1
|
Zhang L, Gao X, Yang C, Liang Z, Guan D, Yuan T, Qi W, Zhao D, Li X, Dong H, Zhang H. Structural Characters and Pharmacological Activity of Protopanaxadiol-Type Saponins and Protopanaxatriol-Type Saponins from Ginseng. Adv Pharmacol Pharm Sci 2024; 2024:9096774. [PMID: 38957183 PMCID: PMC11217582 DOI: 10.1155/2024/9096774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/22/2024] [Accepted: 06/12/2024] [Indexed: 07/04/2024] Open
Abstract
Ginseng has a long history of drug application in China, which can treat various diseases and achieve significant efficacy. Ginsenosides have always been deemed important ingredients for pharmacological activities. Based on the structural characteristics of steroidal saponins, ginsenosides are mainly divided into protopanaxadiol-type saponins (PDS, mainly including Rb1, Rb2, Rd, Rc, Rh2, CK, and PPD) and protopanaxatriol-type saponins (PTS, mainly including Re, R1, Rg1, Rh1, Rf, and PPT). The structure differences between PDS and PTS result in the differences of pharmacological activities. This paper provides an overview of PDS and PTS, mainly focusing on their chemical profile, pharmacokinetics, hydrolytic metabolism, and pharmacological activities including antioxidant, antifatigue, antiaging, immunodulation, antitumor, cardiovascular protection, neuroprotection, and antidiabetes. It is intended to contribute to an in-depth study of the relationship between PDS and PTS.
Collapse
Affiliation(s)
- Lancao Zhang
- Northeast Asia Research Institute of Traditional Chinese MedicineChangchun University of Chinese Medicine, Changchun 130117, China
| | - Xiang Gao
- College of PharmacyChangchun University of Chinese Medicine, Changchun 130117, China
| | - Chunhui Yang
- Northeast Asia Research Institute of Traditional Chinese MedicineChangchun University of Chinese Medicine, Changchun 130117, China
- Tuina DepartmentThe Third Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun 130117, China
| | - Zuguo Liang
- College of PharmacyChangchun University of Chinese Medicine, Changchun 130117, China
| | - Dongsong Guan
- Northeast Asia Research Institute of Traditional Chinese MedicineChangchun University of Chinese Medicine, Changchun 130117, China
- Quality Testing Laboratory, Haerbin Customs District 150008, Foshan, China
| | - Tongyi Yuan
- College of PharmacyChangchun University of Chinese Medicine, Changchun 130117, China
| | - Wenxiu Qi
- Northeast Asia Research Institute of Traditional Chinese MedicineChangchun University of Chinese Medicine, Changchun 130117, China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese MedicineChangchun University of Chinese Medicine, Changchun 130117, China
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese MedicineChangchun University of Chinese Medicine, Changchun 130117, China
| | - Haisi Dong
- Northeast Asia Research Institute of Traditional Chinese MedicineChangchun University of Chinese Medicine, Changchun 130117, China
| | - He Zhang
- Northeast Asia Research Institute of Traditional Chinese MedicineChangchun University of Chinese Medicine, Changchun 130117, China
- College of PharmacyChangchun University of Chinese Medicine, Changchun 130117, China
- Research Center of Traditional Chinese MedicineThe Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China
| |
Collapse
|
2
|
Yang C, Qu L, Wang R, Wang F, Yang Z, Xiao F. Multi-layered effects of Panax notoginseng on immune system. Pharmacol Res 2024; 204:107203. [PMID: 38719196 DOI: 10.1016/j.phrs.2024.107203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Recent research has demonstrated the immunomodulatory potential of Panax notoginseng in the treatment of chronic inflammatory diseases and cerebral hemorrhage, suggesting its significance in clinical practice. Nevertheless, the complex immune activity of various components has hindered a comprehensive understanding of the immune-regulating properties of Panax notoginseng, impeding its broader utilization. This review evaluates the effect of Panax notoginseng to various types of white blood cells, elucidates the underlying mechanisms, and compares the immunomodulatory effects of different Panax notoginseng active fractions, aiming to provide the theory basis for future immunomodulatory investigation.
Collapse
Affiliation(s)
- Chunhao Yang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China
| | - Liping Qu
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China; Innovation Materials Research and Development Center, Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai 201702, China
| | - Rui Wang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China
| | - Feifei Wang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China; Innovation Materials Research and Development Center, Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai 201702, China
| | - Zhaoxiang Yang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China
| | - Fengkun Xiao
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China.
| |
Collapse
|
3
|
Li J, Zhao J, Wang X, Lin Z, Lin H, Lin Z. Ginsenoside - a promising natural active ingredient with steroidal hormone activity. Food Funct 2024; 15:1825-1839. [PMID: 38315542 DOI: 10.1039/d3fo05484e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Ginsenosides are a class of natural products with hormone-like activity of triterpenoid saponins and have a variety of pharmacological activities such as anti-aging, immune regulation and cognitive improvement. With the great research interest in alternative medicine and natural products, they are gradually becoming research hotspots. Ginsenosides have a four-ring rigid steroid backbone similar to steroid hormones, and a series of experimental studies have shown that they can exhibit hormone-like activity by binding to nuclear receptors or affecting hormone levels, thereby affecting a wide range of inflammatory conditions, cancers, and menopause-related diseases. This review summarizes the mechanisms and potential health effects of ginsenosides exhibiting estrogen-like, glucocorticoid-like and androgen-like activities, providing an important reference for the exploration of safe phytohormone replacement therapy.
Collapse
Affiliation(s)
- Jun Li
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Jiarui Zhao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Xinhe Wang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Zhi Lin
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - He Lin
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Zhe Lin
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
4
|
Zhang L, Gao X, Yang C, Liang Z, Guan D, Yuan T, Qi W, Zhao D, Li X, Dong H, Zhang H. Structural Characters and Pharmacological Activity of Protopanaxadiol‐Type Saponins and Protopanaxatriol‐Type Saponins from Ginseng. Adv Pharmacol Pharm Sci 2024; 2024. [DOI: org/10.1155/2024/9096774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/12/2024] [Indexed: 07/02/2024] Open
Abstract
Ginseng has a long history of drug application in China, which can treat various diseases and achieve significant efficacy. Ginsenosides have always been deemed important ingredients for pharmacological activities. Based on the structural characteristics of steroidal saponins, ginsenosides are mainly divided into protopanaxadiol‐type saponins (PDS, mainly including Rb1, Rb2, Rd, Rc, Rh2, CK, and PPD) and protopanaxatriol‐type saponins (PTS, mainly including Re, R1, Rg1, Rh1, Rf, and PPT). The structure differences between PDS and PTS result in the differences of pharmacological activities. This paper provides an overview of PDS and PTS, mainly focusing on their chemical profile, pharmacokinetics, hydrolytic metabolism, and pharmacological activities including antioxidant, antifatigue, antiaging, immunodulation, antitumor, cardiovascular protection, neuroprotection, and antidiabetes. It is intended to contribute to an in‐depth study of the relationship between PDS and PTS.
