1
|
Dey A. Structural Modifications and Novel Protein-Binding Sites in Pre-miR-675-Explaining Its Regulatory Mechanism in Carcinogenesis. Noncoding RNA 2023; 9:45. [PMID: 37624037 PMCID: PMC10457854 DOI: 10.3390/ncrna9040045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Pre-miR-675 is a microRNA expressed from the exon 1 of H19 long noncoding RNA, and the atypical expression of pre-miR-675 has been linked with several diseases and disorders including cancer. To execute its function inside the cell, pre-miR-675 is folded into a particular conformation, which aids in its interaction with several other biological molecules. However, the exact folding dynamics of pre-miR-675 and its protein-binding motifs are currently unknown. Moreover, how H19 lncRNA and pre-miR-675 crosstalk and modulate each other's activities is also unclear. The detailed structural analysis of pre-miR-675 in this study determines its earlier unknown conformation and identifies novel protein-binding sites on pre-miR-675, thus making it an excellent therapeutic target against cancer. Co-folding analysis between H19 lncRNA and pre-miR-675 determine structural transformations in pre-miR-675, thus describing the earlier unknown mechanism of interaction between these two molecules. Comprehensively, this study details the conformation of pre-miR-675 and its protein-binding sites and explains its relationship with H19 lncRNA, which can be interpreted to understand the role of pre-miR-675 in the development and progression of tumorigenesis and designing new therapeutics against cancers.
Collapse
Affiliation(s)
- Abhishek Dey
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER-R)-Raebareli, Lucknow 226002, India
| |
Collapse
|
2
|
Lee YH, Hsieh PL, Chao SC, Liao YW, Liu CM, Yu CC. α-Mangostin Inhibits the Activation of Myofibroblasts via Downregulation of Linc-ROR-Mediated TGFB1/Smad Signaling. Nutrients 2023; 15:nu15061321. [PMID: 36986051 PMCID: PMC10051815 DOI: 10.3390/nu15061321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Oral submucous fibrosis (OSF) is a premalignant disorder and persistent activation of myofibroblasts is implicated in this pathological progression. Increasing attention has been addressed towards non-coding RNA-regulated myofibroblasts activities and the effects of phytochemicals on non-coding RNA modulation are of great importance. In the present study, we examined the anti-fibrosis property of α-mangostin, a xanthone isolated from the pericarp of mangosteen. We found that α-mangostin exhibited inhibitory potency in myofibroblast activities and expression of fibrosis markers at the concentrations that caused neglectable damage to normal cells. Apart from the downregulation of TGF-β1/Smad2 signaling, we found that α-mangostin attenuated the expression of long non-coding RNA LincROR as well. Our results demonstrated that the effects of α-mangostin on myofibroblast activation were reverted when LincROR was overexpressed. Additionally, we showed the expression of LincROR in OSF specimens was elevated and silencing of LincROR successfully attenuated myofibroblast characteristics and TGF-β1/Smad2 activation. Taken together, these findings indicated that the anti-fibrosis effects of α-mangostin merit consideration and may be due to the attenuation of LincROR.
Collapse
Affiliation(s)
- Yu-Hsien Lee
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Pei-Ling Hsieh
- Department of Anatomy, School of Medicine, China Medical University, Taichung 404333, Taiwan
| | - Shih-Chi Chao
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Medical Research and Education, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan 265, Taiwan
| | - Yi-Wen Liao
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Chia-Ming Liu
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Correspondence: (C.-M.L.); (C.-C.Y.)
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan
- Correspondence: (C.-M.L.); (C.-C.Y.)
