1
|
Liu H, Huang Y, Yang J, Xu X, Dai Q, Zhang Y, Zhao L, Zhang M, Zhang J, Liu T, Zhong L. Involvement of estrogen receptor activation in kaempferol-3-O-glucoside's protection against aging-related cognition impairment and microglial inflammation. Exp Cell Res 2023; 433:113849. [PMID: 37926343 DOI: 10.1016/j.yexcr.2023.113849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
Estrogens have been demonstrated to inhibit age-related cognitive decline via binding to estrogen receptors (ERs). As a natural flavonoid component of Cuscuta Chinensis Lam., Kaempferol-3-O-glucoside (K-3-G) not only possesses anti-neuroinflammatory potential but also functions as an agonist for ERα and ERβ. This study aimed to determine whether K-3-G improved cognition during the aging process, with an emphasis on its effect on microglial inflammation. In vivo, K-3-G (5 or 10 mg/kg/day) was orally given to the senescence-accelerated mouse prone 8 (SAMP8) mice from six to eight-month old. In addition to mitigating the memory and learning deficits of SAMP8 mice, K-3-G upregulated the expression of ERα and ERβ in their hippocampal CA1 region, with the higher dose being more effective. Less Iba-1+ microglial cells presented in SAMP8 mice treated with K-3-G. The formation of NLR Family Pyrin Domain Containing 3 (NLRP3) complex, production of pro-inflammatory cytokines and oxidative stress-related markers, as well as expression of pro-apoptotic proteins were reduced by K-3-G. In vitro, BV2 microglial cells exposed to oligomeric amyloid beta (Aβ)1-42 were treated with 100 μM K-3-G. K-3-G showed similar anti-inflammatory effects on BV2 cells as in vivo. K-3-G-induced alterations were partly diminished by fulvestrant, an ER antagonist. Moreover, dual-luciferase reporter system demonstrated that K-3-G induced ER expression by activating the transcription of estrogen-response elements (EREs). Collectively, these findings demonstrate that K-3-G may be a novel therapeutic agent for senescence-related cognitive impairment by inhibiting microglial inflammation through its action on ERs.
Collapse
Affiliation(s)
- Hong Liu
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yang Huang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jing Yang
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xuejiao Xu
- Department of Internal Classic of Medicine, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Qiaomei Dai
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yuwei Zhang
- Department of Physiology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Li Zhao
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Mengdi Zhang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jing Zhang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Tonghui Liu
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Lili Zhong
- Department of Pathology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| |
Collapse
|
2
|
Darwish SF, Elbadry AMM, Elbokhomy AS, Salama GA, Salama RM. The dual face of microglia (M1/M2) as a potential target in the protective effect of nutraceuticals against neurodegenerative diseases. FRONTIERS IN AGING 2023; 4:1231706. [PMID: 37744008 PMCID: PMC10513083 DOI: 10.3389/fragi.2023.1231706] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023]
Abstract
The pathophysiology of different neurodegenerative illnesses is significantly influenced by the polarization regulation of microglia and macrophages. Traditional classifications of macrophage phenotypes include the pro-inflammatory M1 and the anti-inflammatory M2 phenotypes. Numerous studies demonstrated dynamic non-coding RNA modifications, which are catalyzed by microglia-induced neuroinflammation. Different nutraceuticals focus on the polarization of M1/M2 phenotypes of microglia and macrophages, offering a potent defense against neurodegeneration. Caeminaxin A, curcumin, aromatic-turmerone, myricetin, aurantiamide, 3,6'-disinapoylsucrose, and resveratrol reduced M1 microglial inflammatory markers while increased M2 indicators in Alzheimer's disease. Amyloid beta-induced microglial M1 activation was suppressed by andrographolide, sulforaphane, triptolide, xanthoceraside, piperlongumine, and novel plant extracts which also prevented microglia-mediated necroptosis and apoptosis. Asarone, galangin, baicalein, and a-mangostin reduced oxidative stress and pro-inflammatory cytokines, such as interleukin (IL)-1, IL-6, and tumor necrosis factor-alpha in M1-activated microglia in Parkinson's disease. Additionally, myrcene, icariin, and tenuigenin prevented the nod-like receptor family pyrin domain-containing 3 inflammasome and microglial neurotoxicity, while a-cyperone, citronellol, nobiletin, and taurine prevented NADPH oxidase 2 and nuclear factor kappa B activation. Furthermore, other nutraceuticals like plantamajoside, swertiamarin, urolithin A, kurarinone, Daphne genkwa flower, and Boswellia serrata extracts showed promising neuroprotection in treating Parkinson's disease. In Huntington's disease, elderberry, curcumin, iresine celosia, Schisandra chinensis, gintonin, and pomiferin showed promising results against microglial activation and improved patient symptoms. Meanwhile, linolenic acid, resveratrol, Huperzia serrata, icariin, and baicalein protected against activated macrophages and microglia in experimental autoimmune encephalomyelitis and multiple sclerosis. Additionally, emodin, esters of gallic and rosmarinic acids, Agathisflavone, and sinomenine offered promising multiple sclerosis treatments. This review highlights the therapeutic potential of using nutraceuticals to treat neurodegenerative diseases involving microglial-related pathways.
