuloma formation.
Collapse
Affiliation(s)
- Kun‐Jie Li
- Department of Dermatologythe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouFujianChina
| | - Peng‐Jun Zhou
- Department of Dermatologythe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouFujianChina
| | - Yan‐Ni Guo
- Department of Dermatologythe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouFujianChina
| | - Tian‐Xing Xu
- Department of Dermatologythe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouFujianChina
| | - Song‐Fa Lin
- Department of Dermatologythe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouFujianChina
| | - Shu Lin
- Centre of Neurological and Metabolic Researchthe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouFujianChina
- Group of NeuroendocrinologyGarvan Institute of Medical ResearchSydneyAustralia
| | - Chao Ji
- Department of Dermatologythe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
| |
Collapse
|
5
|
Wang P, Liu D, Cui J, Yan S, Liang Y, Chen Q, Liu Y, Ren S, Chen P. 1,25-Dihydroxvitamin D3 attenuates the damage of human immortalized keratinocytes caused by Ultraviolet-B. Cutan Ocul Toxicol 2023; 42:74-81. [PMID: 37130063 DOI: 10.1080/15569527.2023.2208676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Objective Ultraviolet-B (UVB) radiation is an important factor in causing skin damage. The study is to explore whether 1,25-Dihydroxvitamin D3(1,25(OH)2D3) will attenuate the damage of human immortalized keratinocytes (HaCaT) cells caused by UVB and relevant underlying mechanisms. METHODS CCK-8 was employed to determine the UVB irradiation intensity and 1,25(OH)2D3 concentration. Western blot was used to detect the expression of NF-κB, Caspase9, Caspase3, Bax, Bcl2, FADD, CytC, Beclin-1; Flowcytometry was applied to measure the production of ROS. RESULTS The concentration of 1,25(OH)2D3 used in the study was 100nM and the UVB irradiation intensity was 20 mJ/cm2. Compared with the HaCaT cells irradiated with UVB, the HaCaT cells were pretreated with 1,25(OH)2D3 had lower production of ROS, lower expression of NF-κB, Caspase9, Caspase3, Bax, FADD, CytC and Beclin-1(P < 0.05). CONCLUSION 1,25(OH)2D3 could inhibit the development of oxidative stress and apoptosis in HaCaTs triggered by UVB. This inhibition might be achieved through suppression of mitochondria-modulated apoptosis and autophagy. Vitamin D may be a potential UVB protective component.
Collapse
Affiliation(s)
- Pingwei Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Dongge Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Jiajing Cui
- Department of Occupational Health and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Shuqi Yan
- Department of Occupational Health and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Yujun Liang
- Department of Occupational Health and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Qianqian Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Yanping Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Shuping Ren
- Department of Occupational Health and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Peng Chen
- Department of Pediatrics, the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Gao W, Yuan LM, Zhang Y, Huang FZ, Gao F, Li J, Xu F, Wang H, Wang YS. miR-1246-overexpressing exosomes suppress UVB-induced photoaging via regulation of TGF-β/Smad and attenuation of MAPK/AP-1 pathway. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2023; 22:135-146. [PMID: 36114328 DOI: 10.1007/s43630-022-00304-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/08/2022] [Indexed: 01/12/2023]
Abstract
Stem cell therapy is widely employed for the treatment of skin diseases, especially in skin rejuvenation. Exosomes derived from stem cells have been demonstrated to possess anti-photoaging effects; however, the precise components within exosomes that are responsible for this effect remain unknown. Previously, miR-1246 was found to be one of the most abundant nucleic acids in adipose-derived stem cells (ADSCs)-derived exosomes. This study examined whether miR-1246 was the major therapeutic agent employed by ADSCs to protect against UVB-induced photoaging. Lentivirus infection was used to obtain miR-1246-overexpressing ADSCs and exosomes. We then determined the anti-photoaging effects of miR-1246-overexpressing exosomes (OE-EX) on both UVB-irradiated human skin fibroblasts (HSFs) and Kunming mice. The results showed that OE-EX could significantly decrease MMP-1 by inhibiting the MAPK/AP-1 signaling pathway. Meanwhile, OE-EX markedly increased procollagen type I secretion by activating the TGF-β/Smad pathway. OE-EX also exhibited an anti-inflammatory effect by preventing the UVB-induced degradation of IκB-α and NF-κB overexpression. Animal experiments demonstrated that OE-EX could reduce UVB-induced wrinkle formation, epidermis thickening, and the loss of collagen fibers reduction in Kunming mice. The combined results suggested that miR-1246 is the key component within ADSCs-derived exosomes that protects against UVB-induced skin photoaging.