| |
Collapse
|
3
|
Pandey A, Ajgaonkar S, Jadhav N, Saha P, Gurav P, Panda S, Mehta D, Nair S. Current Insights into miRNA and lncRNA Dysregulation in Diabetes: Signal Transduction, Clinical Trials and Biomarker Discovery. Pharmaceuticals (Basel) 2022; 15:1269. [PMID: 36297381 PMCID: PMC9610703 DOI: 10.3390/ph15101269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/27/2022] [Accepted: 10/09/2022] [Indexed: 01/24/2023] Open
Abstract
Diabetes is one of the most frequently occurring metabolic disorders, affecting almost one tenth of the global population. Despite advances in antihyperglycemic therapeutics, the management of diabetes is limited due to its complexity and associated comorbidities, including diabetic neuropathy, diabetic nephropathy and diabetic retinopathy. Noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), are involved in the regulation of gene expression as well as various disease pathways in humans. Several ncRNAs are dysregulated in diabetes and are responsible for modulating the expression of various genes that contribute to the 'symptom complex' in diabetes. We review various miRNAs and lncRNAs implicated in diabetes and delineate ncRNA biological networks as well as key ncRNA targets in diabetes. Further, we discuss the spatial regulation of ncRNAs and their role(s) as prognostic markers in diabetes. We also shed light on the molecular mechanisms of signal transduction with diabetes-associated ncRNAs and ncRNA-mediated epigenetic events. Lastly, we summarize clinical trials on diabetes-associated ncRNAs and discuss the functional relevance of the dysregulated ncRNA interactome in diabetes. This knowledge will facilitate the identification of putative biomarkers for the therapeutic management of diabetes and its comorbidities. Taken together, the elucidation of the architecture of signature ncRNA regulatory networks in diabetes may enable the identification of novel biomarkers in the discovery pipeline for diabetes, which may lead to better management of this metabolic disorder.
Collapse
Affiliation(s)
| | | | | | - Praful Saha
- Viridis Biopharma Pvt. Ltd., Mumbai 400 022, India
| | - Pranay Gurav
- Viridis Biopharma Pvt. Ltd., Mumbai 400 022, India
| | | | - Dilip Mehta
- Synergia Life Sciences Pvt. Ltd., Mumbai 400 022, India
| | - Sujit Nair
- Viridis Biopharma Pvt. Ltd., Mumbai 400 022, India
| |
Collapse
|
4
|
Zhu X, Liu Y, Cui J, Lv J, Li C, Lu J, Huo X, Dou J, Bai Z, Chen Z, Du X. LncRNA LYPLAL1-DT screening from type 2 diabetes with macrovascular complication contributes protective effects on human umbilical vein endothelial cells via regulating the miR-204-5p/SIRT1 axis. Cell Death Dis 2022; 8:245. [PMID: 35508613 PMCID: PMC9068612 DOI: 10.1038/s41420-022-01019-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 12/18/2022]
Abstract
Long noncoding RNAs (lncRNAs) are involved in diabetes related diseases. However, the role of lncRNAs in the pathogenesis of type 2 diabetes with macrovascular complication (DMC) has seldomly been recognized. This study screened lncRNA profiles of leukocytes from DMC patients and explored protective role of lncRNA LYPLAL1-DT in endothelial cells (EC) under high glucose (HG) and inflammatory conditions (IS). Between DMC and healthy controls, 477 differential expression lncRNAs (DE-lncRNAs) were identified. The enrichment and pathway analysis showed that most of the DE-lncRNAs belonged to inflammatory, metabolic, and vascular diseases. A total of 12 lncRNAs was validated as significant DE-lncRNAs in expanding cohorts. Furthermore, these DE-lncRNAs were shown to be significantly related to hypoxia, HG, and IS in EC, especially lncRNA LYPLAL1-DT. LYPLAL1-DT overexpression results in the promotion of the proliferation, and migration of EC, as well as an elevation of autophagy. Overexpressed LYPLAL1-DT reduces the adhesion of monocytes to EC, boosts anti-inflammation, and suppresses inflammatory molecules secreted in the medium. Mechanistically, LYPLAL1-DT acts as competing endogenous RNA (ceRNA) by downregulating miR-204-5p, therefore enhancing SIRT1 and protecting EC autophagy function; thus, alleviating apoptosis. Finally, exosome sequencing revealed LYPLAL1-DT expression was 4 times lower in DMC cells than in healthy samples. In general, we identified LYPLAL1-DT having protective effects on EC as ceRNA mediated through the miR-204-5p/SIRT1 pathway. Therefore, it inhibits the autophagy of EC as well as modulating systemic inflammation. This approach could be regarded as a new potential therapeutic target in DMC.