Collapse
Affiliation(s)
- Samar F. Darwish
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
| | - Abdullah M. M. Elbadry
- Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), El-Sherouk City, Egypt
| | | | - Ghidaa A. Salama
- Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
| | - Rania M. Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| |
Collapse
|
3
|
Kim JH, Ju IG, Kim N, Huh E, Son SR, Hong JP, Choi Y, Jang DS, Oh MS. Yomogin, Isolated from Artemisia iwayomogi, Inhibits Neuroinflammation Stimulated by Lipopolysaccharide via Regulating MAPK Pathway. Antioxidants (Basel) 2022; 12:antiox12010106. [PMID: 36670968 PMCID: PMC9854746 DOI: 10.3390/antiox12010106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023] Open
Abstract
Neuroinflammation causes various neurological disorders, including depression and neurodegenerative diseases. Therefore, regulation of neuroinflammation is a promising therapeutic strategy for inflammation-related neurological disorders. This study aimed to investigate whether yomogin, isolated from Artemisia iwayomogi, has anti-neuroinflammatory effects. First, we evaluated the effects of yomogin by assessing pro-inflammatory mediators and cytokines in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. The results showed that yomogin inhibited the increase in neuroinflammatory factors, including nitric oxide, inducible nitric oxide synthase, cyclooxygenase-2, interleukin-6, and tumor necrosis factor-α, and suppressed phosphorylation of c-Jun N-terminal kinase, extracellular signal-regulated kinase and p38, which participate in the mitogen-activated protein kinase (MAPK) pathway. To confirm these effects in vivo, we measured the activation of astrocyte and microglia in LPS-injected mouse brains. Results showed that yomogin treatment decreased astrocyte and microglia activations. Collectively, these results suggest that yomogin suppresses neuroinflammation by regulating the MAPK pathway and it could be a potential candidate for inflammation-mediated neurological diseases.
Collapse
Affiliation(s)
- Jin Hee Kim
- Department of Biomedical and Pharmaceutical Science, Kyung Hee University, Seoul 02447, Republic of Korea
| | - In Gyoung Ju
- Department of Oriental Pharmaceutical Science, Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Namkwon Kim
- Department of Biomedical and Pharmaceutical Science, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eugene Huh
- Department of Oriental Pharmaceutical Science, Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - So-Ri Son
- Department of Biomedical and Pharmaceutical Science, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joon Pyo Hong
- Department of Biomedical and Pharmaceutical Science, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yujin Choi
- Department of Biomedical and Pharmaceutical Science, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dae Sik Jang
- Department of Biomedical and Pharmaceutical Science, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence: (D.S.J.); (M.S.O.); Tel.: +82-2-961-0719 (D.S.J.); +82-2-961-9436 (M.S.O.)
| | - Myung Sook Oh
- Department of Biomedical and Pharmaceutical Science, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Oriental Pharmaceutical Science, Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence: (D.S.J.); (M.S.O.); Tel.: +82-2-961-0719 (D.S.J.); +82-2-961-9436 (M.S.O.)
| |
Collapse
|
4
|
Tyler SEB, Tyler LDK. Therapeutic roles of plants for 15 hypothesised causal bases of Alzheimer's disease. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:34. [PMID: 35996065 PMCID: PMC9395556 DOI: 10.1007/s13659-022-00354-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/15/2022] [Indexed: 05/26/2023]
Abstract
Alzheimer's disease (AD) is progressive and ultimately fatal, with current drugs failing to reverse and cure it. This study aimed to find plant species which may provide therapeutic bioactivities targeted to causal agents proposed to be driving AD. A novel toolkit methodology was employed, whereby clinical symptoms were translated into categories recognized in ethnomedicine. These categories were applied to find plant species with therapeutic effects, mined from ethnomedical surveys. Survey locations were mapped to assess how this data is at risk. Bioactivities were found of therapeutic relevance to 15 hypothesised causal bases for AD. 107 species with an ethnological report of memory improvement demonstrated therapeutic activity for all these 15 causal bases. The majority of the surveys were found to reside within biodiversity hotspots (centres of high biodiversity under threat), with loss of traditional knowledge the most common threat. Our findings suggest that the documented plants provide a large resource of AD therapeutic potential. In demonstrating bioactivities targeted to these causal bases, such plants may have the capacity to reduce or reverse AD, with promise as drug leads to target multiple AD hallmarks. However, there is a need to preserve ethnomedical knowledge, and the habitats on which this knowledge depends.