Collapse
|
5
|
Su J, Yu M, Wang H, Wei Y. Natural anti-inflammatory products for osteoarthritis: From molecular mechanism to drug delivery systems and clinical trials. Phytother Res 2023; 37:4321-4352. [PMID: 37641442 DOI: 10.1002/ptr.7935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 08/31/2023]
Abstract
Osteoarthritis (OA) is a degenerative joint disease that affects millions globally. The present nonsteroidal anti-inflammatory drug treatments have different side effects, leading researchers to focus on natural anti-inflammatory products (NAIPs). To review the effectiveness and mechanisms of NAIPs in the cellular microenvironment, examining their impact on OA cell phenotype and organelles levels. Additionally, we summarize relevant research on drug delivery systems and clinical randomized controlled trials (RCTs), to promote clinical studies and explore natural product delivery options. English-language articles were searched on PubMed using the search terms "natural products," "OA," and so forth. We categorized search results based on PubChem and excluded "natural products" which are mix of ingredients or compounds without the structure message. Then further review was separately conducted for molecular mechanisms, drug delivery systems, and RCTs later. At present, it cannot be considered that NAIPs can thoroughly prevent or cure OA. Further high-quality studies on the anti-inflammatory mechanism and drug delivery systems of NAIPs are needed, to determine the appropriate drug types and regimens for clinical application, and to explore the combined effects of different NAIPs to prevent and treat OA.
Collapse
Affiliation(s)
- Jianbang Su
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Minghao Yu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Haochen Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yingliang Wei
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Yang JH, Shin HH, Kim D, Ryu JH, Jin EJ. Adhesive ginsenoside compound K patches for cartilage tissue regeneration. Regen Biomater 2023; 10:rbad077. [PMID: 37750082 PMCID: PMC10518074 DOI: 10.1093/rb/rbad077] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/26/2023] [Accepted: 08/20/2023] [Indexed: 09/27/2023] Open
Abstract
Biomaterial-based drug delivery systems have been developed to expedite cartilage regeneration; however, challenges related to drug recovery, validation, and efficient drug delivery remain. For instance, compound K (CK) is a major metabolite of ginsenosides that is known to protect against joint degeneration by inhibiting the production of inflammatory cytokines and the activation of immune cells. However, its effects on cartilage degradation and tissue regeneration remain unclear. Additionally, tissue-adhesive drug delivery depots that stably adhere to cartilage defects are required for CK delivery. In this study, CK-loaded adhesive patches were reported to seal cartilage defects and deliver CK to defect sites, preventing cartilage degradation and accelerating cartilage tissue regeneration. Adhesive patches are stable and suitable for application in surgical procedures under physiological conditions and show excellent adhesiveness to cartilage surfaces. In addition, there were no significant differences in the adhesive polymeric networks before and after CK loading. CK-loaded hydrocaffeic acid-conjugated chitosan patches significantly inhibited the stimulation of cartilage-degrading enzymes and apoptosis in osteoarthritic cartilage by releasing CK in cartilage defects. Additionally, the NFkB signaling pathway of released CK from the adhesive patches in the treatment of osteoarthritis is revealed. Thus, the CK-loaded adhesive patches are expected to significantly contribute to cartilage regeneration.
Collapse
Affiliation(s)
- Jun-Ho Yang
- Department of Biological Sciences, College of Health Sciences, Wonkwang University, Iksan, Jeonbuk 54538, South Korea
| | - Hyun Ho Shin
- Department of Chemical Engineering, Wonkwang University, Iksan, Jeonbuk 54538, South Korea
| | - Donghyeon Kim
- Department of Biological Sciences, College of Health Sciences, Wonkwang University, Iksan, Jeonbuk 54538, South Korea
| | - Ji Hyun Ryu
- Department of Carbon Convergence Engineering, Wonkwang University, Iksan, Jeonbuk 54538, South Korea
- Integrated Omics Institute, Wonkwang University, Iksan, Jeonbuk 54538, South Korea
| | - Eun-Jung Jin
- Department of Biological Sciences, College of Health Sciences, Wonkwang University, Iksan, Jeonbuk 54538, South Korea
- Integrated Omics Institute, Wonkwang University, Iksan, Jeonbuk 54538, South Korea
| |
Collapse
|
7
|
Faustino C, Pinheiro L, Duarte N. Triterpenes as Potential Drug Candidates for Rheumatoid Arthritis Treatment. Life (Basel) 2023; 13:1514. [PMID: 37511889 PMCID: PMC10381804 DOI: 10.3390/life13071514] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease characterized by joint inflammation, swelling and pain. Although RA mainly affects the joints, the disease can also have systemic implications. The presence of autoantibodies, such as anti-cyclic citrullinated peptide antibodies and rheumatoid factors, is a hallmark of the disease. RA is a significant cause of disability worldwide associated with advancing age, genetic predisposition, infectious agents, obesity and smoking, among other risk factors. Currently, RA treatment depends on anti-inflammatory and disease-modifying anti-rheumatic drugs intended to reduce joint inflammation and chronic pain, preventing or slowing down joint damage and disease progression. However, these drugs are associated with severe side effects upon long-term use, including immunosuppression and development of opportunistic infections. Natural products, namely triterpenes with anti-inflammatory properties, have shown relevant anti-arthritic activity in several animal models of RA without undesirable side effects. Therefore, this review covers the recent studies (2017-2022) on triterpenes as safe and promising drug candidates for the treatment of RA. These bioactive compounds were able to produce a reduction in several RA activity indices and immunological markers. Celastrol, betulinic acid, nimbolide and some ginsenosides stand out as the most relevant drug candidates for RA treatment.
Collapse
Affiliation(s)
- Célia Faustino
- iMed.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Lídia Pinheiro
- iMed.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Noélia Duarte
- iMed.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
8
|
Huang Y, Ran X, Liu H, Luo M, Qin Y, Yan J, Li X, Jia Y. A novel dammarane triterpenoid alleviates atherosclerosis by activating the LXRα pathway. Chin Med 2023; 18:72. [PMID: 37322486 DOI: 10.1186/s13020-023-00758-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/24/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND We have previously demonstrated that ginsenoside compound K can attenuate the formation of atherosclerotic lesions. Therefore, ginsenoside compound K has potential for atherosclerosis therapy. How to improve the druggability and enhance the antiatherosclerotic activity of ginsenoside compound K are the core problems in the prevention and treatment of atherosclerosis. CKN is a ginsenoside compound K derivative that was previously reported to have excellent antiatherosclerotic activity in vitro, and we have applied for international patents for it. METHODS Male C57BL/6 ApoE-/- mice were fed a high-fat and high-choline diet to induce atherosclerosis and were subjected to in vivo studies. In vitro, the CCK-8 method was applied to evaluate cytotoxicity in macrophages. Foam cells were utilized, and cellular lipid determination was performed for in vitro studies. The area of atherosclerotic plaque and fatty infiltration of the liver were measured by image analysis. Serum lipid and liver function were determined by a seralyzer. Immunofluorescence and western blot analysis were conducted to explore the alterations in the expression levels of lipid efflux-related proteins. Molecular docking, reporter gene experiments and cellular thermal shift assays were used to verify the interaction between CKN and LXRα. RESULTS After confirming the therapeutic effects of CKN, molecular docking, reporter gene experiments and cellular thermal shift assays were used to predict and investigate the antiatherosclerotic mechanisms of CKN. CKN exhibited the greatest potency, with a 60.9% and 48.1% reduction in en face atherosclerotic lesions on the thoracic aorta and brachiocephalic trunk, reduced plasma lipid levels and decreased foam cell levels in the vascular plaque content in HHD-fed ApoE-/- mice. Moreover, CKN in the present study may exert its antiatherosclerotic effects through activated ABCA1 by promoting LXRα nuclear translocation and reducing the adverse effects of LXRα activation. CONCLUSIONS Our results revealed that CKN prevented the formation of atherosclerosis in ApoE-/- mice by activating the LXRα pathway.