Collapse
Affiliation(s)
- Xiao Zhu
- Department of medical genetics and biological development, School of Basic Medical Sciences, Capital Medical University, No.10 Xitoutiao, Youanmen, Fengtai District, Beijing, 100069, China
| | - Yihan Liu
- Department of medical genetics and biological development, School of Basic Medical Sciences, Capital Medical University, No.10 Xitoutiao, Youanmen, Fengtai District, Beijing, 100069, China.,Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jia Cui
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jianyi Lv
- Department of medical genetics and biological development, School of Basic Medical Sciences, Capital Medical University, No.10 Xitoutiao, Youanmen, Fengtai District, Beijing, 100069, China
| | - Changlong Li
- Department of medical genetics and biological development, School of Basic Medical Sciences, Capital Medical University, No.10 Xitoutiao, Youanmen, Fengtai District, Beijing, 100069, China
| | - Jing Lu
- Department of medical genetics and biological development, School of Basic Medical Sciences, Capital Medical University, No.10 Xitoutiao, Youanmen, Fengtai District, Beijing, 100069, China
| | - Xueyun Huo
- Department of medical genetics and biological development, School of Basic Medical Sciences, Capital Medical University, No.10 Xitoutiao, Youanmen, Fengtai District, Beijing, 100069, China
| | - Jingtao Dou
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Zhigang Bai
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Zhenwen Chen
- Department of medical genetics and biological development, School of Basic Medical Sciences, Capital Medical University, No.10 Xitoutiao, Youanmen, Fengtai District, Beijing, 100069, China
| | - Xiaoyan Du
- Department of medical genetics and biological development, School of Basic Medical Sciences, Capital Medical University, No.10 Xitoutiao, Youanmen, Fengtai District, Beijing, 100069, China.
| |
Collapse
|
5
|
Lu Q, Hou HM, Li S, Yuan J, Liu H, Xu Y. Long Non-coding RNA H19 Deteriorates Hypoxic-Ischemic Brain Damage by Interacting with MicroRNA-140-5p and STAT3. NANOSCALE RESEARCH LETTERS 2022; 17:43. [PMID: 35380290 PMCID: PMC8982750 DOI: 10.1186/s11671-022-03666-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVE Even though extensive studies have surveyed long non-coding RNA (lncRNA)-related networks in hypoxic-ischemic brain damage (HIBD), the concrete function of lncRNA H19 (H19) in HIBD is still in ambiguity. Therein, this work intends to decipher H19-related network of microRNA (miR)-140-5p and signal transducer and activator of transcription 3 (STAT3) in HIBD. METHODS Brain microvascular endothelial cells (BMECs) from BALB/c mice were isolated and induced by oxygen glucose deprivation (OGD). OGD-induced BMECs were transfected with depleted or restored H19, miR-140-5p or STAT3, and cell apoptosis, migration and angiogenesis were examined. H19, miR-140-5p and STAT3 expression and their internal connections were tested. RESULTS H19 and STAT3 were overexpressed while miR-140-5p was down-regulated in OGD-induced BMECs. H19 or STAT3 knockdown, or miR-140-5p restoration repressed apoptosis and improved migration and angiogenesis of OGD-induced BMECs. MiR-140-5p restoration negated the impacts of up-regulated H19 on OGD-induced BMECs. H19 bound to miR-140-5p to modulate STAT3 expression. CONCLUSION The work illustrates that depleting H19 or STAT3 or restoring miR-140-5p attenuates HIBD and supplies a novel perspective for HIBD management.
Collapse
Affiliation(s)
- Qian Lu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Hai Man Hou
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Shuo Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Jing Yuan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Han Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
6
|
Abstract
Diabetes mellitus (DM) causes damage to major organs, including the heart, liver, brain, kidneys, eyes, and blood vessels, threatening the health of the individuals. Emerging evidence has demonstrated that lncRNAs has important functions in the pathogenesis of human diseases, such as cancers, neurodegenerative diseases, cardiac fibroblast phenotypes, hypertension, heart failure, atherosclerosis and diabetes. Recently, H19, a lncRNA, has been reported to shown to participate in the regulatory process of muscle differentiation, glucose metabolism, and tumor metastasis, as well as endometrial development. However, the roles of H19 in DM were still not completely understood. This review was conducted to summarize the functions of H19 in diabetes and discuss the challenges and possible strategies of H19 in DM.