Collapse
Affiliation(s)
- Wei Gao
- Department of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Li-Min Yuan
- Department of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Yue Zhang
- Department of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Fang-Zhou Huang
- Department of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Fei Gao
- Department of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Jian Li
- Department of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Feng Xu
- Department of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Hui Wang
- Department of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Yu-Shuai Wang
- Department of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030, China.
| |
Collapse
|
7
|
Liu Y, Qu L, Wan S, Li Y, Fan D. Ginsenoside Rk1 Prevents UVB Irradiation-Mediated Oxidative Stress, Inflammatory Response, and Collagen Degradation via the PI3K/AKT/NF-κB Pathway In Vitro and In Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15804-15817. [PMID: 36472249 DOI: 10.1021/acs.jafc.2c06377] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Long-term exposure to ultraviolet (UV) irradiation, especially UVB, can trigger destructive intracellular effects, including various types of DNA damage, oxidative stress, and inflammatory responses, leading to accelerated skin aging. Ginsenoside Rk1, a rare ginsenoside pertaining to panaxadiol saponins, has been certified to possess underlying anti-inflammatory effects. Nevertheless, the efficiency of Rk1 against the photoaging of human skin and the latent molecular mechanisms are still unclear. Here, UVB-irradiated HaCaT keratinocytes were used as an in vitro model, and UVB-irradiated BALB/c nude mouse dorsal skin was established as an in vivo model to explore the mechanism by which Rk1 protects skin. Consequently, we found that Rk1 administration significantly attenuated oxidative stress by suppressing reactive oxygen species (ROS) overproduction and strengthening the activities of antioxidant enzymes. The UVB-induced inflammatory response was alleviated by Rk1 application via regulation of the secretion of various proinflammatory cytokines. Additionally, western blot assays illustrated that Rk1 intervention inhibited collagen degradation by reducing the expression of matrix metalloproteinases. Further studies revealed that Rk1 could suppress the PI3K/AKT/NF-κB signaling pathways in vitro and in vivo. Molecular docking results indicated that Rk1 might effectively bind to the active pockets of PI3K, AKT, and NF-κB. The PI3K activator 740 Y-P clearly reversed the effects of Rk1 on oxidative stress, the inflammatory response, and collagen degradation in UVB-irradiated HaCaT cells. Moreover, histological and Masson staining verified that the administration of Rk1 to BALB/c nude mice remarkably ameliorated UVB-induced skin roughness, epidermal thickening, collagen fiber arrangement disorder, and wrinkles. Overall, the evidence provided in this study suggested that Rk1 could be applied for the development of effective natural antiphotoaging agents for skin health.