Collapse
Affiliation(s)
- Yan Huang
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Shapingba, Chongqing, 400038, China
| | - Xiaodong Ran
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Shapingba, Chongqing, 400038, China
| | - Hongmei Liu
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Shapingba, Chongqing, 400038, China
| | - Mingming Luo
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Shapingba, Chongqing, 400038, China
| | - Yiyu Qin
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Shapingba, Chongqing, 400038, China
| | - Jinqiong Yan
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Shapingba, Chongqing, 400038, China
| | - Xiaohui Li
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Shapingba, Chongqing, 400038, China.
| | - Yi Jia
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Shapingba, Chongqing, 400038, China.
| |
Collapse
|
9
|
Valdés-González JA, Sánchez M, Moratilla-Rivera I, Iglesias I, Gómez-Serranillos MP. Immunomodulatory, Anti-Inflammatory, and Anti-Cancer Properties of Ginseng: A Pharmacological Update. Molecules 2023; 28:molecules28093863. [PMID: 37175273 PMCID: PMC10180039 DOI: 10.3390/molecules28093863] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
Ginseng, a medicinal plant of the genus Panax, boasts a rich historical record of usage that dates back to the Paleolithic period. This botanical is extensively acknowledged and consumed in Eastern countries for its therapeutic properties, and, in Western countries, it is becoming increasingly popular as a remedy for fatigue and asthenia. This review provides an update on current research pertaining to ginseng and its isolated compounds, namely, ginsenosides and polysaccharides. The primary focus is on three crucial pharmacological activities, namely, immunomodulation, anti-inflammatory, and anti-cancer effects. The review encompasses studies on both isolated compounds and various ginseng extracts obtained from the root, leaves, and berries.
Collapse
Affiliation(s)
- Jose Antonio Valdés-González
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain
| | - Marta Sánchez
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain
| | - Ignacio Moratilla-Rivera
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain
| | - Irene Iglesias
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain
| | - María Pilar Gómez-Serranillos
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain
| |
Collapse
|
10
|
Choi S, Kim T. Compound K-An immunomodulator of macrophages in inflammation. Life Sci 2023; 323:121700. [PMID: 37068708 DOI: 10.1016/j.lfs.2023.121700] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023]
Abstract
Compound K (CK) is a secondary ginsenoside biotransformed from ginseng. This review discusses the function of CK as a potential ligand of the glucocorticoid receptor and a regulator of macrophage inflammatory responses. We provide findings on the ability of CK to inhibit the activation of M1 macrophages and promote the activation and differentiation of M2 macrophages. In addition, the effect of inhibiting the inflammasome response was collected. We summarized the evidences that CK is effective in the treatment of various inflammatory diseases such as rheumatoid arthritis, systemic lupus erythematosus, dermatitis, asthma, chronic obstructive pulmonary disease, sepsis associated encephalopathy, atherosclerosis, inflammatory bowel disease, and diabetes. These findings suggest the potential of CK as a therapeutic agent that can resolve inflammation and restore homeostasis.
Collapse
Affiliation(s)
- Susanna Choi
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, Republic of Korea.
| | - Taesoo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, Republic of Korea
| |
Collapse
|
11
|
Tian Y, Feng X, Zhou Z, Qin S, Chen S, Zhao J, Hou J, Liu D. Ginsenoside Compound K Ameliorates Osteoarthritis by Inhibiting the Chondrocyte Endoplasmic Reticulum Stress-Mediated IRE1α-TXNIP-NLRP3 Axis and Pyroptosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1499-1509. [PMID: 36630614 DOI: 10.1021/acs.jafc.2c06134] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Osteoarthritis (OA) is a common joint disease, and studies have reported that the endoplasmic reticulum stress (ERS) in chondrocytes caused by the cartilage tissue damage could mediate the activation of Nod-like receptor protein 3 (NLRP3) inflammasomes through inositol-requiring enzyme 1 alpha (IRE1α) and thioredoxin interacting protein (TXNIP). Ginsenoside compound K (CK) has an inhibitory effect on IRE1α activation. However, the role of IRE1α-TXNIP and its interaction with CK are still unclear. In this study, we examined the role and mechanism of action of CK in OA. We found that CK ameliorated OA and ERS in IL-1β-treated chondrocytes and a monoiodoacetate-induced rat OA model. The effect of CK on inflammation, pyroptosis, and ERS was blocked by the ERS inducer tunicamycin. In conclusion, CK hindered OA progression by inhibiting the ERS-IRE1α-TXNIP-NLRP3 axis. Overall, our data indicate that CK could be useful in the treatment of OA and other chronic inflammatory diseases.
Collapse
Affiliation(s)
- Yicheng Tian
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Xinyuan Feng
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Zimo Zhou
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Sen Qin
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Senxiang Chen
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jihui Zhao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jianglin Hou
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Da Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| |
Collapse
|
12
|
A novel GRK2 inhibitor alleviates experimental arthritis through restraining Th17 cell differentiation. Biomed Pharmacother 2023; 157:113997. [PMID: 36399825 DOI: 10.1016/j.biopha.2022.113997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/29/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
T helper type 17 (Th17) cell which is induced by interleukine-6 (IL-6)-signal transducers and activators of transcription 3 (STAT3) signaling is a central pro-inflammatory T cell subtype in rheumatoid arthritis (RA) and could be significantly reduced by paeoniflorin-6'-O-benzene sulfonate (CP-25) treatment with unclear mechanisms. This study was aimed to found out the mechanism of CP-25 in hampering Th17 cells differentiation in arthritic animals thus explore more therapeutic targets for RA. In mice with collagen-induced arthritis (CIA), both circulating and splenic Th17 subsets were expanded with increased STAT3 phosphorylation and decreased Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP1)-β-arrestin2 (arrb2)-STAT3 interaction in CD4+ helper T (Th) cells. Either CP-25 or paroxetine (PAR), an established G protein coupled receptor kinase 2 (GRK2) inhibitor treatment effectively relieved the joints inflammation of CIA mice with substantially reduced Th17 cell population through inhibiting STAT3 and restoring the SHP1-arrb2-STAT3 complex. Knockout of arrb2 exacerbated the clinical manifestations of collagen antibody-induced arthritis with upregulated Th17 cells. In vitro studies revealed that depletion of arrb2 or inhibition of SHP1 promoted Th17 cell differentiation. Moreover, stimulation of adenosine A3 receptor (A3AR) simultaneously promoted Th17 cell differentiation via accelerating abbr2-A3AR binding, which could be prevented through inhibiting GRK2 phosphorylation by CP-25 or PAR, or genetically reducing GRK2. This work has demonstrated that CP-25 or PAR treatment recovers the SHP1-arrb2-STAT3 complex which prevents STAT3 activation in Th cells through reducing arrb2 recruitment to A3AR by inhibiting GRK2 phosphorylation, leading to the reduction in Th17 cell differentiation and arthritis attenuation.