Collapse
Affiliation(s)
| | - Luke D K Tyler
- School of Natural Sciences, Bangor University, Gwynedd, UK
| |
Collapse
|
5
|
Sha S, Shen X, Cao Y, Qu L. Mesenchymal stem cells-derived extracellular vesicles ameliorate Alzheimer's disease in rat models via the microRNA-29c-3p/BACE1 axis and the Wnt/β-catenin pathway. Aging (Albany NY) 2021; 13:15285-15306. [PMID: 34086603 PMCID: PMC8221351 DOI: 10.18632/aging.203088] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 04/29/2021] [Indexed: 12/24/2022]
Abstract
Currently, Alzheimer's disease (AD) cannot be treated effectively. Mesenchymal stem cells (MSCs)-derived extracellular vesicles (EVs) (MSC-EVs) exhibit therapeutic effects on many diseases. This study investigated the mechanism of bone marrow MSC-EVs (BM-MSC-EVs) in a rat model of AD. The cognitive function, amyloid-β (Aβ) plaques, Aβ deposition areas and levels of Aβ1-42, Aβ decomposition-related factors (NEP and IDE), and inflammatory cytokines in BM-MSC-EVs-treated AD rats were measured. The effect of BM-MSC-EVs was studied in AD neuron model. microRNA (miR)-29c-3p and BACE1 expression, as well as levels of Wnt/β-catenin pathway-related factors in AD and EVs-treated AD models were detected. miR-29c-3p relationship with BACE1 was predicted and confirmed. miR-29c-3p and BACE1 were interfered to verify the mechanism of EVs in AD. The Wnt/β-catenin pathway inhibitor DKK1 was further added to EVs-treated AD neurons. BM-MSC-EVs showed therapeutic effects on AD rats and neurons. BM-MSC-EVs carried miR-29c-3p into AD neurons. miR-29c-3p targeted BACE1. Silencing miR-29c-3p in BM-MSCs reduced BM-MSC-EV therapeutic effect on AD, which was reversed after BACE1 knockdown. miR-29c-3p targeted BACE1 and activated the Wnt/β-catenin pathway, and the Wnt/β-catenin pathway inhibition impaired EV therapeutic effects on AD. We highlighted that BM-MSC-EVs delivered miR-29c-3p to neurons to inhibit BACE1 expression and activate the Wnt/β-catenin pathway, thereby playing a therapeutic role in AD. This study may provide a novel perspective for elucidating the mechanism of MSCs in the treatment of AD.
Collapse
Affiliation(s)
- Sha Sha
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Xueli Shen
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Yunpeng Cao
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Le Qu
- Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
6
|
Zhang XF, Wang HY, Song J, Liang LH, Xu YR, Zhao FL, Meng QG. Crystal structure of (3 E,5 E)-3,5-bis-4-methoxy-3-(trifluoromethyl)benzylidene)-1-methylpiperidin-4-one, C 24H 21F 6NO 3. Z KRIST-NEW CRYST ST 2020. [DOI: 10.1515/ncrs-2020-0492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abstract
C24H21F6NO3, monoclinic, P21/c (no. 14), a = 16.6493(9) Å, b = 15.3005(8) Å, c = 8.8554(5) Å, β = 99.746(6)°, V = 2223.3(2) Å3, Z = 4, R
gt
(F) = 0.0444, wR
ref
(F
2) = 0.1094, T = 100 K.