Collapse
Affiliation(s)
- Yannan Liu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an 710069, Shaanxi, China
- Shaanxi R & D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an 710069, Shaanxi, China
- Biotechnology & Biomedical Research Institute, Northwest University, Taibai North Road 229, Xi'an 710069, Shaanxi, China
| | - Linlin Qu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an 710069, Shaanxi, China
- Shaanxi R & D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an 710069, Shaanxi, China
- Biotechnology & Biomedical Research Institute, Northwest University, Taibai North Road 229, Xi'an 710069, Shaanxi, China
| | - Shichao Wan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an 710069, Shaanxi, China
- Shaanxi R & D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an 710069, Shaanxi, China
- Biotechnology & Biomedical Research Institute, Northwest University, Taibai North Road 229, Xi'an 710069, Shaanxi, China
| | - Yingchun Li
- Advanced Interdisciplinary Research Center for Flexible Electronics, Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an 710071, Shaanxi, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an 710069, Shaanxi, China
- Shaanxi R & D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an 710069, Shaanxi, China
- Biotechnology & Biomedical Research Institute, Northwest University, Taibai North Road 229, Xi'an 710069, Shaanxi, China
| |
Collapse
|
8
|
Kraokaew P, Manohong P, Prasertsuksri P, Jattujan P, Niamnont N, Tamtin M, Sobhon P, Meemon K. Ethyl Acetate Extract of Marine Algae, Halymenia durvillei, Provides Photoprotection against UV-Exposure in L929 and HaCaT Cells. Mar Drugs 2022; 20:707. [PMID: 36421985 PMCID: PMC9696495 DOI: 10.3390/md20110707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2023] Open
Abstract
Halymenia durvillei is a red alga distributed along the coasts of Southeast Asian countries including Thailand. Previous studies have shown that an ethyl acetate fraction of H. durvillei (HDEA), containing major compounds including n-hexadecanoic acid, 2-butyl-5-hexyloctahydro-1H-indene, 3-(hydroxyacetyl) indole and indole-3-carboxylic acid, possesses high antioxidant and anti-lung cancer activities. The present study demonstrated that HDEA could protect mouse skin fibroblasts (L929) and human immortalized keratinocytes (HaCaT) against photoaging due to ultraviolet A and B (UVA and UVB) by reducing intracellular reactive oxygen species (ROS) and expressions of matrix metalloproteinases (MMP1 and MMP3), as well as increasing Nrf2 nuclear translocation, upregulations of mRNA transcripts of antioxidant enzymes, including superoxide dismutase (SOD), heme oxygenase (HMOX) and glutathione S-transferase pi1 (GSTP1), and procollagen synthesis. The results indicate that HDEA has the potential to protect skin cells from UV irradiation through the activation of the Nrf2 pathway, which leads to decreasing intracellular ROS and MMP production, along with the restoration of skin collagen.
Collapse
Affiliation(s)
- Pichnaree Kraokaew
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand
| | - Preeyanuch Manohong
- Department of Chemistry, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bang Mod, Bangkok 10140, Thailand
| | | | - Prapaporn Jattujan
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nakhon Niamnont
- Department of Chemistry, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bang Mod, Bangkok 10140, Thailand
| | - Montakan Tamtin
- Kung Krabean Bay Royal Development Center, Department of Fisheries, Khlong Khut Sub-District, Tha Mai, Chantaburi 22000, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand
| | - Krai Meemon
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand
| |
Collapse
|
9
|
Bourais I, Elmarrkechy S, Taha D, Mourabit Y, Bouyahya A, El Yadini M, Machich O, El Hajjaji S, El Boury H, Dakka N, Iba N. A Review on Medicinal Uses, Nutritional Value, and Antimicrobial, Antioxidant, Anti-Inflammatory, Antidiabetic, and Anticancer Potential Related to Bioactive Compounds of J. regia. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2094401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ilhame Bourais
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Salma Elmarrkechy
- Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Douae Taha
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco
- Laboratory of Spectroscopy, Molecular Modelling Materials, Nanomaterials Water and Environment–CERNE2D, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Yassine Mourabit
- Laboratory of Spectroscopy, Molecular Modelling Materials, Nanomaterials Water and Environment–CERNE2D, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Meryem El Yadini
- Laboratory of Spectroscopy, Molecular Modelling Materials, Nanomaterials Water and Environment–CERNE2D, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Omar Machich
- Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Souad El Hajjaji
- Laboratory of Spectroscopy, Molecular Modelling Materials, Nanomaterials Water and Environment–CERNE2D, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Houria El Boury
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Nadia Dakka
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Naima Iba
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| |
Collapse
|
10
|
Camponogara C, Oliveira SM. Are TRPA1 and TRPV1 channel-mediated signalling cascades involved in UVB radiation-induced sunburn? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103836. [PMID: 35248760 DOI: 10.1016/j.etap.2022.103836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/09/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Burn injuries are underappreciated injuries associated with substantial morbidity and mortality. Overexposure to ultraviolet (UV) radiation has dramatic clinical effects in humans and is a significant public health concern. Although the mechanisms underlying UVB exposure are not fully understood, many studies have made substantial progress in the pathophysiology of sunburn in terms of its molecular aspects in the last few years. It is well established that the transient receptor potential ankyrin 1 (TRPA1), and vanilloid 1 (TRPV1) channels modulate the inflammatory, oxidative, and proliferative processes underlying UVB radiation exposure. However, it is still unknown which mechanisms underlying TRPV1/A1 channel activation are elicited in sunburn induced by UVB radiation. Therefore, in this review, we give an overview of the TRPV1/A1 channel-mediated signalling cascades that may be involved in the pathophysiology of sunburn induced by UVB radiation. These data will undoubtedly help to explain the various features of sunburn and contribute to the development of novel therapeutic approaches to better treat it.
Collapse
Affiliation(s)
- Camila Camponogara
- Graduated Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Graduated Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil; Department of Biochemistry and Molecular Biology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
11
|
Besrour N, Oludemi T, Mandim F, Pereira C, Dias MI, Soković M, Stojković D, Ferreira O, Ferreira ICFR, Barros L. Valorization of Juglans regia Leaves as Cosmeceutical Ingredients: Bioactivity Evaluation and Final Formulation Development. Antioxidants (Basel) 2022; 11:antiox11040677. [PMID: 35453361 PMCID: PMC9031312 DOI: 10.3390/antiox11040677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
The cosmetic industry is constantly searching for bioactive ingredients, namely, those obtained from natural sources with environmentally friendly connotations and less toxic effects. A previous study of our research group optimized the extraction of phenolic compounds from Juglans regia by heat-assisted extraction. Due to its richness in different phenolic compounds, the present work aimed to develop a formulation containing J. regia leaf extract. The extract’s antioxidant, anti-tyrosinase, antimicrobial, anti-inflammatory, wound healing, cytotoxicity, and photostability properties were evaluated. The extract was then incorporated into an O/W base cream, followed by characterization of the final formulation in terms of its antioxidant properties, phenolic composition, and stability over time and at different storage conditions. The most abundant compounds in the hydroethanolic extract were 3-O-caffeoylquinic acid (18.30 ± 0.04 mg/g), quercetin-O-pentoside (9.64 ± 0.06 mg/g), and quercetin 3-O-glucoside (6.70 ± 0.19 mg/g). Besides those, the extract presented antioxidant, anti-inflammatory, wound closure, and antibacterial effects against several skin pathogens. In addition, HaCaT cell viability was maintained up to 98% at 400 µg/mL. Within Proteus vulgaris-infected HaCaT cells, the extract also presented an over 40% bacterial mortality rate at its nontoxic concentration (200 µg/mL). After incorporating the extract, the obtained formulation presented a good physicochemical profile over time and at different storage conditions while also maintaining its antioxidant effect; as such, it can be considered stable for topical application. Future work to evaluate its performance in terms of skin permeation and detailed toxicological studies with a focus on regulatory requirements, involving skin irritation, eye irritation, genotoxicity, photo-irritation, and dermal absorption, should be conducted, as the prepared formulation demonstrated relevant properties that deserve to be further explored.
Collapse
Affiliation(s)
- Nermine Besrour
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (N.B.); (T.O.); (F.M.); (C.P.); (M.I.D.); (I.C.F.R.F.)
| | - Taofiq Oludemi
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (N.B.); (T.O.); (F.M.); (C.P.); (M.I.D.); (I.C.F.R.F.)