Collapse
|
13
|
Wang M, Su T, Sun H, Cheng H, Jiang C, Guo P, Zhu Z, Fang R, He F, Ge M, Guan Q, Wei W, Wang Q. Regulating Th17/Treg Balance Contributes to the Therapeutic Effect of Ziyuglycoside I on Collagen-Induced Arthritis. Int J Mol Sci 2022; 23:16105. [PMID: 36555745 PMCID: PMC9786935 DOI: 10.3390/ijms232416105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
To investigate the therapeutic effect and primary pharmacological mechanism of Ziyuglycoside I (Ziyu I) on collagen-induced arthritis (CIA) mice. CIA mice were treated with 5, 10, or 20 mg/kg of Ziyu I or 2 mg/kg of methotrexate (MTX), and clinical manifestations, as well as pathological changes, were observed. T cell viability and subset type were determined, and serum levels of transforming growth factor-beta (TGF-β) and interleukin-17 (IL-17) were detected. The mRNA expression of retinoid-related orphan receptor-γt (RORγt) and transcription factor forkhead box protein 3 (Foxp3) in mouse spleen lymphocytes was ascertained by the real-time reverse transcriptase-polymerase chain reaction (RT-qPCR). Molecular docking was used to detect whether there was a molecular interaction between Ziyu I and protein kinase B (Akt). The activation of mechanistic target of rapamycin (mTOR) in T cells was verified by Western blotting or immunofluorescence. Ziyu I treatment effectively alleviated arthritis symptoms of CIA mice, including body weight, global score, arthritis index, and a number of swollen joints. Similarly, pathological changes of joints and spleens in arthritic mice were improved. The thymic index, T cell activity, and RORγt production of Ziyu I-treated mice were significantly reduced. Notably, through molecular docking, western blotting, and immunofluorescence data analysis, it was found that Ziyu I could interact directly with Akt to reduce downstream mTOR activation and inhibit helper T cell 17 (Th17) differentiation, thereby regulating Th17/regulatory T cell (Treg) balance and improving arthritis symptoms. Ziyu I effectively improves arthritic symptoms in CIA mice by inhibiting mTOR activation, thereby affecting Th17 differentiation and regulating Th17/Treg balance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, China
| | - Qingtong Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, China
| |
Collapse
|
14
|
Sun H, Wang M, Su T, Guo P, Tai Y, Cheng H, Zhu Z, Jiang C, Yan S, Wei W, Zhang L, Wang Q. Ziyuglycoside I attenuates collagen-induced arthritis through inhibiting plasma cell expansion. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115348. [PMID: 35533910 DOI: 10.1016/j.jep.2022.115348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/16/2022] [Accepted: 05/03/2022] [Indexed: 06/14/2023]
Abstract
ETHNOBOTANICAL RELEVANCE With most of the anti-rheumatic drugs having severe adverse drug reactions and poor tolerance, the active components from natural herbs provides a repository for novel, safe, and effective drug development. Sanguisorba officinalis L. exhibits definite anti-inflammatory capacity, however, whether it has anti-rheumatic effects has not been revealed. AIM OF THE STUDY In the present study, the effect of Ziyuglycoside I (Ziyu I), one of the most important active components in Sanguisorba officinalis L., was investigated in treating collagen-induced arthritis (CIA), illuminating its potential pharmacological mechanisms. MATERIAL AND METHODS CIA mice were treated with 5, 10, or 20 mg/kg of Ziyu I or 2 mg/kg of MTX, and clinical manifestations as well as pathological changes were observed. T and B cell viability was determined using cell counting kit-8, plasma autoantibodies and cytokines were tested with ELISA, T and B cell subsets were identified by flow cytometry, Blimp1 expression was detected by RT-qPCR and in situ immunofluorescence. The expression of activation-induced cytidine deaminase (AID) was detected by immunohistochemistry. ERK activation in B cells was verified through western blotting and immunofluorescence. Meanwhile, bioinformatics retrieval and molecular docking/molecular dynamics were used to predict the relationship between Blimp1, ERK and Ziyu I with the pharmacokinetics and toxicity of Ziyu I being evaluated in the ADMETlab Web platform. RESULTS Ziyu I treatment effectively alleviated the joint inflammatory manifestation including arthritis index, global scores, swollen joint count and body weight of CIA mice. It improved the pathological changes of joint and spleen of arthritic mice, especially in germinal center formation. Ziyu I displayed a moderate regulatory effect on T cell activation, the percentage of total T and helper T cells, and tumor necrosis factor-α, but transforming growth factor-β was not restored. Increased spleen index, B cell viability and plasma auto-antibody production in CIA mice were significantly reduced by Ziyu I therapy. Of note, we found that Ziyu I administration substantially inhibited the excessive expansion of plasma cells in spleen through preventing the expression of B lymphocyte induced maturation protein 1 (Blimp1) and AID in B cells. Ziyu I was predicted in silico to directly interact with ERK2, and reduce ERK2 activation, contributing to the depressed expression of Blimp1. Moreover, Ziyu I was predicted to have a favorable pharmacokinetic profile and low toxicity. CONCLUSION Ziyu I effectively ameliorates CIA in mice by inhibiting plasma cell generation through prevention of ERK2-mediated Blimp1 expression in B cells. Therefore, Ziyu I is a promising candidate for anti-arthritic drug development.
Collapse
Affiliation(s)
- Hanfei Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, China
| | - Manman Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, China
| | - Tiantian Su
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, China
| | - Paipai Guo
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, China
| | - Yu Tai
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, China
| | - Huijuan Cheng
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, China
| | - Zhenduo Zhu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, China
| | - Chunru Jiang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, China
| | - Shangxue Yan
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, China.