Collapse
Affiliation(s)
- Ye Bi
- Department of Geriatrics, Shandong First Medical University, Jinan, China
| | - Yao Wang
- Shandong Institute of Endocrine and Metabolic Diseases, Medical University, Jinan, China
| | - Xianglan Sun
- Department of Geriatrics, Shandong First Medical University, Jinan, China
| |
Collapse
|
7
|
Zhou W, Feng Q, Cheng M, Zhang D, Jin J, Zhang S, Bai Y, Xu J. LncRNA H19 sponges miR-103-3p to promote the high phosphorus-induced osteoblast phenotypic transition of vascular smooth muscle cells by upregulating Runx2. Cell Signal 2022; 91:110220. [DOI: 10.1016/j.cellsig.2021.110220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022]
|
8
|
Zhu L, Li Y, Xia F, Xue M, Wang Y, Jia D, Gao Y, Li L, Shi Y, Chen S, Xu G, Yuan C. H19: A vital long noncoding RNA in the treatment of diabetes and diabetic complications. Curr Pharm Des 2021; 28:1011-1018. [PMID: 34895118 DOI: 10.2174/1381612827666211210123959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/29/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Increasing academic efforts have been made to explore the correlation of long noncoding RNAs (lncRNAs) with human diseases, particularly metabolic diseases like diabetes mellitus. Taking lncRNA H19 as an example, this review intends to reveal the functions and mechanism of lncRNA H19 in diabetes mellitus and diabetic complications. METHODS The research results associated with lncRNA H19 and diabetes mellitus are collected and summarized on PubMed. CONCLUSION LncRNA H19 is a potential instructive marker for the treatment of diabetes mellitus and diabetic complications.
Collapse
Affiliation(s)
- Leiqi Zhu
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Yuanyang Li
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Fangqi Xia
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Mengzhen Xue
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Yaqi Wang
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Dengke Jia
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Yan Gao
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Luoying Li
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Yue Shi
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Silong Chen
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Guangfu Xu
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Chengfu Yuan
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| |
Collapse
|
9
|
PCAT6 May Be a Whistler and Checkpoint Target for Precision Therapy in Human Cancers. Cancers (Basel) 2021; 13:cancers13236101. [PMID: 34885209 PMCID: PMC8656686 DOI: 10.3390/cancers13236101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/21/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Prostate cancer-associated transcript 6 (PCAT6), as a newly discovered carcinogenic long non-coding RNA (lncRNA), is abnormally expressed in multiple diseases. With the accumulation of studies on PCAT6, we have a deeper understanding of its biological functions and mechanisms. Therefore, in this review, the various molecular mechanisms by which PCAT6 promotes multiple tumorigenesis and progression are summarized and discussed. Furthermore, its potential diagnostic, prognostic, and immunotherapeutic values are also clarified. Abstract LncRNAs are involved in the occurrence and progressions of multiple cancers. Emerging evidence has shown that PCAT6, a newly discovered carcinogenic lncRNA, is abnormally elevated in various human malignant tumors. Until now, PCAT6 has been found to sponge various miRNAs to activate the signaling pathways, which further affects tumor cell proliferation, migration, invasion, cycle, apoptosis, radioresistance, and chemoresistance. Moreover, PCAT6 has been shown to exert biological functions beyond ceRNAs. In this review, we summarize the biological characteristics of PCAT6 in a variety of human malignancies and describe the biological mechanisms by which PCAT6 can facilitate tumor progression. Finally, we discuss its diagnostic and prognostic values and clinical applications in various human malignancies.
Collapse
|
10
|
Chen Y, Qie X, Quan W, Zeng M, Qin F, Chen J, Adhikari B, He Z. Omnifarious fruit polyphenols: an omnipotent strategy to prevent and intervene diabetes and related complication? Crit Rev Food Sci Nutr 2021:1-37. [PMID: 34792409 DOI: 10.1080/10408398.2021.2000932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus is a metabolic syndrome which cannot be cured. Recently, considerable interest has been focused on food ingredients to prevent and intervene in complications of diabetes. Polyphenolic compounds are one of the bioactive phytochemical constituents with various biological activities, which have drawn increasing interest in human health. Fruits are part of the polyphenol sources in daily food consumption. Fruit-derived polyphenols possess the anti-diabetic activity that has already been proved either from in vitro studies or in vivo studies. The mechanisms of fruit polyphenols in treating diabetes and related complications are under discussion. This is a comprehensive review on polyphenols from the edible parts of fruits, including those from citrus, berries, apples, cherries, mangoes, mangosteens, pomegranates, and other fruits regarding their potential benefits in preventing and treating diabetes mellitus. The signal pathways of characteristic polyphenols derived from fruits in reducing high blood glucose and intervening hyperglycemia-induced diabetic complications were summarized.