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Univeridade de Vigo, 36310 Ourense, Spain
| | - Filipa Mandim
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (N.B.); (T.O.); (F.M.); (C.P.); (M.I.D.); (I.C.F.R.F.)
| | - Carla Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (N.B.); (T.O.); (F.M.); (C.P.); (M.I.D.); (I.C.F.R.F.)
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (N.B.); (T.O.); (F.M.); (C.P.); (M.I.D.); (I.C.F.R.F.)
| | - Marina Soković
- Department of Plant Physiology, Institute for Biological Research Siniša Stanković—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (M.S.); (D.S.)
| | - Dejan Stojković
- Department of Plant Physiology, Institute for Biological Research Siniša Stanković—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (M.S.); (D.S.)
| | - Olga Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (N.B.); (T.O.); (F.M.); (C.P.); (M.I.D.); (I.C.F.R.F.)
- Correspondence: (O.F.); (L.B.); Tel.: +351-273-303-285 (L.B.); Fax: +351-273-325-405 (L.B.)
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (N.B.); (T.O.); (F.M.); (C.P.); (M.I.D.); (I.C.F.R.F.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (N.B.); (T.O.); (F.M.); (C.P.); (M.I.D.); (I.C.F.R.F.)
- Correspondence: (O.F.); (L.B.); Tel.: +351-273-303-285 (L.B.); Fax: +351-273-325-405 (L.B.)
| |
Collapse
|
12
|
Resveratrol Treats UVB-Induced Photoaging by Anti-MMP Expression, through Anti-Inflammatory, Antioxidant, and Antiapoptotic Properties, and Treats Photoaging by Upregulating VEGF-B Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6037303. [PMID: 35028009 PMCID: PMC8752231 DOI: 10.1155/2022/6037303] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 11/02/2021] [Indexed: 01/02/2023]
Abstract
UVB exposure is one of the primary factors responsible for the development of photoaging, and the aim of this study was to investigate the mechanism involved in the photoprotective properties of resveratrol (RES) in UVB-induced photoaging. Photoaging models of Hacat cells and ICR mice were established by UVB irradiation. The effect of RES on cell viability was then assessed using the MTT assay. The effect of RES on reactive oxygen species (ROS) production was detected through a fluorescent probe assay. The effect of RES on oxidized glutathione (GSSH) content, and superoxide dismutase (SOD) activity in photoaging Hacat cells, were measured separately, using kits. An enzyme-linked immunosorbent assay (ELISA) was used to measure the effect of RES on IL-6 secretion. The effect of VEGF-B on RES photoprotection was examined through the RT-qPCR method, after silencing VEGF-B through siRNA transfection. For animal experiments, the relative water content of the skin of ICR mice was determined using the Corneometer CM825 skin moisture tester. Starting from the third week of the study, the back skin of photoaging ICR mice was photographed weekly using the TIVI700 camera, and the depth of skin wrinkles in photoaging ICR mice was also analyzed. The thickness of the epidermis in photoaging ICR mice was assessed by the hematoxylin-eosin (HE) staining method. The content of collagen fibers in the skin dermis of photoaging ICR mice was measured by the Masson trichrome staining method. The content of collagen III in the dermis of the skin in photoaging ICR mice was measured through immunohistochemistry (IHC) techniques. The effect of RES on the mRNA expression levels of MMP-1, MMP-9, HO-1, GPX-4, IL-6, TNF-α, VEGF-B, caspase9, and caspase3 in photoaging Hacat cells, and that of MMP-3, Nrf2, HO-1, NQO1, SOD1, GPX-4, caspase9, caspase3, and IL-6 in the skin of photoaging ICR mice, was measured by RT-qPCR. The effects of RES on caspase3, Nrf2 (intranuclear), COX-2, P-ERK1/2, ERK1/2, P-P38MAPK, and P38MAPK in photoaging Hacat cells, and on MMP-9, caspase3, COX-2, P-JNK, P-ERK1/2, and P-P38MAPK protein expression in the skin of photoaging ICR mice, were assayed by the WB method. The results of this study, therefore, show that RES has a protective effect against UVB-induced photoaging in both Hacat cells and ICR mice. Its mechanism of action may include reducing the expression of MMPs and the secretion of collagen and inflammatory factors by inhibiting the ROS-mediated MAPK and COX-2 signaling pathways, balancing oxidative stress in the skin of Hacat cells and ICR mice by promoting the Nrf2 signaling pathway, inducing antiapoptotic effects by inhibiting caspase activation, and exerting antioxidant and antiapoptotic effects by targeting the VEGF-B, demonstrating its photoprotective effects against UVB irradiation-induced photoaging.