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, China.
| | - Qingtong Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, China.
| |
Collapse
|
15
|
Cheng H, Guo P, Su T, Jiang C, Zhu Z, Wei W, Zhang L, Wang Q. G protein-coupled receptor kinase type 2 and β-arrestin2: Key players in immune cell functions and inflammation. Cell Signal 2022; 95:110337. [DOI: 10.1016/j.cellsig.2022.110337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 02/07/2023]
|
16
|
Xu J, Dong J, Ding H, Wang B, Wang Y, Qiu Z, Yao F. Ginsenoside compound K inhibits obesity-induced insulin resistance by regulation of macrophage recruitment and polarization via activating PPARγ. Food Funct 2022; 13:3561-3571. [PMID: 35260867 DOI: 10.1039/d1fo04273d] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Obesity disrupts the immune system of adipose tissue, and the activation of its macrophages constantly infiltrating adipose tissue is a crucial cause of insulin resistance induced by obesity. We previously reported for the first time in vitro that the antidiabetic effect of CK may be through the inhibition of macrophage activation and we further explored the specific mechanism in vivo. In order to clarify it, the C57BL/6J mice were fed with a high fat diet and then administered with CK orally. The related biochemical indices were detected, the inflammatory factors in serum and tissues were measured, and the related protein expression levels in insulin pathways and inflammatory signaling pathways were observed. The results showed that CK could dose-dependently reduce macrophage M1-type inflammatory factor expression in serum and adipose tissue, improve insulin resistance and glucose tolerance effectively, upregulate PPARγ expression and block TLR4/TRAF6/TAK1/NF-κB activation in obese mice. In addition, CK promoted the expression of IRS1/PI3K/AKT. Furthermore, our study showed that ginsenoside CK could improve insulin resistance by reducing inflammation through the PPARγ/NF-κB signaling pathway, which implies that ginsenoside CK may be an effective agent against obesity or early diabetes.
Collapse
Affiliation(s)
- Jie Xu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Jinxiang Dong
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Hongyue Ding
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Bei Wang
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Yuqi Wang
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Zhidong Qiu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Fan Yao
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
17
|
Wang L, Lu Q, Gao W, Yu S. Recent advancement on development of drug-induced macrophage polarization in control of human diseases. Life Sci 2021; 284:119914. [PMID: 34453949 DOI: 10.1016/j.lfs.2021.119914] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 12/18/2022]
Abstract
Macrophages, an important part of human immune system, possess a high plasticity and heterogeneity (macrophage polarization) as classically activated macrophages (M1) and alternatively activated macrophages (M2), which exert pro-inflammatory/anti-tumor and anti-inflammatory/pro-tumor effects, respectively. Thus, drug development in induction of macrophage polarization could be used to treat different human diseases. This review summarizes the recent advancement on modulation of macrophage polarization and its related molecular mechanisms induced by a number of agents. Research on the anti-inflammatory drugs to regulate the macrophage polarization accounts for a large proportion in the field and types of diseases investigated could include atherosclerosis, enteritis, nephritis, and the nervous system and skeletal diseases, while study of the anti-tumor agents to modify macrophage polarization is a novel area of research. Future study of the molecular mechanisms by which the different agents regulate the macrophage polarization could lead to an effective control of various human diseases, including inflammation and cancers.
Collapse
Affiliation(s)
- Lu Wang
- Department of Pharmacy, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250013, China; School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qi Lu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacy, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221005, China
| | - Wenwen Gao
- Department of Pharmacy, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250013, China
| | - Shuwen Yu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacy, Qilu Hospital of Shandong University, Clinical Trial Center, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
18
|
Wang M, Wu H, Wang R, Dai X, Deng R, Wang Y, Bu Y, Sun M, Zhang H. Inhibition of sphingosine 1-phosphate (S1P) receptor 1/2/3 ameliorates biological dysfunction in rheumatoid arthritis fibroblast-like synoviocyte MH7A cells through Gαi/Gαs rebalancing. Clin Exp Pharmacol Physiol 2021; 48:1080-1089. [PMID: 33495999 DOI: 10.1111/1440-1681.13460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/25/2020] [Indexed: 11/29/2022]
Abstract
Sphingosine 1-phosphate (S1P) exerts its various physiological and pathological effects by interacting with G protein-coupled receptors. In addition, S1P can induce biological dysfunction in fibroblast-like synoviocytes (FLSs) in the development of rheumatoid arthritis (RA). However, the mechanism underlying this S1P-induced dysfunction remains unclear. An imbalance between Gαi and Gαs can affect the level of cAMP, an important regulator of numerous cell functions. Therefore, we studied the effects of S1P receptor (S1PR) 1-, 2-, and 3-associated Gαi/Gαs imbalance on the biological function of rheumatoid arthritis fibroblast-like synoviocyte (MH7A cells). The results showed that blocking S1PR1/3 and Gαi, and activating Gαs, inhibited the proliferation, migration, invasion, and proinflammatory cytokine release of MH7A cells in a S1P-induced inflammation model, whereas suppressing S1PR2 only affected the invasion and the release of proinflammatory cytokines of these cells. Analysis of the expression of S1PR1/2/3 and Gαi/Gαs further showed that S1PR1/2/3 could regulate the Gαi/Gαs balance. Furthermore, our data suggested that the level of cAMP was also affected. Combined, our results showed that impaired S1PR1/2/3 signalling can affect MH7A cells biological function via Gαi/Gαs-cAMP signalling, which can provide a new idea for the treatment of RA.
Collapse
Affiliation(s)
- Mengdie Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R & D of Chinese Medicine, Hefei, China
- Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Hong Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R & D of Chinese Medicine, Hefei, China
- Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Ronghui Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R & D of Chinese Medicine, Hefei, China
- Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Xuejing Dai
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R & D of Chinese Medicine, Hefei, China
- Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Ran Deng
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R & D of Chinese Medicine, Hefei, China
- Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Yan Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R & D of Chinese Medicine, Hefei, China
- Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Yanhong Bu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R & D of Chinese Medicine, Hefei, China
- Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Minghui Sun
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R & D of Chinese Medicine, Hefei, China
- Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Heng Zhang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R & D of Chinese Medicine, Hefei, China
- Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| |
Collapse
|
19
|
Zhou WJ, Wang DD, Tao J, Tai Y, Zhou ZW, Wang Z, Guo PP, Sun WY, Chen JY, Wu HX, Yan SX, Zhang LL, Wang QT, Wei W. Deficiency of β-arrestin2 exacerbates inflammatory arthritis by facilitating plasma cell formation. Acta Pharmacol Sin 2021; 42:755-766. [PMID: 32855529 PMCID: PMC8115230 DOI: 10.1038/s41401-020-00507-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/06/2020] [Indexed: 12/11/2022] Open
Abstract
β-arrestin2 (β-arr2) is, a key protein that mediates desensitization and internalization of G protein-coupled receptors and participates in inflammatory and immune responses. Deficiency of β-arr2 has been found to exacerbate collagen antibody-induced arthritis (CAIA) through unclear mechanisms. In this study we tried to elucidate the molecular mechanisms underlying β-arr2 depletion-induced exacerbation of CAIA. CAIA was induced in β-arr2-/- and wild-type (WT) mice by injection of collagen antibodies and LPS. The mice were sacrificed on d 13 after the injection, spleen, thymus and left ankle joints were collected for analysis. Arthritis index (AI) was evaluated every day or every 2 days. We showed that β-arr2-/- mice with CAIA had a further increase in the percentage of plasma cells in spleen as compared with WT mice with CAIA, which was in accordance with elevated serum IgG1 and IgG2A expression and aggravating clinical performances, pathologic changes in joints and spleen, joint effusion, and joint blood flow. Both LPS stimulation of isolated B lymphocytes in vitro and TNP-LPS challenge in vivo led to significantly higher plasma cell formation and antibodies production in β-arr2-/- mice as compared with WT mice. LPS treatment induced membrane distribution of toll-like receptor 4 (TLR4) on B lymphocytes, accordingly promoted the nuclear translocation of NF-κB and the transcription of Blimp1. Immunofluorescence analysis confirmed that more TLR4 colocalized with β-arr2 in B lymphocytes in response to LPS stimulation. Depletion of β-arr2 restrained TLR4 on B lymphocyte membrane after LPS treatment and further enhanced downstream NF-κB signaling leading to additional increment in plasma cell formation. In summary, β-arr2 depletion exacerbates CAIA and further increases plasma cell differentiation and antibody production through inhibiting TLR4 endocytosis and aggravating NF-κB signaling.