Collapse
Affiliation(s)
- Yao Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Xuejiao Qie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Quan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Benu Adhikari
- School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
11
|
Zhang J, Rui Y, Gao M, Wang L, Yan BC. Expression of Long Non-coding RNA RGD1566344 in the Brain Cortex of Male Mice After Focal Cerebral Ischemia-Reperfusion and the Neuroprotective Effect of a Non-coding RNA RGD1566344 Inhibitor. Cell Mol Neurobiol 2021; 41:705-716. [PMID: 32424772 DOI: 10.1007/s10571-020-00877-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/12/2020] [Indexed: 12/18/2022]
Abstract
Ischemic stroke (IS) remains a major cause of disability and death. The changes in long non-coding RNA (lncRNA) RGD1566344 expression in the mouse cerebral cortex, including the infarct and penumbra regions after IS, are not clear. Less is known about the impact and underlying mechanisms of RGD1566344 in IS. In this study, we found that RGD1566344 levels were elevated in the ischemic infarct and penumbra regions 12 h after middle cerebral artery occlusion/reperfusion (MCAO/R) in male mice and in PC12 cells with oxygen glucose deprivation/reperfusion (OGD/R). The inhibition of RGD1566344 by small interference RNA (siRNA) significantly alleviated apoptosis in OGD/R PC12 cells. In cell transfection, quantitative real-time PCR, and Western blot experiments, we demonstrated the possible interaction of non-POU domain-containing octamer-binding protein (NONO) with RGD1566344. The NONO level in OGD/R PC12 cells was obviously increased after inhibiting the RGD1566344 treatment; subsequently the protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway was activated. This demonstrated the effect of the RGD1566344-NONO-AKT axis on neural protection after IS. These results revealed a new molecular mechanism of lncRNA RGD1566344 inhibitors through targeting NONO/AKT/mTOR signaling to protect against ischemic neuronal injury, providing strong evidence for the development of promising therapeutic strategies against IS.
Collapse
Affiliation(s)
- Jie Zhang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
- Department of Neurology, Affiliated Hospital, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Yanggang Rui
- Department of Neurology, Xuyi People's Hospital, Huai'an, 211700, People's Republic of China
| | - Manman Gao
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Li Wang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Bing Chun Yan
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China.
- Department of Neurology, Affiliated Hospital, Yangzhou University, Yangzhou, 225001, People's Republic of China.
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
12
|
Xiong W, Yao M, Yang Y, Qu Y, Qian J. Implication of regulatory networks of long noncoding RNA/circular RNA-miRNA-mRNA in diabetic cardiovascular diseases. Epigenomics 2020; 12:1929-1947. [PMID: 33245677 DOI: 10.2217/epi-2020-0188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Diabetic cardiovascular diseases (DCVDs) are the most common complications of diabetes mellitus and are considered to be one of the most important threats to global health and an economic burden. Long noncoding RNA (lncRNA), circular RNA (circRNA), and miRNA are a novel group of noncoding RNAs that are involved in the regulation of various pathophysiological processes, including DCVDs. Interestingly, both lncRNA and circRNA can act as competing endogenous RNA of miRNA, thereby regulating the expression of the target mRNA by decoying or sponging the miRNA. In this review, we focus on the mechanistic, pathological and functional roles of lncRNA/circRNA-miRNA-mRNA networks in DCVDs and further discuss the potential implications for early detection, therapeutic intervention and prognostic evaluation.
Collapse
Affiliation(s)
- Wei Xiong
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan province 650032, PR China
| | - Mengran Yao
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan province 650032, PR China
| | - Yuqiao Yang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan province 650032, PR China
| | - Yan Qu
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan province 650032, PR China.,Department of Anesthesiology, The Fourth Affiliated Hospital of Kunming Medical University, The Second People's Hospital of Yunnan, Kunming, Yunnan province 650021, PR China
| | - Jinqiao Qian
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan province 650032, PR China
| |
Collapse
|
13
|
Li L, Zhang X, Liu N, Chen X, Peng C. LINC00473: A novel oncogenic long noncoding RNA in human cancers. J Cell Physiol 2020; 236:4174-4183. [PMID: 33222224 DOI: 10.1002/jcp.30176] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022]
Abstract
Long noncoding RNAs (lncRNAs) have been found to play essential roles in the occurrence and development of multiple human cancers. Accumulating evidence has shown that LINC00473, an oncogenic lncRNA, is upregulated in various human malignancies and related to poor clinical outcomes. Besides, LINC00473 overexpression can promote cell proliferation, migration, and invasion through multiple potential mechanisms, indicating that it may serve as a novel prognostic biomarker and therapeutic target for human cancers. Here, we reviewed the biological functions, molecular mechanisms, and clinical implications of LINC00473 in human cancers.