Collapse
|
13
|
Ghazi S. Do the polyphenolic compounds from natural products can protect the skin from ultraviolet rays? RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
14
|
Zhou Y, He L, Zhang N, Ma L, Yao L. Photoprotective Effect of Artemisia sieversiana Ehrhart Essential Oil Against UVB-induced Photoaging in Mice. Photochem Photobiol 2021; 98:958-968. [PMID: 34767631 DOI: 10.1111/php.13561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/10/2021] [Indexed: 12/23/2022]
Abstract
Photoaging refers to the extrinsic aging resulting from ultraviolet (UV) irradiation, which impacts skin appearance and is accompanied by the risk of skin carcinoma. Developing natural products as photoprotective agents is of great interest in cosmetic industry nowadays. The present study aimed at investigating the possible use of Artemisia sieversiana Ehrhart essential oil (AEO) for the prevention of photoaging induced by UVB. AEO was characterized by chamazulene, which accounted for 38.92% among total 51 identified compounds. In in vitro assays, AEO was found to be a moderate antioxidant and good UVB filter with photostability. A UVB-induced photoaging mice model was established with three AEO formulations (0.1%, 0.5% and 1.5%, w/w) topically applied prior to UVB irradiation. The activities of catalase, particularly superoxide dismutase of skin increased, while malondialdehyde content decreased in AEO groups as compared with model controls. The production of matrix metalloproteinases (MMP-1 and MMP-3) and depletion of hydroxyproline in skin were inhibited by AEO in a dose-dependent manner. Histological evaluation indicated that AEO decreased epidermal thickness, inflammatory cell infiltration, collagen degradation and elastin aberrance. These findings indicated that AEO could be a promising sunscreen agent in protecting the skin against photoaging.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Landscape Architecture, School of Design, Shanghai Jiao Tong University, Shanghai, China.,R&D Center for Aromatic Plants, Shanghai Jiao Tong University, Shanghai, China
| | - Lei He
- R&D Center for Aromatic Plants, Shanghai Jiao Tong University, Shanghai, China.,Department of Resources and Environment, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Zhang
- Department of Landscape Architecture, School of Design, Shanghai Jiao Tong University, Shanghai, China.,R&D Center for Aromatic Plants, Shanghai Jiao Tong University, Shanghai, China
| | - Li Ma
- Department of Landscape Architecture, School of Design, Shanghai Jiao Tong University, Shanghai, China.,R&D Center for Aromatic Plants, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Yao
- Department of Landscape Architecture, School of Design, Shanghai Jiao Tong University, Shanghai, China.,R&D Center for Aromatic Plants, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
15
|
Prunus mume Seed Exhibits Inhibitory Effect on Skin Senescence via SIRT1 and MMP-1 Regulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5528795. [PMID: 34122721 PMCID: PMC8189804 DOI: 10.1155/2021/5528795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/15/2021] [Accepted: 04/23/2021] [Indexed: 01/11/2023]
Abstract
The Prunus mume seed is a by-product of the food industry, and we studied its potential as a food biomaterial, particularly for nutraceutical and inner beauty products. Alternative animal tests showed that an extract of P. mume ripened seed (PmRS) was not toxic on the skin. PmRS exhibited protective effects against ultraviolet- (UV-) induced skin aging in mice, confirmed by phenotypic indications, including increased collagen levels and decreased skin thickness. Compared with the UV-saline group, the UV-PmRS group showed increased levels of silent mating type information regulation 2 homolog 1 (SIRT1) and collagen and decreased matrix metalloproteinase- (MMP-) 1 expression. The protective effect of PmRS treatment against UVB-mediated cell viability was observed in vitro without any cytotoxicity, and PmRS prevented UVB-induced reactive oxygen species generation in HaCaT cells. PmRS downregulated MMP-1 and MMP-13 compared with the UVB-irradiated group. However, mRNA expressions of tissue inhibitor of metalloproteinase-1 and SIRT1 were upregulated by PmRS treatment. MMP-1 and SIRT1 treated with PmRS were decreased and increased, respectively, at the protein level. Moreover, PmRS treatment reduced c-Jun N-terminal kinase and p38 phosphorylation compared with the UVB-treated group. We postulate that P. mume seed could be a useful ingredient in nutraceuticals and inner beauty-purpose foods.