Collapse
Affiliation(s)
- Wei-Jie Zhou
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Dan-Dan Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Juan Tao
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Yu Tai
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Zheng-Wei Zhou
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Zhen Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Pai-Pai Guo
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Wu-Yi Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Jing-Yu Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Hua-Xun Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Shang-Xue Yan
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Ling-Ling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Qing-Tong Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China.
| |
Collapse
|
20
|
Ginsenoside compound K- a potential drug for rheumatoid arthritis. Pharmacol Res 2021; 166:105498. [PMID: 33609698 DOI: 10.1016/j.phrs.2021.105498] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/28/2021] [Accepted: 02/14/2021] [Indexed: 12/26/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory and autoimmune disease, if prescription of effective delayed, the articular disturbances may lead to disability. Ginsenoside compound K (GCK) is the main degradation product of oral ginsenosides in the human intestine. Numerous researches in vitro and in vivo have recorded the anti-arthritic effect of GCK, we discuss the mechanisms from the following three aspects, including anti-inflammatory, immune-regulatory, and bone-protective, respectively, in this review, and the anti-arthritic mechanism of GCK may be related to the effect on TNF-α-TNFR2, glucocorticoid receptor (GR) and β-arrestin1/2. We also describe the anti-anemia effect of GCK to open the possibility that GCK can be used as an effective disease-modifying anti-rheumatic drug (DMARD).
Collapse
|
21
|
Kang Z, Zhonga Y, Wu T, Huang J, Zhao H, Liu D. Ginsenoside from ginseng: a promising treatment for inflammatory bowel disease. Pharmacol Rep 2021; 73:700-711. [PMID: 33462754 PMCID: PMC8180475 DOI: 10.1007/s43440-020-00213-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/18/2020] [Accepted: 12/28/2020] [Indexed: 12/16/2022]
Abstract
Inflammatory bowel disease (IBD) is an autoimmune disease mediated by immune disorder and termed as one of the most refractory diseases by the Word Health Organization. Its morbidity has increased steadily over the past half century worldwide. Environmental, genetic, infectious, and immune factors are integral to the pathogenesis of IBD. Commonly known as the king of herbs, ginseng has been consumed in many countries for the past 2000 years. Its active ingredient ginsenosides, as the most prominent saponins of ginseng, have a wide range of pharmacological effects. Recent studies have confirmed that the active components of Panax ginseng have anti-inflammatory and immunomodulatory effects on IBD, including regulating the balance of immune cells, inhibiting the expression of cytokines, as well as activating Toll-like receptor 4, Nuclear factor-kappa B (NF-κB), nucleotide-binding oligomerization domain-like receptor (NLRP), mitogen-activated protein kinase signaling, and so on. Accumulated evidence indicates that ginsenosides may serve as a potential novel therapeutic drug or health product additive in IBD prevention and treatment in the future.
Collapse
Affiliation(s)
- Zengping Kang
- Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Youbao Zhonga
- Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China.,Experimental Animal Science and Technology Center, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Tiantian Wu
- Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Jiaqi Huang
- Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Haimei Zhao
- College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, Jiangxi, China.
| | - Duanyong Liu
- Science and Technology College, Jiangxi University of Traditional Chinese Medicine, 1689 Meiling Road, Nanchang, 330004, Jiangxi, China.
| |
Collapse
|
22
|
Hu S, Guo P, Wang Z, Zhou Z, Wang R, Zhang M, Tao J, Tai Y, Zhou W, Wei W, Wang Q. Down-regulation of A 3AR signaling by IL-6-induced GRK2 activation contributes to Th17 cell differentiation. Exp Cell Res 2021; 399:112482. [PMID: 33434531 DOI: 10.1016/j.yexcr.2021.112482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/22/2022]
Abstract
IL-6-triggered Th17 cell expansion is responsible for the pathogenesis of many immune diseases including rheumatoid arthritis (RA). Traditionally, IL-6 induces Th17 cell differentiation through JAK-STAT3 signaling. In the present work, PKA inhibition reduces in vitro induction of Th17 cells, while IL-6 stimulation of T cells facilitates the internalization of A3AR and increased cAMP production in a GRK2 dependent manner. Inhibition of GRK2 by paroxetine (PAR) or genetic depletion of GRK2 restored A3AR distribution and prevented Th17 cell differentiation. Furthermore, in vivo PAR treatment effectively reduced the splenic Th17 cell proportion in a rat model of collagen-induced arthritis (CIA) which was accompanied by a significant improvement in clinical manifestations. These results indicate that IL-6-induced Th17 cell differentiation not only occurs through JAK-STAT3-RORγt but is also mediated through GRK2-A3AR-cAMP-PKA-CREB/ICER-RORγt. This elucidates the significance of GRK2-controlled cAMP signaling in the differentiation of Th17 cells and its potential application in treating Th17-driven immune diseases such as RA.