Collapse
Affiliation(s)
- Lingfeng Li
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Xiangya Clinical Research Center for Cancer ImmunoTherapy, Central South University, Changsha, Hunan, China
| | - Xu Zhang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Xiangya Clinical Research Center for Cancer ImmunoTherapy, Central South University, Changsha, Hunan, China
| | - Nian Liu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Xiangya Clinical Research Center for Cancer ImmunoTherapy, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Xiangya Clinical Research Center for Cancer ImmunoTherapy, Central South University, Changsha, Hunan, China
| | - Cong Peng
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Xiangya Clinical Research Center for Cancer ImmunoTherapy, Central South University, Changsha, Hunan, China
| |
Collapse
|
14
|
Tian Y, Wang Y, Li F, Yang J, Xu Y, Ouyang M. LncRNA TUG1 regulates the balance of HuR and miR-29b-3p and inhibits intestinal epithelial cell apoptosis in a mouse model of ulcerative colitis. Hum Cell 2020; 34:37-48. [PMID: 33047284 DOI: 10.1007/s13577-020-00428-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/03/2020] [Indexed: 12/19/2022]
Abstract
This study aimed to investigate the role of long non-coding RNA (lncRNA) taurine up-regulated 1 (TUG1) in the development of ulcerative colitis (UC) and to explore the underlying mechanisms. A murine model of UC was induced by dextran sodium sulfate (DSS) exposure. The colonic epithelial YAMC cells were treated with TNF-α to simulate the inflammatory environment of intestinal epithelial cells (IECs). RNA pull-down and RIP assays were performed to analyze the interaction between TUG1 and HuR. Luciferase activity assay was conducted to evaluate the interaction between TUG1 and miR-29b-3p. Cell proliferation was evaluated by MTT assay. Cell apoptosis was assessed by flow cytometry and western blot analysis of apoptosis-related proteins. TUG1 overexpression promoted cell proliferation and inhibited cell apoptosis in the TNF-α-stimulated YAMC cells. The mechanistic analysis showed that TUG1 positively regulated the HuR/c-myc axis via its interaction with HuR, leading to upregulation of c-myc expression; meanwhile, TUG1 negatively regulated the miR-29b-3p/CDK2 signaling via binding to miR-29b-3p, leading to derepression of CDK2 expression. Further animal experiments showed that TUG1 overexpression attenuated UC progression in the DSS-induced UC in mice. Collectively, TUG1 inhibits IEC apoptosis and UC progression by regulating the balance of HuR and miR-29b-3p.
Collapse
Affiliation(s)
- Yuxi Tian
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying Wang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, No. 87, Xiangya Road, Changsha, Hunan, China
| | - Fujun Li
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, No. 87, Xiangya Road, Changsha, Hunan, China
| | - Junwen Yang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, No. 87, Xiangya Road, Changsha, Hunan, China
| | - Yan Xu
- Department of Health Care Center, Xiangya Hospital, Central South University, Changsha, No. 87, Xiangya Road, Changsha, Hunan, China.
| | - Miao Ouyang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, No. 87, Xiangya Road, Changsha, Hunan, China.