Collapse
|
16
|
Zhang J, Zhou B, Sun J, Chen H, Yang Z. Betulin ameliorates 7,12-dimethylbenz(a)anthracene-induced rat mammary cancer by modulating MAPK and AhR/Nrf-2 signaling pathway. J Biochem Mol Toxicol 2021; 35:e22779. [PMID: 33759307 DOI: 10.1002/jbt.22779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/22/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022]
Abstract
The aim of the present study is to explore the preventive efficacy of betulin (BE) in 7,12-dimethylbenz(a)anthracene (DMBA)-administered mammary cancer by modulating Ahr/Nrf2 signaling in experimental models. The mammary cancer was stimulated by the addition of DMBA (25 mg/kg/b.Wt) mixed in 1 ml of vehicle solution (sunflower oil and saline 1:1) through subcutaneous injection. The DMBA-exposed mammary tumor models showed low bodyweight, elevated quantities of lipid peroxidation molecules (TBARS and LOOH), and low enzymatic (GPx, SOD, and CAT), and nonenzymatic (GSH, vitamin C, and vitamin E) antioxidant activities in plasma and mammary tissues. Moreover, histopathological studies confirmed that invasive ductal carcinoma was observed in DMBA-induced mammary tissue of the experimental model. Dietary oral supplementation of BE prevents the loss of bodyweight, overproduces lipid peroxidation, and restores the antioxidant activities in DMBA-exposed experimental animals. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a crucial antioxidant protein that involves preventing numerous cancers. Therefore, Nrf2-associated signaling concern is a significant target for preventing mammary cancer. This study observed an increased expression of MAPKs, Keap1, ARNT, AhR, and CYP1A1, whereas decreased expression of HO-1 and Nrf2 in DMBA-induced cancer-bearing experimental animals. The oral supplementation of BE effectively modulates the expression of MAPKs, AhR/Nrf2-associated protein expressions in DMBA-exposed experimental animals. This current study concluded that BE is a strong antioxidant, which triggers the MAPKs-mediated oxidative stress and inhibits proliferative markers by restoring the activity of Nrf2 signaling.