Collapse
Affiliation(s)
- Shanshan Hu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei, Anhui, 230032, China; Anhui No.2 Provincial People's Hospital, Hefei, Anhui, 230041, China
| | - Paipai Guo
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei, Anhui, 230032, China
| | - Zhen Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei, Anhui, 230032, China
| | - Zhengwei Zhou
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei, Anhui, 230032, China
| | - Rui Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei, Anhui, 230032, China
| | - Mei Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei, Anhui, 230032, China
| | - Juan Tao
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei, Anhui, 230032, China
| | - Yu Tai
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei, Anhui, 230032, China
| | - Weijie Zhou
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei, Anhui, 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei, Anhui, 230032, China.
| | - Qingtong Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei, Anhui, 230032, China.
| |
Collapse
|
23
|
Zhang L, Li X, Ying T, Wang T, Fu F. The Use of Herbal Medicines for the Prevention of Glucocorticoid-Induced Osteoporosis. Front Endocrinol (Lausanne) 2021; 12:744647. [PMID: 34867788 PMCID: PMC8633877 DOI: 10.3389/fendo.2021.744647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/20/2021] [Indexed: 01/12/2023] Open
Abstract
Glucocorticoids are drugs that are widely used to suppress inflammation and the activation of the immune system. However, the prolonged use or at high doses of glucocorticoid can result in adverse side effects including osteoporosis, bone loss, and an increased risk of fracture. A number of compounds derived from natural plant sources have been reported to exert anti-inflammatory activity by interacting with the glucocorticoid receptor (GR), likely owing to their chemical similarity to glucocorticoids, or by regulating GR, without a concomitant risk of treatment-related side effects such as osteoporosis. Other herbal compounds can counteract the pathogenic processes underlying glucocorticoid-induced osteoporosis (GIOP) by regulating homeostatic bone metabolic processes. Herein, we systematically searched the PubMed, Embase, and Cochrane library databases to identify articles discussing such compounds published as of May 01, 2021. Compounds reported to exert anti-inflammatory glucocorticoid-like activity without inducing GIOP include escin, ginsenosides, and glycyrrhizic acid, while compounds reported to alleviate GIOP by improving osteoblast function or modulating steroid hormone synthesis include tanshinol and icariin.
Collapse
|
24
|
Lu S, Luo Y, Sun G, Sun X. Ginsenoside Compound K Attenuates Ox-LDL-Mediated Macrophage Inflammation and Foam Cell Formation via Autophagy Induction and Modulating NF-κB, p38, and JNK MAPK Signaling. Front Pharmacol 2020; 11:567238. [PMID: 33041808 PMCID: PMC7522510 DOI: 10.3389/fphar.2020.567238] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/25/2020] [Indexed: 01/26/2023] Open
Abstract
Atherosclerosis is a major reason for the high morbidity and mortality of cardiovascular diseases. Macrophage inflammation and foam cell formation are the key pathological processes of atherosclerosis. Ginsenoside compound K (CK) is a metabolite derived from ginseng. CK has anti atherosclerotic effect, but the molecular mechanism remains to be elucidated. We aim to explore the protective effect of CK against ox-LDL-induced inflammatory responses and foam cells formation in vitro and explore its potential mechanisms. Through the results of oil red O staining, Western blot, and qPCR, we found that CK significantly inhibited the foam cell formation, reduced the expression of SR-A1 and increased ABCA1 and ABCG1 expression. In addition, CK increased the number of autophagosomes and upregulated the LC3II/LC3I ratio and the expressions of ATG5 and Beclin-1 but decreased p62 expression. Moreover, CK significantly inhibited the NF-κB, p38, and JNK MAPK signaling pathway. Altogether, CK attenuated macrophage inflammation and foam cell formation via autophagy induction and by modulating NF-κB, p38, and JNK MAPK signaling. Thus, CK has potential as a therapeutic drug for atherosclerosis.
Collapse
Affiliation(s)
- Shan Lu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Institute of Medicinal Plant Development, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Institute of Medicinal Plant Development, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - GuiBo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Institute of Medicinal Plant Development, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - XiaoBo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Institute of Medicinal Plant Development, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
25
|
Differences in Intestinal Metabolism of Ginseng Between Normal and Immunosuppressed Rats. Eur J Drug Metab Pharmacokinet 2020; 46:93-104. [PMID: 32894450 DOI: 10.1007/s13318-020-00645-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND OBJECTIVE Ginseng is usually consumed as a dietary supplement for health care in the normal state or prescribed as a herbal medicine in pathologic conditions. Although metabolic studies of ginseng are commonly performed on healthy organisms, the metabolic characteristics in pathologic organisms remain unexplored. This study aimed to uncover the difference in intestinal metabolism of ginseng between normal and cyclophosphamide-induced immunosuppressed rats and further discuss the potential mechanisms involved. METHODS Twelve Sprague-Dawley rats (6-8 weeks old) were randomly divided into two groups: the normal group (NG) and immunosuppressed group (ISG). Rats in the NG and ISG groups were intraperitoneally administered normal saline and cyclophosphamide injections (40 mg/kg) on the 1st, 2nd, 3rd and 10th days; on the 12th day, all rats were intragastrically administered ginseng water extract (900 mg/kg). The difference in intestinal metabolism of ginseng was compared using an ultra-high-performance liquid chromatography coupled with quadruple time-of-flight mass spectrometry-based metabolomics approach, and the diversities of gut microbiota were analyzed by 16S rRNA gene sequencing between the two groups. RESULTS The intestinal metabolomic characteristics of ginseng were significantly different between the normal and immunosuppressed rats, with the ginsenoside F2 (F2), 20S-ginsenoside Rg3 (20(S)-Rg3), pseudo-ginsenoside Rt5 (Pseudo-Rt5), ginsenoside Rd (Rd), ginsenoside Rh1 (Rh1), 20S-ginsenoside Rg1 (20(S)-Rg1), ginsenoside compound K (CK), ginsenoside Rg2 (Rg2) and 20S-panaxatriol (S-PPT) more abundant in immunosuppressed ones (P < 0.05). Additionally, the composition of gut microbiota was remarkably altered in the two groups, with some specific bacterial communities such as Bacteroides spp., Eubacterium spp. and Lachnospiraceae_UCG-010 spp. increased and Bifidobacterium spp. decreased in immunosuppressed rats compared with normal ones. CONCLUSION The intestinal metabolism of ginseng in immunosuppressed rats was significantly different from that in normal ones, which might be partly attributed to the changes in the intensity of specific gut bacteria. The outcomes of this study could provide scientific data for rationalization of ginseng use as both a dietary supplement and herbal medicine.
Collapse
|
26
|
Sharma A, Lee HJ. Ginsenoside Compound K: Insights into Recent Studies on Pharmacokinetics and Health-Promoting Activities. Biomolecules 2020; 10:E1028. [PMID: 32664389 PMCID: PMC7407392 DOI: 10.3390/biom10071028] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
Ginseng (Panax ginseng) is an herb popular for its medicinal and health properties. Compound K (CK) is a secondary ginsenoside biotransformed from major ginsenosides. Compound K is more bioavailable and soluble than its parent ginsenosides and hence of immense importance. The review summarizes health-promoting in vitro and in vivo studies of CK between 2015 and 2020, including hepatoprotective, anti-inflammatory, anti-atherosclerosis, anti-diabetic, anti-cancer, neuroprotective, anti-aging/skin protective, and others. Clinical trial data are minimal and are primarily based on CK-rich fermented ginseng. Besides, numerous preclinical and clinical studies indicating the pharmacokinetic behavior of CK, its parent compound (Rb1), and processed ginseng extracts are also summarized. With the limited evidence available from animal and clinical studies, it can be stated that CK is safe and well-tolerated. However, lower water solubility, membrane permeability, and efflux significantly diminish the efficacy of CK and restrict its clinical application. We found that the use of nanocarriers and cyclodextrin for CK delivery could overcome these limitations as well as improve the health benefits associated with them. However, these derivatives have not been clinically evaluated, thus requiring a safety assessment for human therapy application. Future studies should be aimed at investigating clinical evidence of CK.