Collapse
Affiliation(s)
- Xiao-Fan Zhang
- School of Pharmacy , Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University , Yantai , P. R. China
| | - Hui-yun Wang
- College of Pharmacy , Jining Medical University , Rizhao , 276826 , P. R. China
| | - Jia Song
- School of Pharmacy , Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University , Yantai , P. R. China
| | - Lun-Hai Liang
- School of Pharmacy , Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University , Yantai , P. R. China
| | - Yang-Rong Xu
- Laboratory of Computer-Aided Drug Design and Discovery , Beijing Institute of Pharmacology and Toxicology , Beijing 100850 , P. R. China
| | - Feng-Lan Zhao
- School of Pharmacy , Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University , Yantai , P. R. China
| | - Qing-Guo Meng
- School of Pharmacy , Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University , Yantai , P. R. China
| |
Collapse
|
7
|
Trans-Cinnamaldehyde Alleviates Amyloid-Beta Pathogenesis via the SIRT1-PGC1α-PPARγ Pathway in 5XFAD Transgenic Mice. Int J Mol Sci 2020; 21:ijms21124492. [PMID: 32599846 PMCID: PMC7352815 DOI: 10.3390/ijms21124492] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
Abnormal amyloid-β (Aβ) accumulation is the most significant feature of Alzheimer’s disease (AD). Among the several secretases involved in the generation of Aβ, β-secretase (BACE1) is the first rate-limiting enzyme in Aβ production that can be utilized to prevent the development of Aβ-related pathologies. Cinnamon extract, used in traditional medicine, was shown to inhibit the aggregation of tau protein and Aβ aggregation. However, the effect of trans-cinnamaldehyde (TCA), the main component of cinnamon, on Aβ deposition is unknown. Five-month-old 5XFAD mice were treated with TCA for eight weeks. Seven-month-old 5XFAD mice were evaluated for cognitive and spatial memory function. Brain samples collected at the conclusion of the treatment were assessed by immunofluorescence and biochemical analyses. Additional in vivo experiments were conducted to elucidate the mechanisms underlying the effect of TCA in the role of Aβ deposition. TCA treatment led to improvements in cognitive impairment and reduced Aβ deposition in the brains of 5XFAD mice. Interestingly, the levels of BACE1 were decreased, whereas the mRNA and protein levels of three well-known regulators of BACE1, silent information regulator 1 (SIRT1), peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1α (PGC1α), and PPARγ, were increased in TCA-treated 5XFAD mice. TCA led to an improvement in AD pathology by reducing BACE1 levels through the activation of the SIRT1-PGC1α-PPARγ pathway, suggesting that TCA might be a useful therapeutic approach in AD.
Collapse
|
8
|
Yang Y, Li S, Huang H, Lv J, Chen S, Pires Dias AC, Li Y, Liu X, Wang Q. Comparison of the Protective Effects of Ginsenosides Rb1 and Rg1 on Improving Cognitive Deficits in SAMP8 Mice Based on Anti-Neuroinflammation Mechanism. Front Pharmacol 2020; 11:834. [PMID: 32587516 PMCID: PMC7298198 DOI: 10.3389/fphar.2020.00834] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/20/2020] [Indexed: 12/31/2022] Open
Abstract
This present study was designed to investigate the different effects of ginsenosides Rb1 and Rg1 on improving cognitive deficits in 4-month-old SAMP8 mice. Mice were divided into six groups, including the SAMP8 group, the SAMP8 + Donepezil (1.6 mg/kg) group, the SAMP8 + Rb1 (30 and 60 µmol/kg), and SAMP8 + Rg1 (30 and 60 µmol/kg) groups. SAMR1 mice of the same age were used as the control group. Ginsenosides and donepezil were administrated orally to animals for 8 weeks, then the learning and memory ability of mice were measured by using Morris water maze (MWM) test, object recognition test and passive avoidance experiments. The possible mechanisms were studied including the anti-glial inflammation of Rb1 and Rg1 using HE staining, immunohistochemistry and western blot experiments. Results revealed that Rb1 and Rg1 treatment significantly improved the discrimination index of SAMP8 mice in the object recognition test. Rb1 (60 µmol/kg) and Rg1 (30, 60 µmol/kg) could significantly shorten the escape latency in the acquisition test of the MWM test in SAMP8 mice. Furthermore, Rb1 and Rg1 treatments effectively reduced the number of errors in the passive avoidance task in SAMP8 mice. Western blot experiments revealed that Rb1 showed higher effect than Rg1 in decreasing protein expression levels of ASC, caspase-1 and Aβ in the hippocampus of SAMP8 mice, while Rg1 was more effective than Rb1 in decreasing the protein levels of iNOS. In addition, although Rb1 and Rg1 treatments showed significant protective effects in repairing neuronal cells loss and inhibiting the activation of astrocyte and microglia in hippocampus of SAMP8 mice, Rb1 was more effective than Rg1. These results suggest that Rb1 and Rg1 could improve the cognitive impairment in SAMP8 mice, and they have different mechanisms for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Yujie Yang