| |
Collapse
|
15
|
Arozal W, Louisa M, Soetikno V. Selected Indonesian Medicinal Plants for the Management of Metabolic Syndrome: Molecular Basis and Recent Studies. Front Cardiovasc Med 2020; 7:82. [PMID: 32435657 PMCID: PMC7218133 DOI: 10.3389/fcvm.2020.00082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Increased prevalence of metabolic syndrome (MetS) in the world influences quality of health in all respective countries, including Indonesia. Data from Indonesian Family Life Survey reported in 2019 showed that the prevalence of MetS in Indonesia currently is 21.66%, estimated with the provincial incidence ranging up to 50%; additionally, the most common components of MetS discovered in Indonesia were poor high-density lipoprotein (HDL) cholesterol and hypertension. Management treatment of MetS involves a combination of lifestyle changes and pharmacological interventions to decrease cerebrovascular disease. Various natural substances have been shown to govern any cardiovascular or metabolic disorders through different mechanisms, such as triggering anti-inflammation, lipid profile correction, sensitization of insulin reception, or blood glucose control. In Indonesia, the utilization of natural compounds is part of the nation's culture. The community widely uses them; even though in general, their effectiveness and safety have not been thoroughly assessed by rigorous clinical trials. Scientific evidence suggested that cinnamon, mangosteen, and curcumin, as well as their derived components possess a broad spectrum of pharmacological activity. In this review, an enormous potential of cinnamon, mangosteen, and curcumin, which originated and are commonly used in Indonesia, could be treated against MetS, such as diabetes, hyperlipidemia, hypertension, and obesity. The findings suggested that cinnamon, mangosteen, curcumin and their derivatives may reflect areas of promise in the management of MetS.
Collapse
Affiliation(s)
- Wawaimuli Arozal
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Melva Louisa
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Vivian Soetikno
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
16
|
Long non-coding RNA H19 promotes osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by regulating microRNA-140-5p/SATB2 axis. J Biosci 2020. [DOI: 10.1007/s12038-020-0024-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Hu W, Ding Y, Wang S, Xu L, Yu H. The Construction and Analysis of the Aberrant lncRNA-miRNA-mRNA Network in Adipose Tissue from Type 2 Diabetes Individuals with Obesity. J Diabetes Res 2020; 2020:3980742. [PMID: 32337289 PMCID: PMC7168724 DOI: 10.1155/2020/3980742] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/12/2020] [Accepted: 03/12/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The prevalence of obesity and type 2 diabetes mellitus (T2DM) has become the most serious global public health issue. In recent years, there has been increasing attention to the role of long noncoding RNAs (lncRNAs) in the occurrence and development of obesity and T2DM. The aim of this work was to find new lncRNAs as potential predictive biomarkers or therapeutic targets for obesity and T2DM. METHODS In this study, we identified significant differentially expressed mRNAs (DEmRNAs) and differentially expressed lncRNAs (DElncRNAs) between adipose tissue of individuals with obesity and T2DM and normal adipose tissue (absolute log2FC ≥ 1 and FDR < 0.05). Then, the lncRNA-miRNA interactions predicted by miRcode were further screened with a threshold of MIC > 0.2. Simultaneously, the mRNA-miRNA interactions were explored by miRWalk 2.0. Finally, a ceRNA network consisting of lncRNAs, miRNAs, and mRNAs was established by integrating lncRNA-miRNA interactions and mRNA-miRNA interactions. RESULTS Upon comparing adipose tissue from individuals with obesity and T2DM and normal adipose tissues, 364 significant DEmRNAs, including 140 upregulated and 224 downregulated mRNAs, were identified in GSE104674; in addition, 231 significant DEmRNAs, including 146 upregulated and 85 downregulated mRNAs, were identified in GSE133099. GO and KEGG analyses have shown that downregulated DEmRNAs in GSE104674 and GSE133099 were associated with obesity- and T2DM-related biological pathways, such as lipid metabolism, AMPK signaling, and insulin resistance. Furthermore, 28 significant DElncRNAs, including 14 upregulated and 14 downregulated lncRNAs, were found. Based on the predicted lncRNA-miRNA and mRNA-miRNA relationships, we constructed a competitive endogenous RNA (ceRNA) network, including five lncRNAs, ten miRNAs, and 15 mRNAs. KEGG-GSEA analysis revealed that four lncRNAs (FLG-AS1, SNAI3-AS1, AC008147.0, and LINC02015) in the ceRNA network were related to the biological pathways of metabolic diseases. CONCLUSIONS Through ceRNA network analysis, our study identified four new lncRNAs that may be used as potential biomarkers and therapeutic targets of obesity and T2DM, thus laying a foundation for future clinical studies.
Collapse
Affiliation(s)
- Wei Hu
- Department of Epidemiology and Medical Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, China
| | - Yuanlin Ding
- Department of Epidemiology and Medical Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, China
| | - Shu Wang
- Department of Epidemiology and Medical Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, China
| | - Lin Xu
- Department of Epidemiology and Medical Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, China
| | - Haibing Yu
- Department of Epidemiology and Medical Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, China
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|