Collapse
Affiliation(s)
- Anshul Sharma
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Korea;
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Korea;
- Institute for Aging and Clinical Nutrition Research, Gachon University, Gyeonggi-do 13120, Korea
| |
Collapse
|
27
|
Zhang Y, Wang S, Song S, Yang X, Jin G. Ginsenoside Rg3 Alleviates Complete Freund's Adjuvant-Induced Rheumatoid Arthritis in Mice by Regulating CD4 +CD25 +Foxp3 +Treg Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4893-4902. [PMID: 32275817 DOI: 10.1021/acs.jafc.0c01473] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ginsenoside Rg3 (GRg3) is one of the major bioactive ingredients of ginseng, which is not only used as a herbal medicine but also used as a functional food to support body functions. In this study, the beneficial effects of GRg3 on rheumatoid arthritis (RA) mice was evaluated from anti-inflammatory and immunosuppressive aspects. The footpad swelling rate, pathological changes of the ankle joint, and levels of tumor necrosis factor α, interleukin 6, interleukin 10, and tumor necrosis factor β were used to assess the anti-inflammatory effect of GRg3 on RA mice. Flow cytometric analysis of CD4+CD25+Foxp3+Treg cell percentage and metabolomic analysis based on gas chromatography-tandem mass spectrometry were used to assess the immunosuppressive effect and underlying mechanisms. GRg3 exhibited anti-inflammatory and immunosuppressive effects on RA mice. The potential mechanisms were related to regulate the pathways of oxidative phosphorylation and enhance the function of CD4+CD25+Foxp3+Treg cells to maintain peripheral immune tolerance of RA mice. These findings can provide a preliminary experimental basis to exploit GRg3 as a functional food or an effective complementary for the adjuvant therapy of RA.
Collapse
Affiliation(s)
- Yan Zhang
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, People's Republic of China
| | - Shuang Wang
- Graduate School, Jilin Institute of Chemical Technology, Jilin 132022, People's Republic of China
| | - Shuang Song
- Graduate School, Jilin Institute of Chemical Technology, Jilin 132022, People's Republic of China
| | - Xiaomei Yang
- Nutritional Department, Jilin Medical University Affiliated Hospital, Jilin 132013, People's Republic of China
| | - Gang Jin
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, People's Republic of China
| |
Collapse
|
28
|
Sittipo P, Shim JW, Lee YK. Microbial Metabolites Determine Host Health and the Status of Some Diseases. Int J Mol Sci 2019; 20:ijms20215296. [PMID: 31653062 PMCID: PMC6862038 DOI: 10.3390/ijms20215296] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022] Open
Abstract
The gastrointestinal (GI) tract is a highly complex organ composed of the intestinal epithelium layer, intestinal microbiota, and local immune system. Intestinal microbiota residing in the GI tract engages in a mutualistic relationship with the host. Different sections of the GI tract contain distinct proportions of the intestinal microbiota, resulting in the presence of unique bacterial products in each GI section. The intestinal microbiota converts ingested nutrients into metabolites that target either the intestinal microbiota population or host cells. Metabolites act as messengers of information between the intestinal microbiota and host cells. The intestinal microbiota composition and resulting metabolites thus impact host development, health, and pathogenesis. Many recent studies have focused on modulation of the gut microbiota and their metabolites to improve host health and prevent or treat diseases. In this review, we focus on the production of microbial metabolites, their biological impact on the intestinal microbiota composition and host cells, and the effect of microbial metabolites that contribute to improvements in inflammatory bowel diseases and metabolic diseases. Understanding the role of microbial metabolites in protection against disease might offer an intriguing approach to regulate disease.
Collapse
Affiliation(s)
- Panida Sittipo
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Korea.
| | - Jae-Won Shim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Korea.
| | - Yun Kyung Lee
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Korea.
| |
Collapse
|
29
|
Liu Q, Liu L, Liu H, Jiang J, Guo S, Wang C, Jia Y, Tian Y. Compound K attenuated hepatectomy-induced post-operative cognitive dysfunction in aged mice via LXRα activation. Biomed Pharmacother 2019; 119:109400. [PMID: 31514067 DOI: 10.1016/j.biopha.2019.109400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/22/2019] [Accepted: 08/28/2019] [Indexed: 01/04/2023] Open
Abstract
AIMS Post-operative cognitive dysfunction (POCD) occurs after major surgery in elderly patients and affects the quality of patients' lives. The present study aims to explore the protective effects and possible mechanisms of compound K in old mice with POCD caused by partial hepatectomy. METHODS Sixteen month-old mice were administered different doses of compound K from the 8th day to 14th day after partial hepatectomy. Cognitive function was subsequently measured with a Morris water-maze (MWM) test. Serum inflammatory cytokine levels were measured by magnetic bead panel; levels of cytokines in the hippocampus were analyzed using immunohistochemistry and immunoblotting. The mRNA levels of target genes were measured using real-time PCR. RESULTS Compared with the model group, MWM scores were significantly attenuated at days 10 and 14 post-surgery in mice receiving compound K (10, 30 mg/kg) in a dose-dependent manner. Both systemic and local cytokine levels were reduced after treatment of compound K. The alterations in serum lipids were independent of the attenuation of POCD syndrome. An inhibitor of liver X receptor-α (LXRα), GGPP, reversed the effects of compound K. CONCLUSIONS The results provide evidence for an alleviation of POCD by compound K via local inflammation inhibition in hippocampus tissue; furthermore, the data suggests the mechanism involves the LXRα pathway. The present study supports further evaluation of compound K as a potential effective modulator for POCD.
Collapse
Affiliation(s)
- Qifang Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004, China
| | - Lidan Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004, China
| | - Hongmei Liu
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, 30 Gaotanyan Street, Chongqing, 400038, China
| | - Jingjing Jiang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004, China
| | - Shanbin Guo
- Department of Pharmacy, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004, China
| | - Cong Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004, China
| | - Yi Jia
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, 30 Gaotanyan Street, Chongqing, 400038, China
| | - Yue Tian
- Department of Anesthesiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004, China.
| |
Collapse
|
30
|
Ginsenoside compound-K inhibits the activity of B cells through inducing IgD-B cell receptor endocytosis in mice with collagen-induced arthritis. Inflammopharmacology 2019; 27:845-856. [DOI: 10.1007/s10787-019-00608-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 05/25/2019] [Indexed: 01/06/2023]
|