Collapse
Affiliation(s)
- Jinku Zhang
- Department of Pathology, Baoding First Central Hospital, Baoding, Hebei, China
| | - Bingjuan Zhou
- Department of Pathology, Baoding First Central Hospital, Baoding, Hebei, China
| | - Jirui Sun
- Department of Pathology, Baoding First Central Hospital, Baoding, Hebei, China
| | - Hong Chen
- Department of Pathology, Baoding First Central Hospital, Baoding, Hebei, China
| | - Zhao Yang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
17
|
Shi X, Shang F, Zhang Y, Wang R, Jia Y, Li K. Persimmon oligomeric proanthocyanidins alleviate ultraviolet B-induced skin damage by regulating oxidative stress and inflammatory responses. Free Radic Res 2020; 54:765-776. [PMID: 33108915 DOI: 10.1080/10715762.2020.1843651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Skin damage can be induced by excessive ultraviolet B (UV-B) irradiation. This study aimed to investigate the potential protective activity of persimmon oligo-proanthocyanidins (P-OPC) against UV-B induced human keratinocyte cells (HaCaT cells) and skin damage and its underlying mechanisms in vitro and in vivo. P-OPC was shown to inhibit the production of intracellular reactive oxygen species (ROS) induced by UVB radiation in both HaCaT cells and mouse skin tissues by increasing the activity of the antioxidant enzyme system [superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and glutathione (GSH)]. Furthermore, P-OPC was found to suppress cell apoptosis and the production of inflammatory cytokines, TNF-α, and IL-6. Overall, P-OPC could protect skin tissues from UV-B-induced damage by suppressing oxidant stress, acute inflammation, and cell apoptosis via regulating MAPK and NF-κB signalling pathways. These results indicate the potential of P-OPC as a photochemo-protective agent against UV-B induced skin damage.
Collapse
Affiliation(s)
- Xin Shi
- Institute of Food Science and Engineering, Hezhou University, Hezhou, China.,College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Feifei Shang
- Institute of Food Science and Engineering, Hezhou University, Hezhou, China
| | - Yajie Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ruifeng Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yangyang Jia
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Kaikai Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China.,Ministry of Education, Key Laboratory of Environment Correlative Food Science (Huazhong Agricultural University), Wuhan, China
| |
Collapse
|
18
|
Trehalose against UVB-induced skin photoaging by suppressing MMP expression and enhancing procollagen I synthesis in HaCaT cells. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104198] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
19
|
Xiao Z, Liang P, Chen J, Chen MF, Gong F, Li C, Zhou C, Hong P, Yang P, Qian ZJ. A Peptide YGDEY from Tilapia Gelatin Hydrolysates Inhibits UVB-mediated Skin Photoaging by Regulating MMP-1 and MMP-9 Expression in HaCaT Cells. Photochem Photobiol 2019; 95:1424-1432. [PMID: 31230361 DOI: 10.1111/php.13135] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022]
Abstract
In this study, we investigated the protective effects of a peptide (YGDEY, Tyr-Gly-Asp-Glu-Tyr) isolated from tilapia skin gelatin hydrolysates (TGHs), against UVB-induced photoaging in human keratinocytes (HaCaT) cells. Results showed that YGDEY significantly decreased levels of intracellular reactive oxygen species (ROS), increased antioxidant factors (Superoxide Dismutase, SOD and Glutathione, GSH) expression and maintained balance between GSH and GSSG in HaCaT cells. Comet assay shows that YGDEY can protect DNA from oxidative damage. Furthermore, it significantly inhibited MMP-1 (collagenase) and MMP-9 (gelatinase) expression and increased Type I procollagen production. In addition, the molecular docking study showed that YGDEY may form active sites with MMP-1 and MMP-9. Moreover, Western blot analysis was utilized to measure the protein levels of UVB-induced mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) signaling pathways. Therefore, these results suggested that YGDEY has a therapeutic effectiveness in prevention of UVB-induced cellular damage, and it is a candidate worthy of being developed as a potential natural antioxidant and food additive.
Collapse
Affiliation(s)
- Zhenbang Xiao
- School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, China
| | - Peng Liang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Jiali Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Mei-Fang Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Fang Gong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Chengyong Li
- School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, China.,Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Chunxia Zhou
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Pengzhi Hong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Ping Yang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Zhong-Ji Qian
- School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, China.,Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| |
Collapse
|
20
|
Li S, Ma D, Du X, Zhou S, Song Y, Zhang L. Protective Effects of Diosgenin Against Ultraviolet B (UVB) Radiation-induced Inflammation in Human Dermal Fibroblasts. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2019.623.628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|