- Affiliated TCM Hospital, School of Pharmacy, Sino-Portugal TCM International Cooperation Center, Southwest Medical University, Luzhou, China
| | - Shanshan Li
- Affiliated TCM Hospital, School of Pharmacy, Sino-Portugal TCM International Cooperation Center, Southwest Medical University, Luzhou, China
| | - Hong Huang
- Research Center for Pharmacology & Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingwei Lv
- Research Center for Pharmacology & Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shanguang Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Alberto Carlos Pires Dias
- Centre of Molecular and Environmental Biology (CBMA), SINO-PT Research Center, Department of Biology, University of Minho, Braga, Portugal
| | - Yujiao Li
- Affiliated TCM Hospital, School of Pharmacy, Sino-Portugal TCM International Cooperation Center, Southwest Medical University, Luzhou, China
| | - Xinmin Liu
- Affiliated TCM Hospital, School of Pharmacy, Sino-Portugal TCM International Cooperation Center, Southwest Medical University, Luzhou, China.,Research Center for Pharmacology & Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiong Wang
- Affiliated TCM Hospital, School of Pharmacy, Sino-Portugal TCM International Cooperation Center, Southwest Medical University, Luzhou, China.,Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, China
| |
Collapse
|
9
|
Yang L, Zhou R, Tong Y, Chen P, Shen Y, Miao S, Liu X. Neuroprotection by dihydrotestosterone in LPS-induced neuroinflammation. Neurobiol Dis 2020; 140:104814. [PMID: 32087283 DOI: 10.1016/j.nbd.2020.104814] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/16/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022] Open
Abstract
Microglia-induced neuroinflammation plays a vital role in the etiology and progression of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and multiple sclerosis. The neuroprotective role of androgens, including testosterone and its metabolite dihydrotestosterone (DHT), has been increasingly demonstrated in these diseases, but few studies investigated the effects of androgen on neuroinflammation. This study investigated the role of DHT in lipopolysaccharide (LPS)-induced neuroinflammation, neuronal damage and behavioral dysfunction, as well as underlying mechanisms. We showed that DHT inhibited LPS-induced release of proinflammatory factors, including TNF-α, IL-1β, IL-6; iNOS, COX-2, NO, and PGE2 in BV2 cells and primary microglia by suppressing the TLR4-mediated NF-κB and MAPK p38 signaling pathways, thus protecting SH-SY5Y neurons from inflammatory damage induced by activated microglia. In an LPS-induced neuroinflammation mouse model, endogenous DHT depletion by castration exacerbated inflammatory responses by upregulating the levels of TNF-α, IL-1β, IL-6, iNOS, and COX-2 in the serum and brain by increasing the LR4-mediated NF-κB and MAPK pathway activation, but these effects were restored by exogenous DHT supplementation. Moreover, DHT also regulated the mRNA levels of the anti-inflammatory cytokines IL-10 and IL-13 in the brain. In addition, DHT modulated the expression of Aβ, the apoptotic proteins caspase-3, Bcl-2, and Bax, and synaptophysin, as well as neuronal damage in LPS-treated mouse brains. Further behavioral tests revealed that DHT ameliorated LPS-induced spatial and learning impairment and motor incoordination, and partly improved the locomotor activity in LPS-injected mice. Therefore, this study suggests that DHT exerts anti-neuroinflammatory and neuroprotective effects; thus, androgen replacement therapy is a potential therapeutic strategy for improving cognitive and behavioral function in neuroinflammation-related diseases.
Collapse
Affiliation(s)
- Lei Yang
- Department of Urology, Jing'an District Central Hospital, Fudan University, Shanghai 200040, China
| | - Renyuan Zhou
- Department of Urology, Tianjin Medical University General Hospital, Tianjin Medical University 300070 Tianjin, China; Department of Urology, Jing'an District Central Hospital, Fudan University, Shanghai 200040, China
| | - Yu Tong
- Department of Urology, Jing'an District Central Hospital, Fudan University, Shanghai 200040, China
| | - Pengfei Chen
- Department of Urology, Jing'an District Central Hospital, Fudan University, Shanghai 200040, China
| | - Yu Shen
- Department of Urology, Jing'an District Central Hospital, Fudan University, Shanghai 200040, China
| | - Shuai Miao
- Department of Urology, Jing'an District Central Hospital, Fudan University, Shanghai 200040, China.
| | - Xiaoqiang Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin Medical University 300070 Tianjin, China.
| |
Collapse
|